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AI co-pilot bronchoscope robot

Jingyu Zhang1,2,4, Lilu Liu 1,2,4, Pingyu Xiang1,2, Qin Fang1,2, Xiuping Nie1,2,
Honghai Ma3, Jian Hu3, Rong Xiong 1,2 , Yue Wang 1,2 & Haojian Lu 1,2

The unequal distribution of medical resources and scarcity of experienced
practitioners confine access to bronchoscopy primarily to well-equipped
hospitals in developed regions, contributing to the unavailability of
bronchoscopic services in underdeveloped areas. Here, we present an artificial
intelligence (AI) co-pilot bronchoscope robot that empowers novice doctors
to conduct lung examinations as safely and adeptly as experienced colleagues.
The system features a user-friendly, plug-and-play catheter, devised for robot-
assisted steering, facilitating access to bronchi beyond the fifth generation in
average adult patients. Drawing upon historical bronchoscopic videos and
expert imitation, our AI–human shared control algorithm enables novice
doctors to achieve safe steering in the lung, mitigating misoperations. Both in
vitro and in vivo results underscore that our systemequips novicedoctorswith
the skills to perform lung examinations as expertly as seasoned practitioners.
This study offers innovative strategies to address the pressing issue ofmedical
resource disparities through AI assistance.

Lung diseases, such as lung cancer, chronic obstructive pulmonary
disease and pneumonia, represent a significant global health burden,
with millions of individuals affected yearly1,2. Early detection and
intervention are crucial to mitigate the impact of these diseases,
reduce morbidity and improve patient outcomes3. Bronchoscopy, a
minimally invasive diagnostic and therapeutic procedure, has emerged
as an essential tool in detecting, treating and managing various lung
diseases4–6. During bronchoscopy, the bronchoscope should be
inserted and manipulated gently to avoid abrupt or forceful move-
ments, which can cause discomfort or injury to airway structures.
Additionally, maintaining a central position during bronchoscopy
allows better visualisation of the airway anatomy and helps prevent
injury to the airway mucosa or other structures. This is especially
important when navigating through tight or tortuous airways, stric-
tures, or areas with masses. However, this procedure requires a high
level of skill and experience, resulting in a significant disparity in the
quality of care provided by expert and novice doctors7,8. The avail-
ability of bronchoscopic services is predominantly limited by the need
for more experienced doctors in underdeveloped regions, resulting in
a critical barrier to health care access for vulnerable populations9. The

need for specialised training and expertise in bronchoscopy further
exacerbates this issue, asmany health care systems in these areas need
help to support the development and maintenance of such skills.
Consequently, this knowledge gap hinders the establishment and
expansion of bronchoscopic services in underprivileged settings,
perpetuating the cycle of inadequate health care provision for lung
disease patients10,11.

Innovations combining the precision and dexterity of robotic
systems with the guidance of expert doctors could help to resolve
these clinical and technical challenges12–14. The development of robotic
platforms and devices for bronchoscopy has seen significant progress
in recent years, with systems such as the Monarch Platform15 and the
Ion Endoluminal System16 leading the way. The Monarch Platform is
equipped with an internal bronchoscope catheter with a 4.2mm dia-
meter and an external sheath of 6mm. Its subtle steering control and
flexibility, allowing deeper access into the peripheral regions of the
lungs, surpass those of conventional bronchoscopes17 (9th vs. 6th
airway generations). The Ion Endoluminal System boasts a fully
articulated 3.5mm catheter with a 2mm working channel, enhanced
stability, superior flexibility and the added advantage of shape
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perception18. Notably, studies indicate that these platforms exhibit a
favourable diagnostic yield, ranging from 81.7% to 92%, for lung
nodules with sizes between 14.8mm and 21.9mm. Moreover, the
complication rates reported are minimal19–21. These findings suggest
that these platforms can play a transformative role in the future
management of pulmonary conditions. In addition to theMonarch and
Ion platforms, several other bronchoscope robotic systems are under
development by academic institutions or have entered early-stage
research to address sensing and control issues for doctors22–27.
Nevertheless, despite its advantages, current telerobotic broncho-
scopy faces several challenges, including a steep learning curve and
lack of autonomy.

At present the integration of artificial intelligence (AI) techniques
into bronchoscopy is further expanding the horizons of this bur-
geoning field28. By leveraging advanced algorithms, such as machine
learning and computer vision technologies29, researchers are devel-
oping image-guided navigation systems that process and interpret
bronchoscopic imagery30, facilitating real-time localisation31, tracking32

and interventional path planning33 for endoscopy and enabling precise
navigation within the bronchial tree. These software systems enhance
the accuracy and efficiency of bronchoscopic procedures. Further-
more, by providing automated, continuous guidance throughout such
a procedure34, an image-guided system can help reduce the cognitive
load on the operating doctor, allowing the doctor to focus on other
critical aspects of the procedure35. However, these systems present
safety concerns during bronchoscopic procedures because they rely
on bronchoscope localisation in preoperativeCT36–38, whichmay result
in misregistration and unsafe steering of the robot due to the limited
field of view and body–CT visual discrepancies. Concerns have been
raised about the risk of complications, such as pneumothorax and
bleeding, underlining the need for ongoing research on and optimi-
sation of these platforms.

