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Inferring language dispersal patterns with
velocity field estimation

Sizhe Yang1, Xiaoru Sun 2,3, Li Jin 1,2 & Menghan Zhang 4,5

Reconstructing the spatial evolution of languages can deepen our under-
standing of the demic diffusion and cultural spread. However, the phylogeo-
graphic approach that is frequently used to infer language dispersal patterns
has limitations, primarily because the phylogenetic tree cannot fully explain
the language evolution induced by the horizontal contact among languages,
such as borrowing and areal diffusion. Here, we introduce the language velo-
city field estimation, which does not rely on the phylogenetic tree, to infer
language dispersal trajectories and centre. Its effectiveness and robustness are
verified through both simulated and empirical validations. Using language
velocity field estimation, we infer the dispersal patterns of four agricultural
language families and groups, encompassing approximately 700 language
samples. Our results show that the dispersal trajectories of these languages are
primarily compatible with population movement routes inferred from ancient
DNA and archaeological materials, and their dispersal centres are geo-
graphically proximate to ancient homelands of agricultural or Neolithic cul-
tures. Our findings highlight that the agricultural languages dispersed
alongside the demic diffusions and cultural spreads during the past 10,000
years. We expect that language velocity field estimation could aid the spatial
analysis of language evolution and further branch out into the studies of
demographic and cultural dynamics.

Over the past 10,000 years, substantial demic diffusions and cultural
spreads have occurred among human populations along with the
intensification of agricultural techniques1–6. They were also accom-
panied by the origins and dispersals of language families and groups
worldwide3,7–10. Given that humans are carriers of languages that are in
turn carriers of cultures, technical advances in human genetics have
enabled us to trace the complex demographic dynamics of different
language-speaking populations11–13. On the other hand, the history of
language evolution can provide striking insights into the origins and
spreads of cultural innovations that may not be reflected in archae-
ological records11,12. A synthesis of linguistic, genetic, and

archaeological evidence was therefore proposed to comprehensively
depict the prehistory of human activities, although evidence from
different disciplines is often far from reaching a reasonable
consensus14,15. The challenge to achieving this synthesis is to establish
the spatiotemporal alignment of interdisciplinary evidence drawn
from limited data and fragmented historical accounts3,16–18. For-
tunately, recent advances in humangenetic and archaeological studies
have shown similar prehistoric pictures of demic and cultural diffu-
sions globally1–3. Froma linguistic perspective, an increasingnumberof
phylogenetic studies have provided comprehensive temporal evi-
dence of language evolution to infer prehistoric population
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activities8,10,19,20. Relying on the estimated language divergence time,
these studies have also examined several hypotheses about prehistoric
population activities, such as the language/farming dispersal
hypothesis3,8,19,21. Nevertheless, studying the spatial evolution of lan-
guages remains another great challenge in interdisciplinary
alignment3,12,22.

The spatial evolution of languages has been frequently mod-
elled using the phylogeographic approach7,9,23,24, which consists of
twomajor aspects (Supplementary Fig. 1). The first one is to obtain a
phylogenetic tree based on the linguistic traits (e.g., lexicons) to
demonstrate the observed linguistic relatedness7,9,23,24 (Supplemen-
tary Fig. 1). Linguistic relatedness is shaped by the diachronic evo-
lution of linguistic traits, which can be represented by branching
patterns within the phylogenetic tree25. The branching patterns
mirror the evolutionary trajectories of linguistic traits in languages
after they diverged from their most recent common ancestor
(MRCA). For example, the shorter branch linking two languages
indicates fewer diachronic distinctions between their linguistic
traits, resulting in a higher linguistic relatedness between them26,27.
Accordingly, the phylogenetic tree can reflect both the observed
linguistic relatedness and the diachronic evolutionary trajectories of
linguistic traits that shape it (Supplementary Fig. 1). The second
aspect is to transform the diachronic evolutionary trajectories of
linguistic traits into language dispersal trajectories (Supplementary
Fig. 1). This step is implemented by projecting the phylogenetic tree
into geographic space based on the correlation between linguistic
relatedness among languages and their geographic proximity7,9,28,29.
With this projection, the branches within the phylogenetic tree in
the geographic space thus constitute the language dispersal trajec-
tories (Supplementary Fig. 1)7,9,30.

Nevertheless, the phylogenetic tree is an ideal model for repre-
senting linguistic relatedness that exclusively captures vertical diver-
gencebut ignores horizontal contact31,32. In linguistic reality, horizontal
contact such as language borrowing and areal diffusion can be sub-
stantially found in multilingual areas33. Moreover, it can also be iden-
tified in different-level linguistic systems of lexicon, grammar, and
sound34–37. On these grounds, the phylogeographic approach would
pose some limitations when linguistic relatedness cannot be well
interpreted by the family-tree model. Fortunately, recent technical
advances in velocity field estimation provide alternative opportunities
to circumvent these limitations. The velocity field canbe visualised as a
collection of arrows estimated by a specific dynamic model38. The
directions of the arrows constitute a set of continuously changing
trajectories, enabling us to outline the spatiotemporal dynamics of
natural or social phenomena such as atmospheric circulations39 (e.g.,
water vapour transport), biomolecular processes40 (e.g., RNA tran-
scription), demic diffusions41 (e.g., human mobility), and cultural
spreads42 (e.g., Neolithic culture propagation).

Noting these advantages, we here introduced a novel computa-
tional approach, namely language velocity field estimation (LVF)43, to
infer the language dispersal pattern, including dispersal trajectories
and centre (Fig. 1; see details in Methods). Similar to the phylogeo-
graphic approach, the LVF also consists of two major aspects but
without involving the phylogenetic tree (see details in Supplementary
Notes section 1.1). The first is to establish a velocity field to depict the
diachronic evolutionary trajectories of linguistic traits that shape
the observed linguistic relatedness. This velocity field functions like
the phylogenetic tree but additionally captures the attribution of
horizontal contact. The second is to project this velocity field into the
geographic space based on the correlation between linguistic relat-
edness and language geography. It resembles the geographic projec-
tion of the phylogenetic tree that facilitates outlining the language
dispersal trajectories in geographic space. In simulated validations, we
verified the computational effectiveness and robustness of our LVF
using 1000 simulated datasets where the dispersal patterns are

given44. Specifically, the effectiveness of the LVF was validated based
on the difference between estimated and given patterns, and its
robustness was evaluated under different parametric settings. In
empirical applications, we employed this verified LVF to infer the
dispersal patterns of four agricultural languages which are Indo-Eur-
opean, Sino-Tibetan, Bantu, and Arawak languages. Subsequently, we
investigated the interdisciplinary alignments between the agricultural
language dispersals and the known demic and cultural diffusions
drawn from genetic and archaeological evidence. To illustrate the
methodological advantages of LVF, we additionally conducted com-
prehensive simulated and empirical model comparisons between the
LVF and other prevailing approaches, such as the phylogeographic
approach.

Results
Overview of the language velocity field estimation
Akin to thephylogeographic approach, the LVFcanbeused to infer the
language dispersal pattern through the diachronic evolution of lin-
guistic traits (Fig. 1; see details in Methods). Its implementation
involves two major aspects, corresponding to the two aspects in the
computational procedure of the phylogeographic approach but
without involving the phylogenetic tree (Supplementary Fig. 1; see
details in Supplementary Notes section 1.1).

