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The impact of extreme heat on lake warming
in China

Weijia Wang1,2,3, Kun Shi 1,2 , Xiwen Wang1,4, Yunlin Zhang1,2,3,
Boqiang Qin 1,4, Yibo Zhang1 & R. Iestyn Woolway5

Global lake ecosystems are subjected to an increased occurrence of heat
extremes, yet their impact on lakewarming remains poorly understood. In this
study, we employed a hybrid physically-based/statistical model to assess the
contribution of heat extremes to variations in surface water temperature of
2260 lakes in China from 1985 to 2022. Our study indicates that heat extremes
are increasing at a rate of about 2.08 days/decade and an intensity of about
0.03 °C/ day·decade in China. The warming rate of lake surface water tem-
perature decreases from0.16 °C/decade to0.13 °C/decade after removingheat
extremes. Heat extremes exert a considerable influence on long-term lake
surface temperature changes, contributing 36.5% of thewarming trendswithin
the studied lakes. Given the important influence of heat extremes on themean
warming of lake surface waters, it is imperative that they are adequately
accounted for in climate impact studies.

There is overwhelming evidence that heat extremes (e.g., heatwaves),
one of the perilous consequences of climate change, are exhibiting an
alarming increase in frequency and intensity worldwide1. These
extreme events pose severe threats to natural ecosystems, socio-
economic stability, and human well-being, leading to irreversible
ecological and societal impacts2. Their ramifications encompass not
only direct human and biological mortality but also exacerbation of
other disasters such as wildfires, mental health issues, and agricultural
losses2,3. Numerous instances highlight the devastating consequences
of heat extremes. For example, the 2003 heatwave in Europe, con-
sidered thehottest summer in thepastfive centuries4, claimed the lives
of at least 70,000 people5. In Western Russia, heat extremes in 2010
resulted in 500 fires around Moscow and a substantial 30% decline in
grain harvest6. More recently, during late-June 2021, the Pacific
Northwest region of Canada and the United States experienced
extreme heat, leading to hundreds of deaths7. Additionally, the sum-
mer of 2022 witnessed unprecedented heat extremes sweeping
through various parts of the world, including London and Shanghai8,
triggering widespread fires in France, Spain, Greece and Germany. In
China alone, over 400 cities endured extreme heat9.

Lakes, as crucial and vulnerable components of the Earth’s eco-
system, bear significant impacts during heat extremes10. The sub-
stantial increase in lake surface water temperature (LSWT) induced by
these events can rapidly disrupt the physical, chemical, and biological
properties of a lake, thereby perturbing the entire lake ecosystemwith
potentially irreversible consequences11. While the long-term warming
of LSWT, and the escalating occurrence of lake heatwaves, as well as
their knock-on effects11–13 have been investigated extensively and
documented globally12,13, a critical knowledge gap persists regarding
the specific effects of extreme heat events on lake warming and the
increased occurrence of lake heatwaves.

Critical freshwater resources such as lakes are distributed across
diverse climatic and geographic environments (Supplementary Fig. 1),
potentially influencing their responses to heat extremes14. In China,
lakes larger than 1 km2 cover a substantial area of approximately
93,723 km2 and play an irreplaceable role in flood and drought pre-
vention, water purification, and biodiversity conservation. Moreover,
they serve as a vital source of municipal drinking water, supplying
51.0% of the population in the eastern region, and holding significant
cultural and economic importance15. However, despite their ecological
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and socio-economic significances, the response of these lakes to cli-
mate change, particularly in relation to heat extremes, has received
comparatively little attention16. Consequently, there exists a compel-
ling need to enhance our understanding of the key processes and
mechanisms that underlie the effects of heat extremes on lakes in
China, a region characterized by highly variable spatial lake responses.
To address this knowledge gap, we employed long-term daily simula-
tions to reveal the spatial and temporal variation patterns of LSWT
across China and quantified the contribution of heat extremes to lake
warming.