We report an AI co-pilot bronchoscope robot for safe pulmon-
ary steering. At the hardware level, we have designed a broncho-
scope robot with a quick catheter replacement feature (utilising thin
catheters for deep lung examination and thick catheters for exam-
ination and biopsy) based on magnetic adsorption, offering
advanced performance that meets clinical requirements. At the
software level, we have developed an AI–human shared control
algorithm based on learning from experts, which can accommodate
discrete human interventions while reducing the reliance on doctor
expertise. Overall, the presented robotic system enhances safety
while maintaining efficiency in bronchoscopy by providing novice
doctors with increased autonomy. Through tests of this broncho-
scope systemon realistic human bronchial phantomswith simulated
respiratory behaviour performed by a novice doctor with the AI co-
pilot and by an expert, we demonstrate that our system enables
novice doctors to access different bronchi proficiently. Subse-
quently, to validate the safety and effectiveness of our system under
physiologically relevant conditions, we assess the system’s steering
capability in vivo using a live porcine lung to mimic the human
bronchus. Our system carries the potential to improve the diagnosis
and management of pulmonary disorders. It is anticipated that the
cost and logistical barriers associated with the adoption of such
platforms will decrease in the future, helping to overcome the
challenge of medical resource disparities and contributing to the
improvement of global health outcomes.

Results
Design of the AI co-pilot bronchoscope robot
Figure 1 provides an overview of our AI co-pilot bronchoscope robot
(Supplementary Notes 1–3 and Supplementary Figs. 1–4), which is
designed to be deployed in clinical settings for bronchoscopic pro-
cedures (Supplementary Movie 1). The bronchoscope robot is

integrated with a robotic arm and placed alongside the operating
table, and it is teleoperated by a doctor using a remote-control console
to steer the bronchoscopic catheter. The robotic arm is used to adjust
the intubation posture of the catheter for lung steering. The steering
control system is composed of four linearmotors for tendon actuation
and four force sensors to measure the actuation force. To facilitate
user-friendly replacement of the catheter, the steering control system
and catheter are designed to connect by magnetic adsorption. The
bronchoscopic catheter is composed of a proximal section with high
stiffness and a distal section with low stiffness. A braidedmesh is used
in the proximal section for increased stiffness, while the distal section
is composed of many small hinge joints for steering control. Both
sections are coveredwith a thin thermoplastic urethane (TPU) layer for
waterproofing. The tip of the bronchoscopic catheter consists of two
LED lights for lighting and a microcamera for observation. Two types
of catheters are designed, with diameters of 3.3mm (with a 1.2mm
working channel) and 2.1mm (without a working channel), both of
which are smaller than those of the Monarch Platform and the Ion
Endoluminal System, enabling access to bronchi of the ninth genera-
tion or deeper in average adult patients.

To improve the quality and consistency of bronchoscopic pro-
cedures and enable novice doctors to performbronchoscopy as safely
and proficiently as experienced specialists, we have designed an
AI–human shared control algorithm to minimise the risk of damaging
surrounding tissues while maintaining efficiency. Figure 2a illustrates
an overview of the algorithmworkflow. The algorithm’s core is a policy
network that takes a bronchoscopic image and a discrete human
command (up, down, left, right, or forward) as input to predict a
steering action (pitch and yaw angle rates) for the robot’s orientation,
which can be converted into tendon actuation through inverse kine-
matics and a low-level controller. As shown in Fig. 2b, the policy net-
work training process consists of three steps: (a) establishment of a
virtual bronchoscopy environment, (b) data preparation, and (c)
Sim2Real adaptation. In the first step, an airway model is segmented
from the preoperative CT volume to establish a virtual bronchoscopy
environment. The airway centrelines are extracted by means of the
Vascular Modeling Toolkit (VMTK) to serve as reference paths. By
simulating the bronchoscope robot in this virtual environment, we can
render its observed image and depth. Supplementary Note 4 presents
the virtual environment and simulated robot configurations. In the
second step, human commands and actions for each image are auto-
matically generated for model supervision by an artificial expert agent
(AEA) guided by privileged robot pose information and the reference
airway centrelines, resulting in training samples consisting of images,
depths, human commands and steering actions. For the third step, we
propose a Sim2Real adaptation module to enhance the diversity and
photorealism of the training samples. The domain adaptation part of
thismodule translates rendered images into amore realistic stylewhile
preserving the bronchial structure by means of depth supervision,
ensuring that the corresponding action supervision remains invariant.
The domain randomisation part randomly alters the image appear-
ances or adds noise to the human commands. Based on the dataset
prepared as described above, a data aggregation algorithm (DAgger)39

is employed for on-policy artificial expert imitation to eliminate dis-
tribution mismatch. Because every training sample is generated
automatically, the entire training process is intervention-free. In
practice, the input rendered images andAEA-annotated commands are
replaced with real images and a novice doctor’s commands in the real
bronchoscope robot, driving the policy network to navigate the robot
through the airway safely and smoothly. The discrete human com-
mands aremapped to five regions of the teleoperator (Supplementary
Fig. 3b), reducing the level of human intervention and the cognitive
load compared to conventional teleoperated robots with continuous
human guidance.
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Simulation results and in vitro evaluation
We quantitatively assessed the performance of the proposed method
through simulation experiments, in which airway models containing
up to 5th-generation bronchi were utilised for training and evaluation
(Fig. 3a). Two kinds of bronchoscopic images were rendered from
airway models with pink and realistic textures, referred to as Sim-style
andReal-style images, respectively (Fig. 3b). The realistic textureswere
generated by extracting actual bronchial wall textures from real his-
torical clinical bronchoscopic videos. The training environments
established based on the two airway models contained 74 and 84
reference paths, respectively. The test environment was built on the
basis of another airwaymodelwith a realistic texture that contained60
paths (Supplementary Fig. 5). The policy network trained using Sim-
style images with domain adaptation and randomisation (Sim+A +R)
achieved the highest success rate (calculated as the ratio of the num-
bers of successful paths to all paths, detailed definitions of which can
be found in Supplementary Note 9 and Supplementary Fig. 17) of
~93.3% on the test paths (Fig. 3c). This performance surpassed that of
networks trained without domain randomisation (Sim+A; ~80.0%),
without any domain adaptation or randomisation (Sim; ~31.8%), using
only Real-style images (Real; ~81.8%), and employing the baseline
domain adaptation approach40 (Sim+A(b); ~71.8%). Similarly, our Sim
+A+R method exhibited the highest successful path ratio (calculated
as the ratio of the completed path length over the total path length) of
~98.9 ± 4.7%, surpassing those of Real (~96.5 ± 8.0%), Sim+A