The first aspect is to establish the diachronic evolutionary tra-
jectories of linguistic traits that determine linguistic relatedness
among language samples,whichcomprises three steps. Thefirst step is
to conduct the principal component analysis (PCA)-based distance to
represent linguistic relatedness among language samples (Fig. 1a, b).
The linguistic relatedness among language samples is represented by
their Euclidean distances in the PC space. Specifically, the linguistic
traits are rearranged into two principal components (PC1 and PC2)
using PCA (Fig. 1b). Accordingly, each language sample can be visua-
lised based on its PC1 and PC2 values in the two-dimensional PC space.
In this PC space, a shorter Euclidean distance between two language
samples indicates a higher linguistic relatedness resulting from either
vertical divergence or horizontal contact.

In parallel to the first step, the second step is to establish a
dynamic model that consists of ordinary differential equations to
reconstruct the past state of each linguistic trait for each language
sample (Fig. 1a, c, d). Thismodel is similar to the covarionmodel that is
widely utilised formodelling linguistic trait evolution8,45,46 (Fig. 1d1; see
details inMethods). Bymeasuring the differences between the present
and past states of linguistic traits for each language sample, we can
obtain a high-dimensional velocity vector that exhibits how the lin-
guistic traits for each language sample evolved into their current states
(Fig. 1d2; see details in Methods and Supplementary Notes section 1.1
and section 1.2). Therefore, we can derive a collection of velocity
vectors that constitute a velocity field in high-dimensional space. This
high-dimensional velocity field can illustrate the diachronic evolu-
tionary trajectories of linguistic traits in the observed language
samples.

The third step is to project the high-dimensional velocity field into
the two-dimensional PC space. This process delineates the diachronic
evolutionary trajectories of linguistic traits that shape the linguistic
relatedness among language samples (Fig. 1e; see details in Methods
and Supplementary Notes section 1.1). This projection is implemented
by simultaneously mapping the past and present states of linguistic
traits for each language sample into the PC space (Fig. 1e1). The velo-
city vector for each language sample in PC space canbe visualised as an
arrow connecting the present and past trait states of that language
sample scaled by the reconstruction time (Fig. 1e1). This arrow visually
illustrates how the linguistic traits in each language sample evolved
from the past states into the present states within PC space. Accord-
ingly, the collection of arrows within the PC space presents the dia-
chronic evolutionary trajectories of linguistic traits, which visualises
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the formation of the observed linguistic relatedness among language
samples (Fig. 1e2).

The second aspect is to transform the diachronic evolutionary
trajectories of linguistic traits that shape observed linguistic relat-
edness into language dispersal trajectories (Fig. 1f, g). This is
accomplished with kernel projection40. This kernel projection
enables us to map the velocity vectors from PC space into geo-
graphic space based on the correlation between linguistic related-
ness and language geography (Fig. 1f; see details in Methods). In
particular, the rationale of kernel projection is to estimate the
velocity vector for each language sample in geographic space,
ensuring its correlation with linguistic relatedness among language
samples in PC space can be optimally maintained (Fig. 1f1).
The vector directions in geographic space thus constitute a set
of trajectories that suggest how and from where (i.e., dis-
persal trajectories and centre) the language samples dispersed into
their current locations (Fig. 1f2; see details in Methods and Supple-
mentary Notes section 1.3). In particular, the geographic location
surrounded by velocity vectors that point radially outwards in all
directions could be a potential dispersal centre (Fig. 1g; see details in
Methods).

Simulated validations of the language velocity field estimation
To validate the feasibility of our LVF, we sourced 1000 simulated
datasets from Wichmann and Rama’s work44 (see details in Supple-
mentary Notes section 2). Each dataset consisted of 20 simulated
language samples with 306 binary-coded linguistic traits generated by
a given phylogenetic tree. For each dataset, the geographic coordi-
nates of the simulated language samples were generated by applying
the randomwalk model to the phylogenetic tree assigned with a given
dispersal centre. In other words, the geographic coordinate of the
dispersal centre was provided in each dataset. Accordingly, these
simulated datasets can serve as benchmarks or baselines for the vali-
dation of LVF.

In this study, we validated the effectiveness of the LVF by
comparing the differences between the given and inferred dispersal
centres in longitude and latitude under different parametric set-
tings. In practice, the simulated results showed that the inferred
dispersal centres under different parametric settings were not sig-
nificantly different from the given dispersal centre in longitude and
latitude (Supplementary Fig. 2; see details in Methods and Supple-
mentary Notes section 2). This suggests the high effectiveness of the
LVF in inferring the language dispersal pattern. On the other hand,

Fig. 1 | Schematic overview of the LVF for inferring the dispersal trajectories
and centre of languages. The computational procedure of the LVF comprises two
major steps. Subfigures (a) to (e) illustrate the first step, which is to estimate a
velocity fieldwithin the PC space to outline the diachronic evolutionary trajectories
of linguistic traits that shape the observed linguistic relatedness. Subfigures (f) to
(g) illustrate the second step, which is to project the velocity field from PC space
into geographic space. Within the velocity field in geographic space, the directions
of the velocity vectors compose a set of continuously changing trajectories that

delineate from where the language samples diffused to their current locations.
Theseprocedures are exemplifiedusing theBantu language family. Comprehensive
insights into the underlying principles and computational steps can be found in the
Methods, as well as Supplementary Notes and Supplementary Methods. The grey
base worldmap used in Subfigures (f) to (g) is generated using themap function of
the maps package in R (4.3.1). The Source Data and Codes for generating Fig. 1 are
available.
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we also validated the robustness of the LVF by measuring the cosine
similarities among velocity fields that were estimated under differ-
ent parametric settings. The simulated results showed that there
should be no significant difference among the velocity fields
within either high-dimensional or two-dimensional spaces under
different parametric settings (Supplementary Fig. 3; see details
in Methods and Supplementary Notes section 2). This indicates
the high robustness of the LVF in inferring the language dispersal
pattern.

Empirical applications of the language velocity field estimation
We collected four empirical cases of language families and groups that
encompass a total of 692 language samples. They are the Indo-
European7, Sino-Tibetan8, Bantu9, and Arawak24 languages (Supple-
mentary Table 1). These languages have been suggested to be asso-
ciated with the developments and spreads of ancient agricultural or
Neolithic cultures3 (Fig. 2a; see details in Supplementary Discussion
section 1). For each case, we applied the LVF to estimate a velocity field
in geographic space to illustrate the language dispersal trajectories

Fig. 2 | The homelands anddispersals of ancient agriculture,Neolithic cultures,
Holocene populations, and language families and groups. a The homelands of
ancient agriculture and the dispersal routes of Neolithic/Formative cultures and
Holocene populations proposed by previous studies2–4 based on archaeological
and ancient DNA evidence. The pale red polygon denotes the known ancient
agricultural homeland. The black arrow signifies the dispersal trajectory of the
Neolithic/Formative culture. The coloured arrow represents the dispersal trajec-
tory of the major Holocene population. b The velocity fields of four language
families and groups. The coloured dot denotes the geographical position of each

observed language sample. The coloured small arrow represents the velocity vec-
tor which has been grid-smoothed and normalised for better visualisation. The
larger coloured schematic arrow, summarised based on the velocity vectors, ren-
ders the general language dispersal trajectory. The pale grey polygon signifies the
known geographic range of the Neolithic culture. The coloured concentric circle
represents the language dispersal centre inferred by the LVF. The grey base world
map is generated using the map function of the maps package in R (4.3.1). The
Source Data and Codes for generating Fig. 2 are available.
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(Fig. 2b and Supplementary Figs. 4, 5). Specifically, across the Eurasian
continent, we observed that Indo-European languages expanded
geographically westwards into Europe and eastwards into the Indian
peninsula. In Asia, the reconstructed trajectories showed the Sino-
Tibetan expansion westwards into the Tibet Plateau, southwards into
mainland Southeast Asia, and eastwards into the coastal areas. In
Africa, the Bantu language dispersal exhibited a series of eastwards
and southwards expansions. In South America, the Arawak languages
spread from the Amazon basin to the Caribbean and across the low-
lands. Our results of the spatial reconstructions are primarily con-
sistent with previous studies of language evolution7–9,24,47, and largely
favoured by the known evidence of demic diffusions and cultural
spreads of Holocene populations (Fig. 2a)1–3,5,6.