Results
The frequency of air temperature extreme heat events in China has
followed an increasing trend, albeit with notable regional variability.
Over the course of our 38-year investigation from 1985 to 2022, China
experienced an average of approximately 454 days of extreme heat
(see “Methods”), with marked spatial variability (Fig. 1; Supplementary
Table 1). The southern regions of China exhibited the highest fre-
quency of heat extremes, with a total of 552 days, while the eastern
coastal and western regions of China had the lowest frequency, with a

minimum of 414 days. The national trend of extreme high tempera-
tures displayed an overall increase, with a rate of approximately
2.08 days/decade, and the most substantial increase occurred in the
southwest at a rate of 6.09 days/decade. The spatial pattern of total
cumulative heat (see Methods) exhibited distinct characteristics. The
InnerMongolia-Xin JiangLakeRegion andNorth-east PlainLakeRegion
showed the highest cumulative heat level, reaching up to 785 °C, while
the southern region of China exhibited the lowest level, close to 175 °C.
The annual cumulative heat showed an increasing trend across the
country, particularly notable in the Inner Mongolia-Xin Jiang Lake
Region, with a rate of 6.93 °C/decade. The intensity of extreme heat
followed a similar spatial pattern to the accumulated heat, showing an
overall increasing trend of approximately 0.03 °C/day·decade. The
highest trend of heat intensity was observed in the Mongolia-Xin Jiang
Lake Region, at approximately 0.29 °C/day·decade, while the Tibetan
Plateau Lake Region and the North-east Plain Lake Region had the
lowest trend, at −0.11 °C/day·decade.

Across the studied regions, lakes were exposed to extreme high
surface air temperatures (SAT) for an average of 459 ± 19 days (min:
409days,max: 518days)between 1985and2022 (Supplementary Fig. 2).
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Fig. 1 | Spatial and temporal variations inheat extremesof air temperature. a–c
Show the total number of heat extreme days from 1985 to 2022, the decadal trend,
and the annual variation in the five lake regions (Eastern Plain Lake Region, North-
east Plain Lake Region, InnerMongolia-Xin Jiang Lake Region, Tibetan Plateau Lake

Region, and Yunnan-Guizhou Plateau Lake Region), respectively. d–f Indicate the
cumulative heat for 38 years, the decadal trend, and the annual variation in the five
lake regions, respectively. g–i Represent the corresponding information of heat
intensity. Source data are provided as a Source Data file.
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The frequency of heat extremes in SAT exhibited an overall increasing
trend, with a rate of 1.89 days/decade. The Yunnan-Guizhou Plateau
Lake Region had the highest rate at 5.45 days/decade, while the Tibetan
Plateau Lake Region displayed the lowest rate at −1.25 days/decade.

Extreme heat events have made a substantial contribution to the
long-term warming trend observed in China. Analysis of the data from
European Center for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v5 - Land (ERA5-Land) revealed a warming trend in air
temperatures from 1985 to 2022, with an average increase of
0.32 ± 0.10 °C/decade (Supplementary Fig. 3). Notably, the Inner
Mongolia-Xin Jiang Lake Region exhibited a particularly rapid warming
trend of 0.68 °C/decade, while the Tibetan Plateau Lake Region
showed a negligible variation and even a cooling trend of −0.07 °C/
decade. Examining the average trend of the SAT during the same
period, we found it to be 0.29 ± 0.11 °C/decade (min: −0.07 °C/decade,
max: 0.68 °C/decade). However, upon excluding the heat extremes
(see Methods), the overall air temperature trend across China
decreased slightly to 0.17 ± 0.08 °C/decade (min: −0.10 °C/decade,
max: 0.43 °C/decade). The areas most affected by heat extremes in
China, as indicated by the difference between trends of air tempera-
ture and air temperature after the removal of heat extremes (RHAT),
were the Inner Mongolia-Xin Jiang Lake Region and the Eastern Plain
Lake Region, with a difference of 0.22 °C/decade. Similarly, after
excluding heat extremes, the average trend of SAT changed from
0.29 ± 0.11 °C/decade (min: −0.04 °C/decade, max: 0.51 °C/decade) to
0.22 ± 0.19 °C/decade (min: −0.04 °C/decade, max: 0.51 °C/decade).