(~96.4 ± 7.4%), Sim+A(b) (~92.9 ± 12.4%) and Sim (~75.2 ± 22.6%)
(Fig. 3d). In terms of the trajectory error—the Euclidean distance
between the predicted and reference paths—Sim+A+R also demon-
strated the lowest error of ~1.04 ± 0.21mm, compared to
~1.23 ± 0.28mm for Real, ~1.37 ± 0.26mm for Sim+A, ~2.57 ± 0.54mm
for Sim+A(b), and ~3.36 ±0.66mm for Sim (Fig. 3e). Specific results on
each path are shown in Supplementary Fig. 6b. Notably, the Sim
method underperformed, indicating overfitting of the policy network
in the Sim-style image domain. Sim+A and Real showed similar per-
formances, emphasising the effectiveness of our domain adaptation
module. Sim+A outperformed Sim+A(b), validating the advantage of
preserving the bronchial structure during domain adaptation. Sim
+A+R achieved the best results, demonstrating that our proposed
domain adaptation and randomisation procedures enable successful
knowledge transfer between simulation and reality. The generalisation
ability of Sim+A+R has also been tested on airway models from 10
different patients (Supplementary Fig. 7).

The domain adaptation module is necessary for translating Sim-
style images (the source domain) into realistic images (the target
domain). Thus, we qualitatively and quantitatively evaluated the image
translation performance of our method. We selected three types of
unpaired realistic images to represent target domains for training and
evaluation, namely Real-, Phantom- and Clinical-style images (Supple-
mentary Note 5 and Supplementary Fig. 8a). These images were col-
lected from virtual airway models rendered with realistic texture
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Fig. 1 | Overview of our AI co-pilot bronchoscope robot deployed in a clinical
setting for bronchoscopic procedures. The bronchoscope robot is integrated
with a robotic arm and placed alongside the operating table, and it is teleoperated
by a doctor at a remote-control console to steer the bronchoscopy catheter for
lung examination. Two types of catheters are designed, with diameters of 3.3mm

(with a 1.2mmworking channel) and 2.1mm (without a working channel), enabling
access to bronchi of the fifth generation or deeper in average adult patients. An
AI–human shared control policy is designed to minimise the risk of damage to
surrounding tissues and improve the overall safety profile.
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Fig. 2 | AI–human shared control algorithmand training strategy. aOverview of
the AI co-pilot working pipeline. The bronchoscope robot acquires images during
the procedure, and the doctor gives discrete human commands to determine the
robot’s direction. Both the images and human commands are input into a trained
policy network to predict steering actions to control the catheter tip to remain
centred at the bronchial lumen for safety, forming a closed-loop control system
with inverse kinematics and a low-level controller integrated. (The “doctor icon” is
used with permission from the AdobeStock Standard License.) b Policy network
and training strategy. The policy network features amulti-task structure, where the
main task is steering action prediction and the side task is depth estimation. To
train the network, first, an airway model is segmented from the CT to establish a
virtual environment. Airway centrelines are extracted as reference paths.
Bronchoscopic images and depths are observed by a simulated robot through
rendering. Second, an artificial expert agent automatically generates human com-
mands and actions for supervision. Third, a Sim2Real adaptationmodule enhances

the diversity and photorealism of the training images. c Artificial expert agent. This
agent has priority to access all necessary information during the training process.
Waypoints Pa and Pf are decision points. Pa is used to determine the ground-truth
steering action by calculating rotation angles from the robot’s current posture.Pf is
located farther away than Pa and is used to determine the human command by
projecting this point into the image coordinate system of the robot, which is
divided into five regions representing five discrete human commands. d Sim2Real
adaptationmodule. Thismodulefirst translates the rendered images into a realistic
style while preserving the bronchial structure. Then, the generalisation ability of
the policy network is enhanced by: (i) random rotation of the airway model’s roll
angle, (ii) random adjustment of the bronchoscope’s light intensity, (iii) the addi-
tion of random noise to the human commands when the distance between the
robot and the bronchial wall is <1mm, and (iv) random alteration of the input
images’ attributes.
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Fig. 3 | Results of simulation experiments. a An example of an airway model
containing 5th-generation bronchi with a reference path for bronchoscopy. b Two
styles of images rendered from airwaymodels with different texturemapping. Sim-
style images have a pink texture, while real-style images contain realistic textures.
Three positions are depicted along the reference path: (i) the entrance of the
trachea, (ii) the intersection of the trachea and the main bronchus, and (iii) the
lower bronchus. c Success rates (i.e., the ratio of the numbers of successful paths to
all paths, reflecting the generalisation ability of eachmethod for reaching different
branches of the bronchial tree). d Successful path ratios (i.e., the completed path
length over the total path length of every path, reflecting the coverage ability of
each method for the whole bronchial tree). Data are presented as mean values ±
95% confidence interval (CI), and the number of independent paths n = 60.
e Trajectory errors of different methods when run in the test environment with