Based on the estimated velocity field in geographic space, we
further inferred the dispersal centre for each language case (Fig. 2b
and Supplementary Fig. 6 and Supplementary Table 2; see details in
Methods and Supplementary Notes section 1.3). Notably, the inferred
dispersal centres of these four agricultural languages were adjacent to
the known ancient agricultural or Neolithic homelands (Fig. 2b). Spe-
cifically, the inferred dispersal centre of Indo-European languages was
located in the Fertile Crescent which is the earliest ancient agricultural
homeland in the world (Fig. 2b)3,4. This observation favours the Ana-
tolia origin hypothesis7 of Indo-European languages rather than the
alternative competing hypothesis of Pontic steppe region origin48.
Moreover, in the case of Sino-Tibetan languages, their dispersal centre
was inferred to be located in the Gansu Province of China (Fig. 2b).
This centre is situated within the geographic ranges of the Yangshao
(7000-5000years BP) and/orMajiayao (5500-4000yearsBP)Neolithic
cultures8 in the ancient agricultural homeland of China, the Yellow
River plains3,4. This result supports the Northern origin hypothesis that
Sino-Tibetan languages originated from the Yellow River plains in
northernChina8,47,49. For Bantu languages, the inferred dispersal centre
was located in the southern Cameroon (Fig. 2b). This area is geo-
graphically adjacent to the known ancient agricultural homeland of
Africa in eastern Nigeria and western Cameroon3. In addition, the LVF
showed that the dispersal of Arawak languages could originate
from the northern lowlands of Bolivia in the upper Madeira River
basin (Fig. 2b). This area is an important homeland of ancient agri-
culture in lowland South America4,50,51. With four language cases, the
LVF conformed to the spatial alignments of agricultural language dis-
persal patterns with human population activities drawn from ancient
human genomes and archaeologicalmaterials2–6 (Fig. 2a). Without loss
of generality, we additionally varied different parametric settings for
the LVF to infer the dispersal patterns of these four language families
and groups. Our results showed that the inferred dispersal patterns
remained robust across different parametric settings (Supplementary
Figs. 7–10).

Comparisons between the language velocity field estimation
and phylogeographic approach
TheLVF shares a similar theoretical foundation as thephylogeographic
approach, which includes reconstructing the language dispersal pat-
tern through the diachronic evolution of linguistic traits. However,
these two approaches employ distinct strategies to fulfil this founda-
tion. The primary distinction revolves around the representation of
linguistic relatedness. To represent linguistic relatedness, our LVF
conducts the PCA-based distance, whereas the phylogeographic
approach relies on the phylogenetic tree. The PCA-based distance can
capture the linguistic relatedness arising fromboth vertical divergence
and horizontal contact. In contrast, the phylogenetic tree can solely
capture the linguistic relatedness raised by vertical divergence.
Accordingly, we raised the speculation regarding the consistency and
inconsistency between these two approaches. Specifically, on the one
hand, if the linguistic relatedness can be well reflected by the family-
tree model, the LVF and phylogeographic approach should perform

similarly. On the other hand, if linguistic relatedness bears a significant
horizontal influence, their performances could show considerable
differences. To verify this speculation, utilising both the simulated and
empirical datasets, we made comprehensive simulated and empirical
comparisons between the LVF and phylogeographic approach. In this
study, the phylogeographic approach was performed using the geo-
graphical model (PhyloG) in the BayesTraits programme52. The dis-
persal centres of four empirical cases inferred by LVF and
phylogeographic approach are visualised in Fig. 3a, and the statistical
comparison results are visualised in Figs. 3b1–3b5 and summarised in
Fig. 3b6.

We first conducted the simulated comparison between the LVF
and phylogeographic approach. In this comparison, the simulated
datasets served as benchmarks to validate the performance between
the LVF andphylogeographic approachwhen the linguistic relatedness
can be adequately interpreted by the family-tree model. The reason is
that the simulated datasets are generated by a given phylogenetic tree,
meaning that the linguistic relatedness among simulated language
samples can be regarded as being solely raised by vertical divergence.
In other words, the linguistic relatedness among simulated language
samples can be accurately explained by the family-tree model.

This simulated comparison involves two aspects. In the first
aspect, we compared the performance between the LVF and phylo-
geographic approach by examining the differences between their
estimated dispersal centres in longitude and latitude using
1000 simulated datasets. The results showed that there were no sig-
nificant differences between the dispersal centres inferred by these
two approaches in longitude and latitude (Lat: p value = 0.85; Lon: p
value = 0.36; Fig. 3b1). In the second aspect, we examined the expla-
natory power of PCA-based distance and phylogenetic tree for lin-
guistic relatedness among simulated language samples. Specifically,
we computed three types of relatedness matrixes for simulated lan-
guage samples, which are the overall relatedness matrix, PCA-based
relatedness matrix, and tree-based relatedness matrix (see details in
Methods). The overall relatedness matrix contains the Manhattan
distance between each language sample pair, reflecting their overall
relatedness arising from either divergence or contact. The PCA-based
relatedness matrix encompasses the PCA-based Euclidean distance
between each language sample pair within PC space, quantifying their
relatedness due to either divergence or contact. The tree-based
relatedness matrix includes the phylogenetic distance between each
language sample pair on the phylogenetic tree, measuring their relat-
edness solely raised byvertical divergence. The statistical results of the
Mantel test53 showed that both PCA-based (R2 = 0.90, p value = 0.001;
Fig. 3b6) and tree-based (R2 = 0.93, p value = 0.001; Fig. 3b6) related-
nessmatrixes were significantly correlatedwith the overall relatedness
matrix. This indicates that both PCA-based distance and the phyloge-
netic tree show similar and high explanatory power for the linguistic
relatedness that solely arises from vertical divergence. This therefore
results in identical performancebetween the LVF andphylogeographic
approach.