These heat extremes exerted a strong impact on lake tempera-
tures. Our long-term daily simulations of LSWT revealed significant
differences in the occurrence of extremes before and after removing
heat extremes from SAT (RHSAT) in the forcing field of Air2Water.
Upon excluding heat extremes from SAT, the average number of days
with extreme heat in LSWT decreased substantially from 382 to
approximately 314 days. Furthermore, the mean cumulative heat
decreased from 172.98 °C to 66.65 °C, and the heat intensity decreased
from 0.43 °C/day to 0.19 °C/day (Supplementary Fig. 4). When the
annual cumulative heat of SAT increased by 1 °C, the intensity of the
heat extremes of LSWT increased by approximately 0.01 °C/day, the
cumulative heat increased by about 0.45 °C, and the number of days of
heat extremes increased by about 0.66 days. With 1 day increase in
heat extremedays of SAT, the heat extreme days in LSWT increased by
about 0.93 days and the cumulative heat gained about 0.51 °C. An
increase of 1 °C/day in the intensity of heat extremes in SAT would
result in an increase in that of LSWT of about 0.42 °C/day (Supple-
mentary Fig. 5). Additionally, the national average summer LSWT
during the same period decreased by 0.22 °C after removing heat
extremes from SAT in the forcing field of Air2Water (Supplementary
Fig. 6). The analysis indicated an overall increasing trend with an
average of 0.16 °C/decade. Lakes in the Eastern Plain Lake Region
experienced the greatest warming, with a rate of 0.22 °C/decade, while
lakes in the Tibetan Plateau Lake Region showed the least warming,
with a rate of 0.08 °C/decade (Fig. 2). After removing heat extremes,
the average warming rate of LSWT (RHLSWT) decreased to 0.13 °C/
decade. Our analysis suggests that the documented extremes in SAT
resulted in an increase in national LSWT of about 0.03 °C/decade. The
difference between LSWT and RHLSWT exhibited an increasing trend,
growing from 0.10 °C in 1985 to 0.47 °C in 2022. This indicated that
changes in heat extremes, in addition to the context of global climate
change, contribute to the increase in LSWT, as heat extremes were
removed without altering the global warming trend. The trend in SAT
due toheat extremes (trendofSATminus trendof RHSAT) across lakes
in China was approximately 0.07 °C/decade, which was slightly higher
than that of LSWT by 0.03 °C/decade. The difference in annual mean
values of SAT attributable to heat extremes increased at a rate of
0.04 °C/decade above that of LSWT. Moreover, the increase in the
trend of days with heat extremes in SAT was 1.75 days/decade, which

was about 0.23 days/decade higher than that in LSWT. Although the
total number of heat extreme days in SAT accounted for approxi-
mately 3% of the total study period (about 459 days), the contribution
of heat extremes to the LSWT inChina from 1985 to 2022 (seeMethods
section for calculation) reaches up to 36.5%. This highlights the
unexpectedly large impacts of heat extremes on LSWT, despite their
low frequencies and short durations. It further indicated that short-
term occurrences of heat extremes can profoundly influence lakes on
seasonal, annual, and even longer time scales.

In the summer of 2022, China suffered the most intense and
prolonged extreme heat event since 196117. The average number of
extreme heat days in China in 2022 was about twice the level of 1985-
2021, and the average cumulative heat was approximately three times
higher than before. The average heat intensity in 2022 was about 25%
greater than that in the past 37 years. Considering the severity of heat
extremes in 2022, we repeated the numerical experiment for 1985-
2021, and the results showed that trends of heat extreme days,
cumulative heat, and heat intensity of SAT in China for 1985-2021 were
2.05 days/decade, 1.88 °C/decade and 0.04 °C/day·decade, respec-
tively. For 1985–2022, theywere 2.08 days/decade, 1.95 °C/decade, and
0.04 °C/day·decade, respectively. The average trend of LSWT was 0.16
°C/decade for 1985-2021 and 0.15 °C/decade for 1985–2022. Trends in
heat extrememetrics and LSWT did not differ much between the cases
including and excluding 2022; this is because we used the Theil-Sen
method for the calculation of long-term trends, which is robust to
outliers such as 2022. The average contribution of heat extremes to
LSWTwas40.4% for 1985-2021 and36.5% for 1985–2022. Therefore, the
severe heat extreme in 2022 did not bias our conclusions.

Discussion
Evaporation and precipitation emerged as primary drivers influencing
the temporal change in the difference between LSWT and RHLSWT
(Supplementary Fig. 7). Specifically, higher rates of evaporation and
greater precipitation were associated with a more pronounced impact
of heat extremes on LSWT10. Regarding spatial factors, two key vari-
ables were identified as having a predominant influence on the con-
tribution of heat extremes to LSWT: shortwave radiation and Secchi
disk depth (SDD). The former is often considered one of the primary
external factors influencing lake surface temperatures18. Moreover, as
SDD decreases, the amount of solar shortwave radiation energy
penetrating the lake’s surface layer increases, often leading to a rapid
rise in LSWT12.