realistic textures, containing n = 60 independent paths for evaluation.White circles
indicate median, edges are 25th and 75th percentiles, whiskers indicate range.
f Qualitative image translation results of different methods, where Sim represents
the Sim-style images corresponding to the source domain and Real, Phantom and
Clinical denote three styles of realistic images serving as target domains. The
training datasets for the source and target domains are unpaired. AttentionGAN is
chosen as the baseline method for unpaired image translation. Detailed illustra-
tions of the training datasets and image translation results are given in Supple-
mentary Fig. 8. g Structural similarity index measure. Data are presented as mean
values ± standard deviation (SD), the number of independent experiments n = 227.
h Peak signal-to-noise ratio results of different methods, containing n = 227 inde-
pendent experiments presented asmean values ± SD. Higher SSIM and PSNR values
indicate better structure-preserving properties.
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mapping, real bronchoscopy in silicone phantoms, and real broncho-
scopy in live pigs, respectively. As shown in Fig. 3f and Supplementary
Fig. 8b, our method successfully performs image translation without
changing the bronchial structure. Our method outperforms
AttentionGAN32 in terms of the structural similarity index measure
(SSIM) across Real-style (0.91 vs. 0.80), Phantom-style (0.95 vs. 0.70)
and Clinical-style (0.96 vs. 0.78) translations, demonstrating the
superior structure-preserving property of our method. Additionally,
our approach achieves a higher peak signal-to-noise ratio (PSNR) than
AttentionGAN (25.16 dB vs. 12.25 dB) between translated and target
images in the Real style (Fig. 3g). We conclude that our method can
successfully generate images with the target domain style while pre-
serving the bronchial structure, facilitating Sim2Real adaptation.

To assess the proposed AI co-pilot bronchoscope robot, experi-
ments were conducted on a bronchial phantom made of silica gel
replicating structured derived from human CT lung data (Fig. 4a). A
crank-rocker mechanism-based breathing simulation system (Supple-
mentary Note 7 and Supplementary Fig. 10) was designed to emulate
human respiration (15 cycles per minute). Two bronchial phantoms
with distinct bronchial structures were employed for in vitro evalua-
tion (Fig. 4b). An expert (chief doctor) and a novice doctor (medical
intern) were invited to perform bronchoscopic procedures using the
robot without the AI co-pilot as a benchmark, while another novice
doctor (attending doctor) also participated using the robot with the AI
co-pilot. All procedures were performed on the same path using the
teleoperator. The medical intern had no experience with broncho-
scopy, while the attending doctor had a little experience (<5 years and
<100 cases per year, compared to the chief doctor, who had >20 years
of experience and >200 cases per year), as indicated in Supplementary
Table 1. They were both presentedwith twodemonstrations of robotic
intubation, with and without the AI co-pilot, to learn how to operate
the system. During the evaluation, the medical intern performed tel-
eoperated bronchoscopy without the AI co-pilot along the bronchus
path for three trials, with image errors decreasing from 62.39 ± 1.91
pixels to 43.54 ± 2.01 pixels (Fig. 4c, Supplementary Note 8 and Sup-
plementary Figs. 11–13). Under the same conditions, the expert
achieved more precise and stable bronchoscopic operation (with an
image error of 31.45 ± 1.19 pixels). Assisted by our AI–human shared
control algorithm, the attending doctor achieved even better
bronchoscopic operation performance (17.63 ± 0.46 pixels) than the
expert in the first trial. Next, the expert and the attending doctor
carried out experiments on both sides of two phantoms, with the
attending doctor using the robot with the AI co-pilot (Supplementary
Figs. 14–16 and Supplementary Movie 2 and 3). Detailed operation
error comparisons are depicted in Fig. 4d, e. In Phantom 1, AI-assisted
operation (19.14 ± 0.50pixels) exhibited a significantly lower operation
error than expert operation (38.84 ±0.84 pixels). In Phantom 2,
despite a small initial error, as shown in the Path 66 results, expert
operation failed to maintain a low error during insertion into deeper
bronchial airways, while AI-assisted operation consistently maintained
a low image error, keeping the bronchoscope centred in the image. In
addition, a specific analysis of AI control performance and mode
switching between AI and teleoperation is described in Supplementary
Notes 11 and 12 and Supplementary Figs. 20–23.

In vivo demonstration with a live porcine lung model
We further evaluated the performanceof the AI co-pilot bronchoscope
robot in aminipig, whose bronchial structure closely resembles that of
the human bronchus. The pig was purchased from Zhuhai BestTest
Bio-Tech Co., Ltd., solely based on the pig’s health condition (Sup-
plementary Note 13). TheWuzhishan pig was female and threemonths
old. The protocols for animal experiments were approved by the
Institutional Animal Care and Ethics Committee of Zhuhai BestTest
(IAC(S)2201003-1). During the experiment, the bronchoscope catheter
was inserted through the oropharynx into the pig’s bronchial airways,

while the doctor, seated at the console, controlled the robot to
accomplish teleoperation and steering. Prior to clinical trials, a physi-
cal examination and a whole-body CT scan were conducted to recon-
struct the bronchial structure (Fig. 5a) and ensure the pig’s good
health.

We selected two porcine bronchus paths for in vivo demonstra-
tion and conducted clinical trials with the expert and the attending
doctor, the latter of whom was assisted by the AI co-pilot (Supple-
mentary Fig. 24). As seen in the endoscopic images presented in Fig. 5b
and Supplementary Movie 4, both doctors achieved steering through
the porcine bronchus to beyond the 5th-generation bronchi (diameter
~2.5mm), yielding almost identical visualisation results. As seen from
the actuation displacement and actuation force (Fig. 5c) measure-
ments during bronchoscopy, the attending doctor achieved smoother
steering with the AI co-pilot than the expert did. To quantitatively
analyse the control effects of the two volunteers, the mean values and
fluctuation ranges of the actuation displacement and actuation force
are illustrated in Fig. 5d. It is evident that AI-assisted steering resulted
in a lower mean value and fluctuation range than the expert’s opera-
tion overall. The operation error comparison further indicates that our
proposed AI co-pilot bronchoscope robot maintains better bronchus
centring than expert teleoperation. Based on an analysis of eight
repeated trials on the live porcine lung, the attending doctor could
perform bronchoscopy with a 11.38 ± 0.16 pixel operation error in
collaborationwith theAI co-pilot, achieving performance as good asor
even better than that of the expert (16.26 ±0.27 pixels). Considering
the pixel-to-millimetre calibration results reported in Supplementary
Note 9 and Supplementary Fig. 18, the AI co-pilot group could achieve
amean 3D positioning error of less than 0.73mm in all procedures. To
further characterise the autonomy properties of the proposed system,
we compared the number of doctor interventions between the
attending doctor with the AI co-pilot and the expert. The statistical
results in Fig. 5g demonstrate that the number of interventions, as
defined in Supplementary Note 9, with the use of the AI co-pilot was
significantly lower than that during expert teleoperation, greatly
reducing the doctor’s physical exertion and cognitive load during the
bronchoscopic operation and further illustrating the autonomy of our
proposed robotic bronchoscopy system. Furthermore, the NASA Task
Load Index survey (SupplementaryNote 10 andSupplementary Fig. 19)
was also completed for a comprehensive assessment of human work-
load, demonstrating a significant reduction in both physical and
mental burden when using our AI-assisted system.