We next conducted the empirical comparison between the LVF
and phylogeographic approach. In this comparison, the empirical
datasets were utilised to validate the performance between the LVF
and phylogeographic approach when linguistic relatedness bears a
significant influence from horizontal contact. This empirical compar-
ison involves three aspects. In the first aspect, we assessed the degree
of the influence of horizontal contact on linguistic relatedness within
these empirical datasets. This assessment is implemented by the delta
score which is a widely utilised metric to quantify the degree of like-
ness between the language phylogenetic topology and the tree
topology54. The larger value of the delta score implies that linguistic
relatedness bears a larger influence of horizontal contact and cannot
be well explained by the family-tree model54. Given that the phyloge-
netic topology of simulated language samples is highly compatible
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with the tree topology, the delta score of simulated language samples
can serve as the baseline for the linguistic relatedness that can be well
interpreted by the family-tree model (one-sided 95% CI = [0.1553,
0.1727]; Fig. 3b2). With this baseline, the statistical examinations indi-
cated that the language phylogenetic topologies within these four
empirical datasets all significantly deviated from the tree topology
(Indo-European: delta-score = 0.2656, p value < 0.001; Sino-Tibetan:
delta-score = 0.3324, p value < 0.001; Bantu: delta-score = 0.3598, p
value < 0.001; Arawak: delta-score = 0.4129, p value < 0.001; Fig. 3b6).
This result suggests that the linguistic relatedness among the language
samples within these empirical datasets bears significant influences
from horizontal contact.

In the second aspect, we examined the differences between the
dispersal centres in longitude and latitude inferred by the LVF and
phylogeographic approach for each empirical case. It is noted that
these two approaches perform similarly within the simulated datasets
(Figure 3b1). Therefore, the absolute differences among the dispersal
centres in longitude and latitude estimated by the LVF and phylo-
geographic approach within the simulated comparison can serve as
baselines for empirical comparison (Fig. 3b3). These baselines quantify
the absolute estimated differences between these two approaches in
longitude and latitude when they exhibit similar performance (Lat:
mean = 0.94, one-sided 95% CI = [4 × 10-4, 2.82]; Lon: mean = 1.55, one-
sided 95% CI = [5 × 10-5, 3.55]; Fig. 3b3). With these baselines, the

Fig. 3 | Comparison between LVF and other spatial reconstruction approaches.
a The geographic coordinates (Lon, Lat) of dispersal centres for each case inferred
by five approaches: language velocity field estimation (LVF), phylogeographic
approach (PhyloG), diversity approach (DIV), centroid approach (Centr), and
minimal distance approach (MD). (b1) Density plot displaying differences in long-
itude and latitude between the dispersal centres inferred by LVF and PhyloG using
1000 simulated datasets. p value is calculated by the two-sidedWilcoxon rank-sum
test. (b2) Density plot showing the delta score distribution of simulated language
samples (one-sided 95% CI = [0.1553, 0.1727]), estimated from 200 bootstrap
resamplings. (b3) Density plot illustrating absolute differences in longitude and
latitude between dispersal centres inferred by LVF and PhyloG using 1000 simu-
lateddatasets (Lat:mean=0.94, one-sided95%CI = [4 × 10-4, 2.82]; Lon:mean= 1.55,
one-sided 95% CI = [5 × 10-5, 3.55]). (b4) Linear relation between the delta score and
the absolute difference between dispersal centres in longitude estimated from LVF

andPhyloG. Theorange ribbondenotes the 95%CI. (b5) Linear relationbetween the
delta score and the absolute difference between dispersal centres in latitude esti-
mated from LVF and PhyloG. The blue ribbon denotes the 95% CI. (b6) Table dis-
playing statistical test results for three indexes: delta score, absolute estimated
difference between LVF and PhyloG, and linguistic relatedness explanatory power
of PCA-based distance and phylogenetic tree. For the delta score, the p value is
calculated using the one-sided bootstrap test. For the absolute estimated differ-
ence, the p value is calculated using the one-sidedMonto-Carlo Simulation test. For
linguistic relatedness explanatory power of PCA-based distance or phylogenetic
tree, the p value is calculated using the Mantel test. For all tests, statistical sig-
nificance is indicated by p value < 0.05. The grey base worldmap used in Subfigure
(a) is generated using themap function of themaps package in R (4.3.1). The Source
Data and Codes for generating Fig.3 are available.
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statistical tests showed the significant differences between the dis-
persal centres estimated by the LVF and phylogeographic approach in
the cases of Sino-Tibetan (Lat: diff = 5.12, p value = 0.012; Lon: diff =
6.52,p value = 0.020; Fig. 3b6) andArawak languages (Lat: diff = 6.58,p
value = 0.007; Lon: diff = 3.19, p value = 0.058; Fig. 3b6) but not in the
Indo-European (Lat: diff = 2.46, p value = 0.069; Lon: diff = 1.61, p
value = 0.158; Fig. 3b6) and Bantu (Lat: diff = 0.14, p value = 0.878; Lon:
diff = 0.76, p value = 0.443; Fig. 3b6) languages. Despite these two
approaches exhibiting identical performance in Indo-European and
Bantu languages, we found that the differences between their esti-
mateddispersal centres in longitude and latitudewould increase as the
delta score increased (Figs. 3b4, 3b5). This suggests that the stronger
horizontal contact influence on linguistic relatedness would lead to a
larger distinction between the performances of the LVF and the phy-
logeographic approach.

In the third aspect, we assessed the explanatory power of PCA-
based distance and the phylogenetic tree for linguistic relatedness
within empirical cases. We calculated the overall relatedness, PCA-
based relatedness, and tree-based relatedness matrixes for the lan-
guage samples within each case. Utilising the Mantel test53, we
observed that both PCA-based and tree-based relatedness matrixes
exhibited significant correlations with the overall relatednessmatrix in
Indo-European (PCA-based distance: R2 = 0.37, p value = 0.001; phylo-
genetic tree: R2 = 0.39, p value = 0.001; Fig. 3b6) and Bantu languages
(PCA-based distance: R2 = 0.65, p value = 0.001; phylogenetic tree:
R2 = 0.38, p value = 0.001; Fig. 3b6). This indicates that both PCA-based
distance andphylogenetic tree are highly explanatory for the linguistic
relatedness within Bantu and Indo-European languages. This results in
identical performance between the LVF and phylogeographic
approach within the Bantu and Indo-European languages. However,
only the PCA-based relatednessmatrix significantly correlatedwith the
overall relatedness matrix while the tree-based relatedness matrix did
not within the Sino-Tibetan (PCA-based distance: R2 = 0.44, p value =
0.001; phylogenetic tree: R2 = 0.05, p value = 0.160; Fig. 3b6) and
Arawak languages (PCA-based distance: R2 = 0.53, p value = 0.001;
phylogenetic tree: R2 = 0.09, p value = 0.057; Fig. 3b6). This implies
that only PCA-based distance manifests a high explanatory power for
linguistic relatedness while the phylogenetic tree does not within the
Sino-Tibetan and Arawak languages. It hence leads to the distinct
performance between the LVF and phylogeographic approach within
the Sino-Tibetan and Arawak languages.

According to the simulated and empirical comparisons, we con-
firm that the key distinction between the LVF and phylogeographic
approach is rooted in their distinctive explanatory power for linguistic
relatedness. Once the family-tree model is adequately explanatory for
linguistic relatedness, the LVF and phylogeographic approach could
exhibit similar performance. In contrast, a notable distinction between
these two approaches could appear if the family-tree model cannot
adequately reflect the linguistic relatedness. Moreover, such distinc-
tion could increase while the explanatory power of the family-tree
model for linguistic relatedness decreases. Importantly, the genetic
and archaeological evidence largely favoured the estimated results of
the LVF within empirical cases but partially supported that of the
phylogeographic approach. This suggests that the LVF may be more
reliable than the phylogeographic approach when linguistic related-
ness can be less explained by the family-tree model. Accordingly, the
LVF can be regarded as an extension of the phylogeographic approach
by relaxing its tree topology assumption of linguistic relatedness.