Rapid increases in LSWT due to heat extremes can have cata-
strophic consequences for aquatic lives, leading to mortality and the
potential for algal blooms that can shift a lake from clear to turbid19,20.
Even subtle changes in the physical or chemical processeswithin a lake
due to sudden LSWT fluctuations can have substantial ecological
impacts, threatening the survival of aquatic lives, especially when
water levels and oxygen concentrations decreased19. One of the most
severe heat extremes in the last 60 years swept through China during
the summer of 2022, resulting in a remarkable increase in LSWT of
1.63 °C compared to the period from 2000 to 202117. This extreme
event triggered a series of catastrophes, including a decrease in water
level, a dramatic reduction in water surface area, a massive die-off of
aquatic organisms, and a shortage of water and electricity supply for
the residents of surrounding cities17.

The investigation into themagnitude and underlying processes of
the impact of heat extremes on LSWT will significantly enhance our
understanding of lake ecosystem responses to climate change and lay
a theoretical foundation for future lake systemmanagement. However,
current climate models face challenges in accurately projecting future
extreme events and may underestimate future changes in heat
extremes21. Thus, future projections of LSWT could be underestimated
by at least 36.5%. Better representation of heat extremes by climate
models is critical for improving our management of heat extremes on
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ecosystem services. Considering the sensitivity of lake ecosystems to
heat extremes, the observed expansion of such events is expected to
exert substantial impacts on aquatic ecosystems22. In response to this
emerging reality, it is imperative for management departments to
establish robust systems formonitoring and predicting heat extremes.
Additionally, measures should be taken to enhance the resilience of
lake ecosystems to climate risks and implement effective disaster
mitigation and prevention strategies. This proactive approach is
essential for safeguarding the integrity and functionality of lake eco-
systems in the face of increasing heat extremes and their potential
ecological disruptions.

Methods
Hybrid model of lake water surface temperature
The Air2Water model is a hybrid physically-based/statistical model
that mathematically simplifies all heat flux components at the lake-
atmosphere interface, including the shortwave radiation, longwave
radiation, and diffusion terms, to obtain a simple ordinary differential
equation, allowing LSWT to be appropriately modeled using only
surface air temperature observations as a reliable substitute for overall

external forcings23. The Air2Water model has been widely used in
regional and even global studies24 due to its advantages of easy access
to data relative to other hydrologic models, low reference data
requirements relative to machine learning models, and the combina-
tion of physical processes and statistical methods25. The daily 2m air
temperature at a grid resolution of 0.1° from ERA5-Land was used to
run Air2Water from 1985 to 2022. By utilizing air temperature as input
and satellite-derived or in situ LSWT as a reference, the eight model
parameters of Air2Water were calibrated by optimizing a metric of
model performance using an automated optimization process (parti-
cle swarm optimization)26.

Given the challenges of acquiring complete in situ LSWTdata over
a long time period, we chose the Landsat land surface temperature
product which has a data record of more than 38 years to be the
satellite-derived LSWT. Evidence has shown that the product has
satisfactory accuracy at the water surface with an average bias of
−0.3 °C and an RMSE (Root Mean Square Error) of 1.1 °C when com-
pared with in situ measurements24. It has been widely used in various
academic disciplines due to its advantages of easy access, possession
of long-time records, and high accuracy27–29.
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Fig. 2 | Contribution of heat extremes to lake surface water temperature
(LSWT). a Trend of LSWT. b Trend of LSWT simulated by removing heat extremes
from lake surface air temperature (SAT) in Air2Water (RHLSWT). c Trend of dif-
ferences between LSWT and RHLSWT. d Contribution of heat extremes to lake
warming. e Average LSWT, RHLSWT and differences between LSWT and RHLSWT
from 1985 to 2022. fHistogramof trend and contribution, wheredifference in trend
of LSWT and RHLSWT represents the trend of RHLSWT minus the trend of LSWT.