Discussion
Bronchoscopic intervention is preferred for sampling suspected pul-
monary lesions owing to its lower complications. Recently, robot-
assisted technologies, such as the Monarch Platform and the Ion
Endoluminal System, have been introduced into bronchoscopic pro-
cedures to enhance manoeuvrability and stability during lesion sam-
pling. However, due to the high cost of robotic bronchoscope systems
and the expertise needed by doctors, the proliferation of this tech-
nology in underdeveloped regions is limited. Our study presents a low-
cost comprehensive AI co-pilot bronchoscope robot (Supplementary
Table 2) to improve the safety, accuracy, and efficiency of broncho-
scopic procedures. The proposed system,which incorporates a shared
control algorithm and state-of-the-art domain adaptation and rando-
misation approaches, bridges the gap between simulated and real
environments, ensuring generalisability across various clinical set-
tings. Moreover, this AI co-pilot bronchoscope robot enables novice
doctors to perform bronchoscopy as competently and safely as
experienced specialists, reducing the learning curve for broncho-
scopic procedures and ensuring a consistent quality of care.

Our in vitro and in vivo evaluation results demonstrate the effi-
cacy of the proposed AI co-pilot bronchoscope robot in achieving
insertion into deep bronchial airways with high precision and reduced
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intervention from the operator. Notably, the AI–human shared control
algorithm maintains better bronchus centring and exhibits lower
operation errors than an expert operator, validating the robustness
and clinical potential of our approach. Additionally, the domain
adaptation and randomisation techniques effectively mitigate

overfitting and facilitate seamless knowledge transfer between the
simulated and real image domains, ultimately contributing to the
overall success of the system.

Despite these promising results, there are several areas for
future research and development. Our bronchoscope robot relies
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Fig. 4 | Results of in vitro experiments. a In vitro experimental scenario under
breathing simulation, for which the detailed design and motion analysis are illu-
strated in Supplementary Fig. 10. b The airway models corresponding to the two
bronchial phantoms. c Learningprocess of the novice doctors. Path 23 in Phantom1
was selected for bronchoscopy. Two novice doctors (a medical intern and an
attending doctor) were invited to learn teleoperated bronchoscopy with and
without the AI co-pilot from demonstrations. The medical intern performed three
bronchoscopy trials without the AI co-pilot. Then, the expert (without the AI co-
pilot) and the attending doctor (with the AI co-pilot) separately performed
bronchoscopy. Image errors were recorded during procedures. The numbers of
recorded frames are n = 3928, 5162, 3693, 3503 and 3544 for five independent
experiments from Trial 1 to AI, respectively. Bar plots showmean± 95%CI of image
errors. d Comparison of results in Phantom 1. Paths 19 and 55 were selected for

bronchoscopy, covering both sides of Phantom 1. The expert without the AI co-
pilot and the attending doctor with the AI co-pilot performed bronchoscopy
separately. The numbers of recorded frames are n = 6014 for Expert and n = 6094
for AI. e Comparison of results in Phantom 2. Paths 25 and 66 were selected for
bronchoscopy. The numbers of recorded frames are n = 6180 for Expert and
n = 5811 for AI. The results reveal that the novice doctor with the AI co-pilot could
achieve and maintain a smaller image error than the expert during the broncho-
scopy procedure. Line plots with error bands depict time-varying mean image
errors ± 95%CIwithin a timewindowof 20 framesduring each procedure. Bar plots
depict the mean image error and the 95% confidence interval for all frames during
the two bronchoscopy procedures in each phantom, i.e., the mean ± 95% CI image
error in Phantom 1, containing Path 19 and Path 55, and in Phantom 2, containing
Path 25 and Path 66.
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upon tendon actuation for precise steering control and is fed into
the deep lungs by means of “follow-the-tip”motion41,42. In alignment
with this methodology, the proximal section of the catheter is
engineered to exhibit a substantially increased stiffness in compar-
ison to the distal section. However, a large bending angle
(approaching 180°) of the distal section presents great challenges in
effecting smooth feed movement of the catheter, particularly when
negotiating the upper pulmonary regions. A soft untethered mag-
netic catheter design has the potential to improve the capabilities of
bronchoscopy for deep lung examination and is worthy of study. In
addition, it is essential to assess the robustness of the proposed
method in a broader range of clinical scenarios, including patients

with varying bronchial anatomies, pathologies, or respiratory con-
ditions. Extensive testing on a diverse patient population will be
necessary to validate the applicability of the intelligent broncho-
scope robot in real-world settings. Considering the difference in
teleoperators between our AI co-pilot system and existing robotic or
hand-held bronchoscopy systems, the relevance between the pre-
vious experience of doctors in current teleoperators and the profi-
ciency of operating our system is worth further studying. The
integration of additional sensing modalities, such as ultrasound or
optical coherence tomography, can also be considered to provide
complementary information to guide the bronchoscope robot.
Fusing multiple data sources could improve the accuracy and safety
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of AI-assisted steering, offeringmore comprehensive diagnostic and
therapeutic support.