Comparisons between the language velocity field estimation
and other phylogeny-free baseline approaches
Apart from the phylogeographic approach, we also compared the LVF
to the other three phylogeny-free approaches. They are the diversity
(DIV), centroid (Centr), andminimal distance (MD) approaches44,55 (see
details in Methods). These approaches rest upon completely distinct

theoretical foundations from the LVF and phylogeographic approach.
Specifically, the diversity approach postulates that the dispersal centre
should be situated in the area encompassing the greatest linguistic
diversity44,55. Linguistic diversity refers to the degree of distinctions
among the linguistic traits of languages in a certain area44,56, where a
higher value implies greater distinctions (see details in Supplementary
Discussion section 2). The centroid approach postulates that the
centre of the polygon formed by the extension of current language
geographic locations should be the dispersal centre44. The minimal
distance approachposits that the locationof the language that exhibits
the smallest average geographic distance to the other languages
should be the dispersal centre44. We applied these three basic
approaches to the four empirical cases. The results showed that the
dispersal centres inferred by the LVF exhibited significant differences
from those inferredby these three approaches (Fig. 3a). This highlights
the fundamental distinction between the LVF and these phylogeny-
free approaches.

Discussion
Aligning the spatiotemporal evidence of linguistics, genetics, and
archaeology can be beneficial for comprehensively uncovering pre-
historic human activities14,15,57. In this study, we proposed a computa-
tional approach, the LVF, to infer the language dispersal pattern
without relying on the phylogenetic tree (see details in Supplementary
Notes section 1). With 1000 simulated datasets, we validated the
effectiveness and robustness of our LVF (see details in Supplementary
Notes section 2). Utilising this verified LVF, we reconstructed the dis-
persal patterns of four prominent agricultural languages: Indo-Eur-
opean, Sino-Tibetan, Bantu, and Arawak languages. Our findings
highlight that agricultural languages dispersed along with demic dif-
fusions and cultural spreads in the past 10,000 years5,6.

Compared to the phylogeographic and three phylogeny-free
approaches, our LVF may exhibit some methodological advantages in
empirical applications (see details in Supplementary Discussion sec-
tion 3). In contrast to the phylogeographic approach, the LVF can be
used independently of the phylogenetic tree and accounts for the
histories of both language vertical divergence and horizontal contact.
Therefore, the application of the LVF can be flexibly extended into
structural features such as grammar and sound58,59, rather than just
limited to lexicons (e.g., lexical cognate). Compared to lexicons,
structural features usually exhibit more complex evolutionary pro-
cesses, such as contact-induced changes and convergence32. These
processes could not be completely modelled by the family-tree
model32–34,36. Therefore, the LVF may allow for the utilisation of var-
ious linguistic traits (i.e., lexicon, grammar, and sound) to infer the
dispersal patterns of languages whose linguistic relatedness cannot be
described by the family-tree model (e.g., Chinese dialects60, Indo-
Aryan languages across India61, and Oceanic languages across Pacific
settlements62). In contrast to the other three phylogeny-free approa-
ches, the LVF can be used to infer the dispersal pattern of languages
when they exhibit unbalanced diversity or nonuniform dispersal rates
across geographic space shaped by other factors such as sampling bias
and population migration63 (see details in Supplementary Discussion
section 2).

With these methodological advantages, the dispersal patterns of
four empirical cases inferred by the LVF can be largely supported by
interdisciplinary evidence. Nevertheless, the origins and dispersals of
some of these empirical cases remain controversial7–9,24,47,48. For the
origin and dispersal of Indo-European languages, Bouckaert et al.
(2012)7 supported the Anatolia hypothesis by revealing that Indo-
European languages originated in Anatolia approximately 7000-
10,000 years ago. In contrast, Chang et al. (2015)48 declared that Indo-
European languages originated approximately 6000 years ago, which
strongly supported the steppe hypothesis, by reanalysing datasets
provided by Bouckaert et al. (2012). Note that Chang et al. (2015)
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modified several time calibrations according to linguistic evidence but
did not apply phylogeographic reconstruction. Therefore, the home-
land of Indo-European languages remains controversial. Following
these two works, we utilised the same dataset provided by Bouckaert
et al. (2012). Our spatial reconstruction of Indo-European languages
supported the sameAnatolia hypothesis as Bouckaert et al. (2012). For
Sino-Tibetan origin and dispersal, recent phylogenetic studies dated
the divergence time of the Sino-Tibetan languages to the Neolithic
period8,47,49 and supported the Northern origin hypothesis. Therefore,
the homeland of Sino-Tibetan languages shouldbe located in northern
China. However, spatial reconstruction has not been rigorously
implemented to infer thehomelandof the Sino-Tibetan languages thus
far. Nevertheless, corroborated with previous temporal evidence, our
LVF indeed revealed the Sino-Tibetan dispersal centre situated in the
location at the upper Yellow River plains, Northern China.

Despite several methodological advantages, we must note that
the LVF should not be considered completely superior to other
approaches, especially the phylogeographic approach. In contrast, the
LVF can be viewed as the extension of the phylogeographic approach
by relaxing its tree topology assumption of linguistic relatedness.
However, if linguistic relatedness can be well illustrated by the family-
treemodel, the phylogeographic approach should be a better solution
than the LVF, because the phylogenetic tree is a more accurate
representation of linguistic relatedness than the PCA-based distance.
Nevertheless, we still believe that the LVF can serve as a useful com-
pensation for the phylogeographic approach when the family-tree
model cannot adequately capture linguistic relatedness. Moreover,
several improvements in the LVF should be further accomplished in
the future (see details in Supplementary Discussion section 3), such as
estimating the period of language dispersal and adjusting the estima-
tion bias raised by the sampling bias of language geographic dis-
tribution (Supplementary Fig. 11; see details in Supplementary Notes
section 1.3.2). Overall, we still anticipate that the LVF could aid the
spatial analysis of language evolution and branch out into other
interdisciplinary fields such as genetics and archaeology.

Methods
Linguistic data
Our linguistic datasets are sourced from the public lexical datasets of
four language families and groups. They contain several lexical words
following a specific wordlist such as the Swadesh 100 or 200
wordlists64. These words have been well coded as different lexical
cognates by previous linguistic experts. Each lexical word contains
several cognates that manifest the same meaning and systematic
sound correspondences. For calculation, each cognate has been fur-
ther recoded asa newbinary-coded linguistic trait, where 1 signifies the
presence of this cognate in a language, while 0 signifies the absence
(Fig. 1a). Therefore, our linguistic datasets encompasses 5995 linguistic
traits across 103 Indo-European language samples7, 949 linguistic traits
across 109 Sino-Tibetan language samples8, 3859 linguistic traits
across 420Bantu language samples9, and693 linguistic traits across60
Arawak language samples24. Additionally, each language sample is also
assigned a geographic coordinate in terms of longitude and lati-
tude (Fig. 1c).