g Probability density of trend in SAT (red) and SAT after removal of heat extremes
(RHSAT) (cyan). h Probability density of trend in LSWT (red) and RHLSWT (cyan).
i Probability density of trend in difference between LSWT and RHLSWT (blue) and
difference between SAT and RHSAT (orange). j Probability density of trend in heat
extremes of LSWT (blue) and SAT (orange). The dashed line indicates the median
value of the dataset with the corresponding color. Source data are provided as a
Source Data file.
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We conducted an experiment to demonstrate the necessity of
uniformly distributed satellite data with complete coverage of the
entire simulation period as a reference in Air2Water (Supplementary
Fig. 8). In this experiment, a complete sequence of satellite data from
2013-2019 and satellite data from 2013-2017 were used as references,
respectively, in combinationwith the daily air temperature to calculate
the daily LSWT from 2013 to 2019. The results showed that despite the
comparisons of the total data were comparable, the simulated LSWT
without satellite data (R2 = 0.92 and MAE (Mean Absolute Error) =
1.83 °C) were subject to greater errors than those with satellite data as
a reference (R2 = 0.94 andMAE= 1.59 °C) in the validationof 2018-2019.
Moreover, the inclusion of satellite data with relatively homogeneous
time intervals in the whole time series can make the overall accuracy
more stable24.

We collected tens of thousands of in situ LSWT observations from
six lakes (Lake Erhai, Lake Hulunhu, Lake Namco, Lake Luguhu, Lake
Qiandaohu and Lake Taihu) (Supplementary Table 2) of varying sizes,
elevations, latitudes, and depths to verify the confidence of our
simulations. These data were recorded at daily to monthly intervals
spanning the years 1993 to 2018. Satisfactory accuracy (R2 ≥0.93 and
MAE <2.00 °C) was obtained in the comparison of simulated results
from Air2Water with the in situ data (Supplementary Fig. 9). The best
performer among them is Lake Taihu, whichwas in a position to obtain
an excellent accuracy of R2 = 0.98 as well as MAE = 1.88 °C with the
validation of 9289 pairs of data. The least accurate among these is Lake
Hulunhu, which also achieved outstanding results with R2 = 0.93 and
MAE = 1.99 °C.

We have compared the Air2Water model to another popular lake
model, FLake (Freshwater Lake model) and one of the most widely
usedmachine learningmodels (artificial neural network, ANN) in terms
of its effectiveness in simulating LSWTs. The FLake model is a one-
dimensional bulkmodel based on the concept of self-similarity, where
the vertical profiles of the mixed and thermocline layers are described
by the respective shape functions, resulting in a low cost of
computation30. In addition, it contains few lake-specific parameters for
the model and does not require extensive calibration13. The meteor-
ological forcing data used in FLake were obtained from ERA5-Land,
with initial parameter settings referenced in ref. 1, the depths of the
individual lakes used were the average depths from the HydroLAKES
database31, and the lake ice albedo was set to 0.6. A variety of machine
learningmodels for simulating LSWThave been compared in 2022 and
the results showed that ANN is the most used and successful machine
learning algorithm for LSWT prediction32. The tansig function and
purelin function were set as the hidden layer transfer function and
output layer function in ANN, respectively. The learning rate, target
error andmomentumwere set to 0.001, 0.0001 and 0.95, respectively
after making adjustments through a step-by-step grid strategy. The
optimal number of hidden layers was determined to be 3 after pre-
liminary experiments. We modeled each lake individually using SAT,
year, and DOY (day of the year) as input parameters and LSWT as
output to the ANN. We compared the simulation results of FLake and
ANN for the same air temperature and observed LSWT fromLandsat as
a reference in six lakes for which in situ data were available. The results
showed that the average R2 and MAE between simulations and in situ
LSWT for FLake were 0.74 and 3.62 °C, respectively (Supplementary
Fig. 10). For ANN, the values of the twometrics were 0.87 and 2.59 °C,
respectively. Both FLake and ANN simulations did not show compar-
able performance with Air2Water (R2 and MAE were 0.96 and 1.38 °C,
respectively), demonstrating the applicability of Air2Water model for
the present research.

Identifying heat extremes and modeling LSWT before and after
the removal of heat extremes
The probability of the presence of water at a spatial resolution of 30m
between 1985 and 2020 in the global surfacewater occurrence (GSWO

v1.3) dataset was used to generate a mask of water surfaces. The
fraction of GSWO ≥ 95% and the polygons of lakes ≥1 km2 in Hydro-
LAKESwereoverlaid, and the baysmisidentified as lakeswere removed
to finally determine the extent of studied lakes, with a total number of
2260 (Source Data).