In addition, the explainability of our AI co-pilot system was
investigated by analysing the reasons for the decision-making of the AI
during bronchoscopic procedures. We conducted an experiment on
the interpretability of the proposed policy network using three styles
of image pairs. We generated gradient-weighted class activation maps
(GradCAM) from the last convolutional layer of the policy network to
represent the network’s attention and visualised the fused images by
overlaying the GradCAM results onto the original images. In the
resulting images, highlighted regions indicated the key clues that our
policy network paid attention to when making decisions. As shown in
Supplementary Fig. 25, our network has learned to focus on the
bronchial lumens, and as the distance between the robot and the
bronchial wall increases, the attention value becomes larger. This
indicates that our network concentrates on the structural information
of the airway and utilises it to predict safe actions, keeping the centre
of the bronchial lumen at the centre of the image. As a result, our AI co-
pilot robot is able to remain centred in the airway and stay as far away
as possible from the bronchial wall during bronchoscopic procedures.

In conclusion, our AI co-pilot bronchoscope robot offers a pro-
mising avenue for enhancing the quality and consistency of broncho-
scopic procedures. The system’s robust performance in both
simulations and in vivo experiments demonstrates its potential to
revolutionise bronchoscopy and empower novice doctors to perform
these procedures confidently. Looking forward, we anticipate that our
approach can be adapted and applied to other medical procedures
requiring precise navigation and manipulation, ultimately improving
patient outcomes and reducing health care disparities.

Methods
Overview of the AI co-pilot system
Our AI co-pilot bronchoscope robot is divided into two main parts: a
hardware system and an AI co-pilot algorithm. At the hardware level,
the bronchoscope robot employs tendon-driven mechanics, lever-
aging four linear motors to precisely steer the bronchoscope catheter
and an electric slide for feed movement. Additionally, our robotic
system boasts an innovative magnetic adsorption method for rapid
replacement of the catheter. At the software level, anAI–humanshared
control algorithm is designed to steer the robot safely. The core of the
algorithm is a policy network, which takes both bronchoscopic images
and human commands as inputs to predict steering actions that will
control the tip of the bronchoscope robot to remain at the centre of
the airway, helping prevent injury to the airway mucosa.

To train the policy network, a virtual environment is created to
simulate bronchoscopic procedures and collect trainingdata, and then
domain adaptation and randomisation techniques are used to enhance
the training samples. The training process involves a novel artificial
expert agent for automatic data annotation and does not require
human intervention. The generator for domain adaptation is pre-
trained by using virtual bronchoscopic images and unpaired historical
bronchoscopy videos, which are easy to access at hospitals, enabling
an annotation-free training stage. With the aid of our AI co-pilot
bronchoscope robot, the level of human intervention and the cogni-
tive load imposed on doctors can be significantly reduced compared
to traditional teleoperated robots.

AI–human shared control workflow
The working pipeline of our AI–human shared control algorithm in
practical use is described as follows. The bronchoscope robot acquires
bronchoscopic images during the procedure, and a doctor gives dis-
crete human commands (e.g., left, down, right, up or forward) to
determine the high-level direction of the robot. The bronchoscopic
images and human commands are input into a trained policy network
to predict continuous steering actions (i.e., rotation angle ratesΔθ and

Δφ) to control the robot’s head such that it remains centred at the
bronchial lumen for safety. The predicted steering actions are con-
verted into continuous tendon displacements of the linear motors
through inverse kinematics and a low-level controller, forming a
closed-loop control system.

Policy network architecture
The policy network is designed with a multi-task structure, where the
main task is steering action prediction and the side task is depth esti-
mation. The learning of the depth estimation task alongside the main
task can encourage the network to recognise the 3D bronchial struc-
ture and learn a more generalised scene representation for decision-
making. The policy network takes a bronchoscopic image (I) and a
human command (c) as inputs, and its outputs include the predicted
steering action and estimated depth. Its architecture features an image
feature extractor ΦE, a depth decoder ΦD and five branched action
heads fΦi

Ag
5

i= 1, each of which is responsible for predicting steering
actions in response to one of five human commands (left, right, up,
down and forward). ΦE is based on ResNet-34, and ΦD is built on a
transposed convolutional network, which has skip connections with
ΦE. The action heads are based on multilayer perceptrons (MLPs) and
are optionally activated by the human command c through a five-way
switch. The depth decoder and action heads share the same repre-
sentation extracted by the feature extractor. For alignment with the
input channels of the MLPs, the features extracted from ΦE are flat-
tened to a 512-d vector before being input into the chosen action head.
The specific architecture of the policy network is summarised in
Supplementary Table 3.

Training strategy
For training the policy network, a virtual bronchoscopy environment
is established based on the segmented airway from preoperative
thorax CT scans, as introduced in detail in Supplementary Note 4.
In this study, we employ an imitation learning framework to train
the policy network. Given an expert policy π*, a dataset D of
state–command–action triples (s,c,a*) can be created by executing π*

in the virtual bronchoscopy environment. s represents the state of the
environment, which corresponds to the image observed through the
bronchoscope robot’s camera. c denotes the human command, and
a* =π*ðs,cÞ represents the expert steering action. The objective of
imitation learning is to train a policy network π, parameterised by θ,
that maps any given s and c to a steering action a that is similar to the
corresponding expert action a*. By minimising a loss function La, the
optimal parameters θ* can be obtained as follows:

θ* = argmin
θ

XN
i

La π* si,ci
� �

,π si,ci;θ
� �� � ð1Þ

where N is the size of dataset D.
In the conventional imitation learning framework, the expert

policy π* is executed by human experts in the environment to collect
expert data for training; however, this process is excessively time
consuming in practice. In addition, when a behaviour cloning strategy
is used to train the policyπ, cascading error anddistributionmismatch
problems may occur in the inference stage. In our work, an artificial
expert agent (AEA) is designed to simulate a human expert and auto-
matically execute the expert policy in the virtual bronchoscopy
environment, thereby providing the human command c and annotat-
ing the ground-truth expert action a* for state s. Thus, the demon-
stration burden on human experts can be eliminated. We choose the
dataset aggregation algorithm DAgger as the imitation learning strat-
egy. The initial dataset is constructed by placing the camera sequen-
tially at waypoints along the centreline and labelling the ground-truth
actions and commands obtained from the AEA. A supplementary
dataset is then obtained by running the policy network π in the virtual
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environment and generating frame-by-frame labels with the AEA,
namely, the on-policy training process. In the training stage,we choose
the L2 loss to implement the action loss, as follows:

La ai,a
*
i

� �
=

1
N

XN
i = 1

jjai � a*i jj
2
2 ð2Þ

For depth estimation, a ground-truth depth d* can be rendered
corresponding to the current observation s, accordingly, the depth
loss can be computed as

Ldepth d,d*
� �

=
1

NM

XN
i= 1

XM
j = 1

jjdij � d*
ijjj

2

2 ð3Þ

where N is the size of the whole dataset, M is the number of pixels of
each depth, and d is the estimated depth of the policy network. In the
training process, each rollout of a bronchoscopy procedure is termi-
nated by a series of ending conditions, which are described in Sup-
plementary Note 6.

Artificial expert agent
This section introduces the process of human command generation
and ground-truth expert action annotation by the artificial expert
agent (AEA). During the training phase, a substantial number of roll-
outs of virtual bronchoscopy procedures should be performed with
human commands, and numerous steering actionsmust be labelled to
ensure adequate samples for training the policy network. This task is
labour-intensive and time-consuming for doctors, and the consistency
of the resulting human annotations cannot be guaranteed. To address
this challenge, we introduce the AEA to automatically provide human
commands and annotate ground-truth steering actions based on pri-
vileged robot pose information and reference airway centrelines.

As shown in Supplementary Fig. 5b, the ground-truth steering
action ½Δθ*,Δφ*� is calculated as follows:

Δθ* = arccos
OcPa

�������*

�z
OcP

0
a

0
@

1
A ð4Þ

Δφ* = arcsin
PaP

0
a

OcPa

 !
ð5Þ

wherePa is the target waypoint on the centreline that the robot should
be directed towards in the next step, Oc is the origin of the camera
coordinate system, and P0

a is the projection point of Pa on the xOcy
plane.Pa can bedetermined from the current position of the robot and
a fixed distance da along the centerline. First, the nearest waypoint Pn

on the centreline from the robot’s head is selected. Then, idxPa, i.e., the
index ofPa among all waypoints on the centreline, can be calculated as

idxPa = argmin
m

Xm
k =n

PkPk+ 1 � da

�����
����� ð6Þ

where Pk para_denotes a certain waypoint that lies on the centerline
and PkPk+ 1 is the distance between Pk and its neighbour Pk + 1. Thus,
the ground-truth steering action ½Δθ*,Δφ*� can be annotated for
training the policy network.

The principle of human command generation is based on the fact
that doctors consistently consider both a far navigation target and a
near steering target during bronchoscopy procedures. The far navi-
gation target allows the doctor to assess the risks of the upcoming
operation and decide where needs to be examined. The near steering
target ensures that the bronchoscope remains at the centre of the
airway as much as possible for local safety. The far navigation target

may be approximate yet correct, signifying the desired location the
bronchoscope should reach in the near future, similar to the human
command in our policy network. For instance, at the junction of the
primary and secondary bronchi, the doctor should decide where to
examine in the near future. The policy network receives an approx-
imate human command (left or right) as input and generates precise
safe steering actions for controlling the robot.

Thus, in the AEA, the human command is determined based on a
far target waypointPf and the robot’s current position. The index ofPf

can be computed as follows:

idxPf = argmin
m

Xm
k =n

PkPk+ 1 � df

�����
����� ð7Þ

where df is the length of the centreline between Pn and Pf, satisfying
df > da. After that,Pf is projected into the image coordinate systemwith
the known intrinsic parameters of the camera to generate the 2D
projected point Pf. The discrete human command c can be computed
as

c=

f orward,0� ≤ffPfOcz ≤ τ

up,ffPfOcz>τ \ 45�<ffpfOx ≤ 135�

down,ffPfOcz>τ \ 135�<ffpfOx≤ 225�

lef t,ffPfOcz>τ \ 225�<ffpfOx≤ 315�

right,ffPfOcz>τ \ ð0�<ffpfOx≤45� ∪ 315�<ffpfOx≤ 360�Þ

8>>>>>><
>>>>>>:

ð8Þ

where O is the origin of the image coordinate system and τ is the
threshold angle of the forward cone for deciding whether to continue
forward in the current airway. The five discrete human commands that
can be generated by the AEA are encoded as one-hot vectors for input
into the policy network.

In practice, the input AEA-annotated human commands are
replaced with the doctor’s commands in the real bronchoscope robot,
driving the policy network to safely and smoothly pass through the
airway. The human commands are mapped to five regions of the tel-
eoperator (Supplementary Fig. 3b), reducing the doctor’s cognitive
load compared to that imposed by conventional teleoperated robots
with continuous human intervention.