Imputation of missing values
We first removed linguistic traits with > 75% missing values. Then, we
used themode-value imputation approach to imputemissing values of
the remaining linguistic traits. To evaluate the efficiency of the mode-
value imputation approach, we employed the metric of cosine
similarity65 to measure the similarity between the velocity fields esti-
mated with and without mode-value imputation (see details in Sup-
plementary Methods section 1.4.1). Similarly, we also evaluated the
consensus of the velocity fields estimated under three imputation
approaches: frequency-value imputation, zero-value imputation, and

mode-value imputation. We also utilised Procrustes analysis66,67 to
examine the consistency among PC values of linguistic traits imputed
by these three approaches (Supplementary Fig. 7 and Supplementary
Table 3). All the evaluations showed that the imputation of missing
values would not affect the estimation of the velocity field.

Conversion of the binary-coded trait into a frequency trait
The LVF necessitates linguistic traits ranging from0 to 1.We employed
the k-nearest neighbours (k-NN) algorithm to convert each binary-
coded linguistic trait into a frequency trait ranging from0 to 1 (Fig. 1c).
First, we selected k language samples that are geographically nearest
to a given language sample (including itself)68,69. Second, we calculated
the frequencies of each linguistic trait exhibiting state 1 and state 0
within these k language samples. Since the sum of different state fre-
quencies for each linguistic trait equals one in these k language sam-
ples, the frequency of state 0 for each linguistic trait can be
determined once given the frequency of state 1. Accordingly, there is
no difference in converting the binary state of a linguistic trait into the
frequency of either state 1 or state 0. In this study, for each language
sample, we converted the binary value of each linguistic trait into its
frequency of exhibiting state 1 (hereafter state frequency) in its k
nearest language samples. For this conversion, we set k = 10, which has
been verified in both simulated and empirical validations (Supple-
mentary Figs. 2, 3, and 8). In practice, the state frequency of a linguistic
trait can also be computed by disregarding missing values of that trait
within the k-nearest language samples.

The dynamic model for linguistic trait evolution
We proposed three model assumptions regarding the evolution of
linguistic traits. First, each linguistic trait can undergo multiple tran-
sitions among different states with heterogeneous rates during evo-
lution. Second, the variation of each linguistic trait within a language
can be influenced by neighbouring languages. Particularly, such
influence could arise from the competition among different states of
the same linguistic trait possessed by neighbouring languages. Third,
each trait state holds a specific sociolinguisticprestige in a certain area.
This prestige reflects the social opportunities or convenience afforded
to an individual who speaks the language with this trait state. A state
with higher prestige will occur more frequently in future generations,
while a state with lower prestige will correspondingly decline.
Accordingly, the prestige of a state can be measured by its probability
of being inherited by future generations.

According to these assumptions, we proposed a simple dynamic
model as Eq. (1) derived from the Abrams-Strogatz (AS) model70

(Fig. 1d1). The AS model simulates two-language competition, where
one language with higher prestige will persist while one with lower
prestige will decline. Accordingly, the AS model shares a similar
rationale with our model, which can be utilised to demonstrate lin-
guistic trait evolution.

dxi0
dt = xi
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Here, xi1 denotes the frequency of state 1 (state frequency) for
linguistic trait i, while xi

0 = 1� xi1 denotes the frequency of state 0
for linguistic trait i. si1 and si0 signify the prestige of state 1 and state 0
for linguistic trait i, respectively. Following our previous study71, the
prestige of state j for trait i (sij, j = 0 or 1) could be redefined as the
inheritance rate signifying the probability that trait i with state j
remains in state j after a unit of time (one generation). quv xiv, s

i
v

� �
= sivx

i
v

(u, v =0, 1 or 1, 0) denotes the transition rate fromstate u to state v. Our
dynamic model is akin to the covarion model45,46 that is extensively
used to model trait evolution in phylo-linguistics (e.g., phylogenetic
studies of Indo-European7,19,48 and Sino-Tibetan languages8,47). The
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rationale of the covarionmodel alsoposits that each linguistic trait can
undergo multiple transitions between gain and loss (i.e., from state 0
to state 1 or from state 1 to state 0), and shift between fast and slow
evolutionary rates8,48. This model aligns with linguists’ intuition that
different linguistic traits should experience distinct evolutionary
processes8.

The estimation of the prestige parameter
To estimate the prestige parameter in our dynamic model, we devised
a parametric estimation principle derived from the DNA substitution
model in Genetics proposed by Felsenstein72 (see details in Supple-
mentary Notes section 1.2). This DNA substitution model rests upon
the Poisson process, postulating that each base can undergo multiple
transitions to other bases (e.g., A transiting to T or C transiting to G)
with a heterogeneous rate duringDNAevolution72. This is analogous to
our model assumption that each linguistic trait can undergo multiple
shifts between gain and loss with a heterogeneous rate during evolu-
tion. Accordingly, we also used the Poisson process to model the gain
and loss of each linguistic trait. The prestige parameter can be esti-
mated using Eq. (2) (see details in Supplementary Methods sec-
tion 1.1.1).

si1 = e
�λ + ð1� e�λÞπi

1

si0 = e
�λ + ð1� e�λÞπi

0

(
ð2Þ

Here, sij denotes the prestige of state j (j = 0 or 1) for trait i. λ is the
mutation rate of the Poisson process, which signifies the number of
mutations occurring per unit of time in expectation. Following the
definition utilised in phylogenetic studies, a unit of time is defined as
the period during which linguistic traits in a language undergo one
mutation25,73 (see details in Supplementary Notes section 1.2.1).
Accordingly, we set λ= 1, which implies that linguistic traits will
experience one mutation in a unit of time in expectation. This setting
λ= 1 has been verified in both simulated and empirical validations
(Supplementary Figs. 2, 3, and 9). πi

j (j =0 or 1) denotes the transition
probability that a transition will result in any current state of trait i
eventually being replaced with state j72,74. In this study, we set πi

j as the
frequency of state j for trait iwithin all the language samples following
previous studies75. Since we usually lack temporal information
regarding linguistic traits, we considered that this parametric setting
of πi

j could facilitate the Poisson process to better interpret the for-
mation of the observed state distribution in trait i.

Reconstruct the past state frequency for each linguistic trait
We reconstructed the past state frequency for each linguistic trait
using Eq. (3) which is the analytical solution of Eq. (1) (Fig. 1d2; see
details in Supplementary Methods section 1.1.2).

xi
1 �mð Þ= 1 +

1
xi1 0ð Þ � 1

 !
e si1�si0ð Þm

" #�1

ð3Þ

Here, xi1 0ð Þ signifies the state frequency (frequency of state 1) of
trait i at present, while xi

1 �mð Þ denotes the state frequency of trait i at
munits of timebefore the present. In this study, we setm = 1, whichhas
been verified in both simulated and empirical validations (Supple-
mentary Figs. 2, 3, and 10). Once the occurrence of the past trait state
can be dated, this dimensionless unit of time can be converted into an
exact period.

Establish the velocity field
We established a high-dimensional velocity field to quantify the dia-
chronic evolutionary trajectories of linguistic traits. This velocity field
is composed of a collection of velocity vectors. The velocity vector for
language l (Vl) is approximated as the difference between past and

present state frequencies of its linguistic traits divided by the recon-
struction time as shown in Eq. (4) (Fig. 1d2; see details in Supplemen-
tary Methods section 1.1.3).