We selected the long-term continuous high spatial resolution
(60–120m) surface temperature data from Landsat 5, 7, and 8 pro-
vided by the National Aeronautics and Space Administration (NASA)
and the U.S. Geological Survey (USGS) as the LSWT. Variations exist
between sensors for Landsat 5, 7, and 8, therefore we selected thermal
infrared (TIR) data for Landsat 5 from 1985 to 2011, Landsat 7 from
1999 to 2018, and Landsat 8 from 2013 to 2022 to constitute the three
LSWT datasets. A lake-specific LSWT was calculated as the average
temperature of all pixels within the lake that had been resampled to a
resolution of 60m. To eliminate the outliers, we divided each dataset
into 12 sub-datasets from January to December, excluded values with a
distance of more than three standard deviations from the median in
each sub-dataset, and repeated the operation twice. The datasets
covering 2013–2022 were used as a basis, and linear models were
constructed using the seasonal average data pairs within the over-
lapping time to correct the other two datasets to finally obtain the
complete LSWT dataset from 1985 to 2022.

Each day in the extended summer season (June-September) that
exceeds the 90th percentile climatology of the corresponding calen-
dar day is defined as a heat extreme day33. The 90th percentile cli-
matology was produced by computing the daily 90th percentile of air
temperature or LSWT using an 11-day window centered on the day of
the year over a partiallymoving baseline. The partiallymoving baseline
is fixed for the first and last 31 years of 1985–2022 and moves in the
middle. Specifically, the heat extremes for 1985-2000 were calculated
using afixedbaseline from1985 to 2015, for 2007-2022 a fixed baseline
from 1992 to 2022, while for 2001–2006, a 31-year moving baseline
centered on the year in questionwas used33,34. In this study, cumulative
heat was defined as the accumulation of air temperature or LSWT
above 90th percentile climatology for each heat extreme day during
the season of interest. Heat intensity was defined as the average tem-
perature anomaly per day of extreme heat during the season of
interest, i.e., the cumulative heat dividedby the extremeheat days. The
RHSAT was obtained by replacing heat extreme days with the clima-
tological mean calculated from the partially moving baseline. The
RHLSWT was simulated by Air2Water using RHSAT with the optimal
parameters previously calculated in Air2Water using SAT as the
forcing field.

Contribution of heat extremes
Linear fit functions for the summer average values of each lake were
constructed separately for the original LSWT and RHLSWT using the
Theil-Sen method for 1985–2022 (Supplementary Fig. 11). The differ-
ence between the values of the two linear functions in 2022 was
recorded as the difference in 2022 (labeled as BC in the figure). An
initial temperature was set for each lake, expressed as the value of the
linear function of RHLSWT in 1985 for LSWT with a positive trend, and
as the value of the linear function of LSWT in 1985 for LSWT with a
negative trend. The total changewasdefined as the difference between
the value of the linear function in 2022 and the initial value and was
plotted as AC for a positive trend in LSWT and BC for a negative trend.
The contribution of heat extremes to LSWT was defined as the dif-
ference in 2022 divided by the total change, that is, expressed as BC/
AC when LSWT has a positive trend and as BC/AB when LSWT is
negative.

Importance assessment
In this study, the feature importance was assessed using a random
forest algorithm. Spatially, the importance of 17 factors such as lake
elements (lake area, depth, volume, SDD), geographical conditions
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(latitude, elevation), climate (precipitation, evaporation, longwave
radiance, shortwave radiance, U component of wind speed, V com-
ponent of wind speed, and humidity), and human activities (popula-
tion, impervious surface, normalized difference vegetation index
(NDVI), and gross domestic product (GDP)) were assessed for the
contribution of heat extremes in 2260 lakes. Temporally, the impact of
the above seven meteorological elements on the intensity of extreme
heat (difference between the mean values of summer LSWT and
RHLSWT) was assessed on an annual scale.

Data availability
The ERA5-Land data used in this study are available at https://cds.
climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=
overview; Landsat LSWT data are available at https://developers.
google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_
L2, https://developers.google.com/earth-engine/datasets/catalog/
LANDSAT_LE07_C02_T1_L2, https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2; HydroLAKES
dataset is available at https://www.hydrosheds.org/pages/hydrolakes;
GSWO are available at https://developers.google.com/earth-engine/
datasets/catalog/JRC_GSW1_3_GlobalSurfaceWater. The data of LSWT
andRHLSWTgenerated in this study are available at https://doi.org/10.
11888/Terre.tpdc.300801, Source data are provided with this paper.

Code availability
Air2Water source codes are available at https://github.com/
marcotoffolon/air2water, FLake source codes are available at http://
www.flake.igb-berlin.de/. The source codes used in this study are
publicly available at https://doi.org/10.5281/zenodo.1021406335.
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