Sim2Real adaptation
Domain adaptation and training strategy. To improve the perfor-
mance of the policy network in clinical scenarios, domain adaptation is
necessary to reduce the gap between the simulated and real environ-
ments. Generative adversarial networks (GANs), which are often used
in computer vision for image domain adaptation, can serve our pur-
pose. The generatorGof such aGAN attempt to generate realistic-style
images from simulated images, while the discriminator D attempts to
distinguish between generated and real samples. Notably, in clinical
scenarios, it is still challenging to pair every bronchoscopic video
frame with simulated images rendered from CT airway models due to
limited available manpower and the significant visual divergence
between body and CT images. When only unpaired data are used for
training, existing unpaired image translation methods, such as Cycle-
GAN, oftenmisinterpret crucial structural informationof the bronchus
as part of the style to be translated, leading to inaccurate structures in
the generated images.

To address these issues, we propose a structure-preserving
unpaired image translation method leveraging a GAN and a depth
constraint for domain adaptation. As shown in Supplementary Fig. 9,
the network consists of a generator, a discriminator and a depth esti-
mator. Sim-style images rendered from airway models with pink tex-
tures are collected to represent the source domain, and their
corresponding depths are rendered to provide depth supervision.
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Unpaired clinical images from historical bronchoscopic videos, which
are easy to access at hospitals, serve to represent the target domain. In
the training stage, Sim-style images x are fed into the generator to
translate them into paired realistic-style images G(x). Then, the dis-
criminator takes both the translated realistic-style images and the
unpaired clinical images y as input. The adversarial loss is formulated as

LGANðG,D,x,yÞ=Ey∼pdataðyÞ½logDðyÞ�+Ex∼pdataðxÞ½logð1�DðGðxÞÞÞ�
ð9Þ

Following image translation, the realistic-style images are fed into
the depth estimator for the generation of estimated depths. The depth
estimation task can be supervised by the rendered depths corre-
sponding to the input rendered images, ensuring that the 3D structure
information of each generated image remains consistent with that of
the original rendered image. The depth constraint is provided by the
depth loss, which is expressed as

Ldepthðd,d*Þ= 1
N

XN
i = 1

di � d*
i

��� ���2
2

ð10Þ

where N is the number of pixels in the depth image, d is the predicted
depth andd* is the corresponding rendered depth of the input rendered
image. As shown in Supplementary Table 4, the backbone of our gen-
erator is based on the architecture of AttentionGAN, which explicitly
decouples the foreground and background of an image through the
introduction of a self-attention mechanism and has shown state-of-the-
art performance in recent image translation tasks. The generator G is
composed of a parameter-sharing feature extractor Ge, an attention
maskgeneratorGaandacontentmaskgeneratorGc. Thediscriminator is
basedon thearchitectureofCycleGAN.Thedepthestimator comprises a
ResNet-34 network for feature extraction and a transposed convolu-
tional network for feature decoding. Specific network architectures of
our generator anddiscriminator can be found in Supplementary Table 4.

Domain randomisation
To improve the generalisation ability of the policy network, several
domain randomisation techniques are designed to randomly alter
image appearances or add noise to human commands.

(i) Roll rotation: Since the bronchoscope robot’s roll angle is set to
0 in the virtual environment (Supplementary Note 4), we randomly
rotate the airway model’s roll angle for each rollout. This prevents
overfitting of the policy network on limited pulmonary postures and
encourages the learning of a more general safe steering policy,
regardlessof environmental changes. For each rollout, the startingpoint
is randomly placed within the first third of the reference path to collect
more challenging data from the deep, thin bronchus, as the trachea and
main bronchus account for a large proportion of the entire path.

(ii) Light intensity: To improve the policy network’s robustness
against variations in light intensity between simulated and clinical
scenarios, we randomly adjust the light intensity of the virtual
bronchoscopy environment for each observation.

(iii) Command disturbance: Humans may make mistakes when
operating robots in practice, such as continuing to control the robot’s
heading towards the bronchial wall even once a collision has occurred,
potentially causing damage or even perforation. To address this, we
randomly add disturbances to the human commands before they are
input into the policy network when the robot is less than 1mm away
from the bronchial wall during training. This ensures that the policy
network will prioritise safe steering over erroneous human control,
enhancing safety and reducing the doctor’s cognitive load.

(iv) Image attributes: To further improve the generalisation ability
of the policy network, we employ four data augmentation methods
during the training process to randomly change various attributes of
the input images, including brightness, contrast, saturation and hue.

Implementation details
The AI-human shared control algorithm is implemented using Python
(v3.7.11). To establish the virtual bronchoscopy environment, the airway
models are segmented from CT scans using 3D Slicer (v4.10.2). The
airway centrelines are then extracted using VMTK (v1.4.0). For robot
simulation, data acquisition and human command generation, the
implementation tools are Pyrender (v0.1.45) and PyBullet (v3.2.2). The
policy network and Sim2Real adaptationmodule are implementedusing
the PyTorch platform (v1.9.1) and trained on an NVIDIA GTX 2080Ti
GPU. The learning rate is set to 10-4 for training the policy network and
2×10-4 for training the Sim2Real adaptation module. The batch size for
training is set to 64, and both networks are trained for 300 epochs. The
acquired images from the simulated and real camera have a size of
400×400, and they are resized to 200×200 before being inputted into
thenetwork. Thedataprocessing tools includeNumPy (v1.19.5),OpenCV
(v4.5.5.64) and VTK (v8.2.0). The data analysis and visualisation are
implemented using Matplotlib (v3.3.4) and MATLAB R2022a.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used for establishing virtual bronchoscopy environment and
training networks are available at https://zenodo.org/records/10077275,
whereas the trained network model data used in simulated, in-vitro and
in-vivoexperiments is available athttps://zenodo.org/records/10077290.
Other data needed to evaluate the conclusions are provided in the main
text, and Supplementary files. Source data are provided with this paper.

Code availability
The code is available on GitHub (https://github.com/LiuLiluZJU/AI-Co-
Pilot-Bronchoscope-Robot)43. The DOI for the code is https://doi.org/
10.5281/zenodo.10077315. The repository includes virtual environ-
ment establishment, data acquisition, image processing, visualisation,
network training and testing code.
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