Vl =
1
m

½Xl 0ð Þ � Xl �mð Þ� ð4Þ

Here, Xl 0ð Þ= ½x1
l1 0ð Þ, x2l1 0ð Þ, . . . , xp

l1 0ð Þ�T and Xl �mð Þ= ½x1l1 �mð Þ,
x2l1 �mð Þ, . . . , xp

l1 �mð Þ�T . xil1 0ð Þ denotes the state frequency (frequency

of state 1) of trait i for language l at present. xil1 �mð Þ denotes the state
frequency of trait i for language l atm units of time before the present.
For each language family or group, the velocity vectors of n language
samples can compose a high-dimensional velocity field denoted as
matrix V as shown in Eq. (5).

V= ½V1,V2, . . . ,Vn�T ð5Þ

PCA projection of the velocity field
We projected the high-dimensional velocity field V into PC space to
depict the diachronic evolutionary trajectories of linguistic traits that
shape observed linguistic relatedness. First, we conducted PCA76 on
the binary-coded linguistic data to rearrange the binary-coded lin-
guistic traits into twooptimal new traits (i.e., PC1 andPC2) using Eq. (6)
(Fig. 1b).

PC1,PC2½ �=PC=

PCT
1

PCT
2

..

.

PCT
n

2
666664

3
777775 =DA2 ð6Þ

Here, D signifies a matrix containing n language samples and p
binary-coded linguistic traits. PC1 and PC2 are the PC values of n
language samples. PCl denotes the PC values of language l. A2 is the
matrix containing the first two columns of the eigenvector matrix of
the covariance matrix of D (see details in Supplementary Methods
section 1.2.1). Second, the high-dimensional velocity field V is pro-
jected into the two-dimensional PC space using Eq. (7) (Fig. 1e1; see
details in Supplementary Methods section 1.2.1). This projection can
be regarded as mapping the present and past state frequencies of
linguistic traits in each language sample simultaneously into
PC space followed by taking their difference divided by recon-
struction time.
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Here, VPC denotes the velocity field within the PC space. VPC
l sig-

nifies the velocity vector of language l within PC space. Based on the
above steps, we could derive a velocity field within the PC space that
can visualise the diachronic evolutionary trajectories of linguistic traits
that shapeobserved linguistic relatedness (Fig. 1e2 and Supplementary
Fig. 4). The PCA algorithm was performed by the prcomp function in
R (4.3.1).

Geographic projection of the velocity field in the PC space
According to the observed correlation between linguistic relatedness
and language geography, the kernel projection proposed by LaManno
et al.40 is conducted to project the velocity field from the PC space into
the geographic space (Figs. 1e, 1f, and Supplementary Figs. 4–5). The
kernel projection seeks each velocity vector in the geographic space,
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ensuring that its correlation with language distribution in the PC space
aligns closely with the one in the geographic space (see details in
Supplementary Methods section 1.2.2). With kernel projection, the
velocity vector of language lwithin the geographic space (VGeo

l ) can be
calculatedbasedonEq. (8) proposedbyLaMannoet al.40 (seedetails in
Supplementary Methods section 1.2.2). The direction of VGeo

l reflects
from where language l diffused into its current geographic location
(Fig. 1f1). The velocity field within the geographic space is noted as
matrix VGeo = ½VGeo

1 ,. . .,VGeo
n �T .

VGeo
l =

Xs
j = 1

Plj �
1
s

� �
Cj � Cl

jjCj � Cl jj ð8Þ

Here,Cl andCj represent the geographic coordinates of languages
l and j, respectively. Plj demonstrates the correlation between the
velocity vector of language l within PC space (VPC

l ) and the distinction
between the PC values of languages l and j (PCj - PCl). It measures the
correlation between the VPC

l and the distribution of languages l and j
within PC space (see details in Supplementary Methods section 1.2.2).
Particularly, language j is one of the s language samples closest to
language l in the PC space (see details in Supplementary Methods
section 1.2.2).

Spatial and grid smoothing for the velocity field
We employed the spatial and grid smoothing approaches to better
visualise the velocity field VGeo within geographic space. These
smoothing approaches contribute to better visualising the velocity
field while preserving the original language dispersal pattern as
reflected in VGeo. For spatial smoothing, we first solely scaled the
length of each velocity vector to be the sameas the one in the PC space
using Eq. (9). Second, we further adjusted its length by weighting the
lengths of velocity vectors of other language samples using Eq. (10)
(Fig. 1f2; see details in Supplementary Methods section 1.2.3).

VGeo�scale
l =

VGeo
l

jjVGeo
l jj

jjVPC
l jj ð9Þ

VGeo�scale�smooth
l =

VGeo�scale
l

jjVGeo�scale
l jj

Xn
j = 1

KσðCl ,CjÞjjVGeo�scale
j jj ð10Þ

Here, KσðCl ,CjÞ is the Gaussian kernel measuring the closeness
between the geographic locations of languages l and j (see details in
Supplementary Methods section 1.2.3). It is noted that the language
dispersal pattern is determined by the directions of the velocity vec-
tors. Accordingly, the spatial smoothing procedure, which exclusively
adjusts the vector lengths rather than the vector directions, would not
alter the language dispersal pattern as reflected in the original velocity
field VGeo.

Grid smoothing aims to better visualise a velocity field on regular
grid points. With grid smoothing, the velocity vectors could exhibit a
uniform distribution across the geographic space (Fig. 1g). Moreover,
the grid smoothing can also estimate the velocity vectors within the
geographic area which lacks available language samples. This ensures
that the grid-smoothed velocity field can effectively illustrate the
continuous dispersal pattern of language samples throughout their
entire geographic span. The velocity vector at grid g (VGrid

g ) is calcu-
lated using Eq. (11) (Fig. 1g; see details in Supplementary Methods
section 1.2.4).

VGrid
g =

Xs
l = 1

Kσ ðCGrid
g ,ClÞVGeo�scale�smooth

l ð11Þ

Here, CGrid
g denotes the geographic coordinate of grid g.

VGeo�scale�smooth
l signifies the spatial-smoothed velocity vector of

language l which is one of the s language samples geographically clo-
sest to the grid g (see details in SupplementaryMethods section 1.2.4).
Accordingly, we denote the grid-smoothed velocity field defined at M
grid points as the matrix VGrid = ½VGrid

1 ,. . .,VGrid
M �T .

Dispersal centre inference
To infer the language dispersal centre, we designed a simple strategy
relying on the grid-smoothed velocity fieldVGrid within the geographic
space. Given that the velocity vectors within geographic space depict
the language dispersal directions, we postulated that the velocity
vectors around the dispersal centre should exhibit an outwards
radiative pattern (see details in Supplementary Notes section 1.3.1).
According to this postulation, we measured the degree of the out-
wards radiative patternof grid-smoothed velocity vectors around each
grid point. The degree of such a pattern ismeasured by calculating the
average for the variance (average variance) of these velocity vectors in
each dimension as shown in Eqs. (12–13) (see details in Supplementary
Methods section 1.3.1). The grid point that exhibits the highest average
variance, which indicates the strongest outwards radiative pattern of
the neighbouring velocity vectors, is regarded as the language dis-
persal centre (Fig. 1g).

VGrid�scale
g =

VGrid
g

jjVGrid
g jj

ð12Þ

σ2
g =

1
2 s � 1ð Þ tr

�
VGrid�scale�T Es �
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s

 !�
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Here, VGrid�scale
g signifies the normalised grid-smoothed velocity

vector of grid g. σ2
g denotes the average variance of grid g. Es is the

identity matrix with s rows and s columns. 1= ½1,1, . . . 1�T .
VGrid�scale = ½VGrid�scale

1 , . . . ,VGrid�scale
s �T represents the normalised grid-

smoothed velocity vectors of s grid points geographically closest to
grid g. Using the traditional jackknife resampling approach77, we also
estimated the standard deviation (SD) of the estimated geographic
coordinate of the language dispersal centre for each language case
(Supplementary Table 2 and Supplementary Fig. 11; see details in
SupplementaryMethods section 1.3.2). For the sampling criteria of the
traditional jackknife approach77, the number of jackknife samples for
each language case equals the number of its language samples.

Simulated validation for LVF
To validate the effectiveness and robustness of the LVF, we applied it to
the 1000 simulated linguistic datasets obtained from Wichmann and
Rama (2021)44. To evaluate the effectiveness of the LVF, we adopted the
two-sided Wilcoxon rank-sum test to examine the difference between
the given and inferred coordinates of the dispersal centres under spe-
cific parametric settings (k= 10, λ = 1, andm= 1). k denotes the k-nearest
neighbours, λ denotes the mutation rate of the Poisson process, andm
denotes the reconstruction time. The results showed that under the
parametric setting of k= 10, λ = 1, and m= 1, the dispersal centre esti-
mated by LVF was not significantly different from the given dispersal
centre (Supplementary Fig. 2). This indicates the high effectiveness of
LVF with these parametric settings. Furthermore, we also conducted the
two-sided Wilcoxon rank-sum test to examine the differences between
the given and inferred coordinates of the dispersal centres under dif-
ferent parametric settings. Specifically, we varied across the values of k
(k= 2, 4, 6,…, 18), λ (λ =0.1, 0.5, 1, 5, 10), andm (m= 1, 3, 5, 7, 9) for LVF
when applying it to the simulated datasets. The results showed that the
inferred coordinates of the language dispersal centres under different
parametric settings were not significantly different from the given one.
This indicates that the LVF remains effective under different parametric
settings (Supplementary Fig. 2). Accordingly, we set k= 10, λ = 1, and
m= 1 as default parametric values for LVF.
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To validate the robustness of the LVF against the different para-
metric settings, we examined the cosine similarity among the velocity
fields estimated from different parametric settings in either high-
dimensional or two-dimensional PC spaces (see details in Supple-
mentary Methods section 1.4.2, section 1.4.3, and section 1.4.4). Spe-
cifically, we varied across the values of k (k = 2, 4, 6, …, 18), λ (λ = 0.1,
0.5, 1, 5, 10), and m (m = 1, 3, 5, 7, 9) for LVF when applying it to the
simulated datasets. The results showed that the velocity fields exhib-
ited no significant difference from each other under different para-
metric settings. This indicates that the LVF is highly robust against the
different parametric settings (Supplementary Fig. 3). According to the
simulation results, we also provided suggested ranges of the para-
metric settings for the empirical application of the LVF (Supplemen-
tary Fig. 12; see details in Supplementary Notes section 2.2.3).

Empirical validation for LVF
Weassessed the robustness of the LVF in empirical applications against
different parametric settings. Specifically, we applied the LVF to esti-
mate the velocityfields of four empirical caseswith different values of k
(k = 5, 10, 15, 20), λ (λ =0.1, 0.5, 1, 5, 10), and m (m = 1, 3, 5, 7, 9).
Subsequently, we conducted the cosine similarity to examine the
similarity among the velocity fields under these different settings (see
details in Supplementary Methods section 1.4.2, section 1.4.3, and
section 1.4.4). The results showed that the velocity fields estimated
under different parametric settings exhibited no significant difference
from each other in either high-dimensional or two-dimensional PC
spaces (Supplementary Figs. 8–10). This confirms the robustness of the
LVF against the different parametric settings.

Three types of relatedness matrixes and delta scores
The overall relatedness matrix is constructed by quantifying the
Manhattan distance between the binary-coded linguistic traits of each
language sample pair. The PCA-based relatedness matrix is derived by
calculating the Euclidean distance between two optimal principal
components that are rearranged from binary-coded linguistic traits of
each language sample pair. The tree-based relatedness matrix is gen-
erated by measuring the length of the branch linking each language
sample pair (i.e., pairwise phylogenetic distance) on the given phylo-
genetic tree. The pairwise phylogenetic distance can be estimated
using the cophenetic.phylo function of the ape package78 in R (4.3.1).
The correlations among these relatedness matrixes are estimated and
examined by the Mantel test using the mantel function of the vegan
package79 in R (4.3.1). The delta score serves as ametric to quantify the
tree-likeness of language phylogenetic topology. It is calculated using
the delta.plot function of the ape package in R (4.3.1)78.

Diversity, Centroid, and Minimal distance approaches
For the diversity approach, the linguistic diversity of a certain area was
measured by the information entropy in this study as Eq. (14)80. The
diversity approach posits that the geographic location of the language
sample that exhibits the highest diversity is the dispersal centre, as
shown in Eq. (15) (see details in Supplementary Methods section 1.3.3).

Divl = � XT
l 0ð Þ log Xl 0ð Þ� �� ½1� XT

l 0ð Þ� log½1� Xl 0ð Þ� ð14Þ

Ccentre =Cargmax
l

ðDivl Þ ð15Þ

Here, Xl 0ð Þ= ½x1
l1 0ð Þ, x2

l1 0ð Þ, . . . , xpl1 0ð Þ�T and 1= ½1,1, . . . ,1�T . xil1 0ð Þ
denotes the state frequency (frequencyof state 1) of trait i for language
l at present. Divl signifies the diversity of language l. Cl represents the
geographic coordinate of language l. Ccentre denotes the geographic
coordinate of the language dispersal centre. It is noted that each xil1 0ð Þ
is the composite value of the binary values of trait i for language l and
its k geographically nearest language samples. Consequently, Divl is a

measurement of the linguistic diversity in the area covering language l
and its k-nearest language samples. For the centroid approach, we
calculated the centroid of the polygon represented by the extension of
the geographic locations of the observed language samples using the
centroid function of the geosphere package in R (4.3.1). The geo-
graphic location of this centroid is regarded as the language dispersal
centre. For the minimal distance approach, we computed the average
Euclidean distance from each language sample to all the other lan-
guage samples according to their geographic coordinates. The geo-
graphic location of the language sample that has the smallest average
Euclidean distance to other language samples is regarded as the dis-
persal centre.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets used in this study are available on GitHub (https://
github.com/Stan-Sizhe-Yang/Inferring-language-dispersal-patterns-
with-velocity-field-estimation) and Zendo (https://doi.org/10.5281/
zenodo.10223872). The Source data for generating Figs. 1–3 and Sup-
plementary Figs. 2-12 are available in GitHub and Zendo.

Code availability
All analyses were performed in R (4.3.1). For the convenience of uti-
lising LVF, we built an R package named LVF and provided a compre-
hensive tutorial for its application. This R package with its tutorial and
other R codes for the implementation, validation, and comparison of
the LVF are all available on GitHub (https://github.com/Stan-Sizhe-
Yang/Inferring-language-dispersal-patterns-with-velocity-field-
estimation) and Zendo (https://doi.org/10.5281/zenodo.10223872).
The Source Codes for generating Figs. 1–3 and Supplementary Figs. 2-
12 are available in GitHub and Zendo.
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