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Selective knowledge sharing for privacy-
preserving federated distillation without a
good teacher

Jiawei Shao 1, Fangzhao Wu 2 & Jun Zhang 1

While federated learning (FL) is promising for efficient collaborative learning
without revealing local data, it remains vulnerable to white-box privacy
attacks, suffers from high communication overhead, and struggles to adapt to
heterogeneous models. Federated distillation (FD) emerges as an alternative
paradigm to tackle these challenges, which transfers knowledge among clients
instead of model parameters. Nevertheless, challenges arise due to variations
in local data distributions and the absence of a well-trained teacher model,
which leads tomisleading and ambiguous knowledge sharing that significantly
degrades model performance. To address these issues, this paper proposes a
selective knowledge sharingmechanism for FD, termed Selective-FD, to identify
accurate and precise knowledge from local and ensemble predictions,
respectively. Empirical studies, backed by theoretical insights, demonstrate
that our approach enhances the generalization capabilities of the FD frame-
work and consistently outperforms baselinemethods.We anticipate our study
to enable a privacy-preserving, communication-efficient, and heterogeneity-
adaptive federated training framework.

The rapid development of deep learning (DL)1 has paved theway for its
widespread adoption across various application domains, including
medical image processing2, intelligent healthcare3, and robotics4. The
key ingredients of DL include massive datasets and powerful com-
puting platforms, whichmakes centralized training a typical approach
for buildinghigh-performingmodels. However, regulations suchas the
General Data Protection Regulation (GDPR)5 and California Consumer
Privacy Act (CCPA)6 have been implemented to limit data collection
and storage since the datamay contain sensitive personal information.
For instance, collecting chest X-ray images from multiple hospitals to
curate a large dataset for pneumonia detection is practically difficult,
since it would violate patient privacy laws and regulations such as
Health Insurance Portability and Accountability Act (HIPAA)7. While
these restrictions as well as regulations are essential for privacy pro-
tection, they hinder the utilization of centralized training in practice.
Meanwhile, many domains face the “data islands” problem. For
instance, individual hospitals may possess only a limited number of

data samples for rare diseases, which makes it difficult to develop
accurate and robust models.

Federated learning (FL)8–10 is a promising technique that can
effectively utilize distributed data while preserving privacy. In par-
ticular, multiple data-owning clients collaboratively train a DLmodel
by updating models locally on private data and aggregating them
globally. These two steps iteratemany times until convergence, while
private data is kept local. Despite many benefits, FL faces challenges
and poses inconveniences. Specifically, the periodical model
exchange in FL entails communication overhead that scales up with
the model size. This prohibits the use of large-sized models in FL11,12,
which severely limits the model accuracy. Besides, standard feder-
ated training methods enforce local models to adopt the same
architecture, which cannot adapt well to heterogeneous clients
equipped with different computation resources13,14. Furthermore,
although the raw data are not directly shared among clients, the
model parameters may encode private information about datasets.
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This makes the shared models vulnerable to white-box privacy
attacks15,16.

To resolve the above difficulties of FL requires us to rethink the
fundamental problem of privacy-preserving collaborative learning,
which is to effectively share knowledge amongdistributed clients while
preserving privacy. Knowledge distillation (KD)17,18 is an effective
technique for transferring knowledge from well-trained teacher mod-
els to student models by leveraging proxy samples. The inference
results by the teacher models on the proxy samples represent privi-
leged knowledge, which supervises the training of the student models.
In this way, high-quality student models can be obtained without
accessing the training data of the teacher models. Applying KD to
collaborative learning gives rise to a paradigm called federated dis-
tillation (FD)19–22, where the ensemble of clients’ local predictions on
the proxy samples serves as privileged knowledge. By sharing the hard
labels (i.e., predicted results)23 of proxy samples instead of model
parameters, the FD framework largely reduces the communication
overhead, can support heterogeneous local models, and is free from
white-box privacy attacks. Nevertheless, without a well-trained tea-
cher, FD relies on the ensemble of local predictors for distillation,
making it sensitive to the training state of local models, which may
suffer from poor quality and underfitting. Besides, the non-identically
independently distributed (non-IID) data distributions24,25 across cli-
ents exacerbate this issue, since the local models cannot output
accurate predictions on the proxy samples that are outside their local
distributions26. To address the negative impact of misleading knowl-
edge, an alternative is to incorporate soft labels (i.e., normalized
logits)17 during knowledge distillation to enhance the generalization
performance. Soft labels provide rich information about the relative
similarity between different classes, enabling student models to gen-
eralize effectively to unseen examples. However, a previous study20

pointed out that ensemble predictions may be ambiguous and exhibit
high entropywhen local predictions of clients are inconsistent. Sharing
soft labels can exacerbate this problem as they are less certain than
hard labels. The misleadingness and ambiguity harm the knowledge
distillation and local training. For instance, in our experiments on
image classification tasks, existing FD methods barely outperform
random guessing under highly non-IID distributions.

This work aims to tackle the challenge of knowledge sharing in FD
without a good teacher, and our key idea is to filter outmisleading and
ambiguous knowledge. We propose a selective knowledge sharing

mechanism in federated distillation (named Selective-FD) to identify
accurate and precise knowledge during the federated training process.
As shown in Figs. 1 and 2, this mechanism comprises client-side
selectors and a server-side selector. At each client, we construct a
selector to identify out-of-distribution (OOD) samples27,28 from the
proxy dataset based on the density-ratio estimation29. This method
detects outliers by quantifying the difference in densities between the
inlier distribution and outlier distribution. If the density ratio of a
particular sample is close to zero, the client considers it an outlier and
refrains from sharing the predicted result to prevent misleading other
clients. On the server side, we average the uploaded predictions from
the clients and filter out the ensemble predictions with high entropy.
The other ensemble predictions are then returned to the clients for
knowledge distillation.Weprovide theoretical insights to demonstrate
the impact of our selective knowledge sharing mechanism on the
training convergence, and we evaluate Selective-FD in two applica-
tions, including a pneumonia detection task and three benchmark
image classification tasks. Extensive experimental results show that
Selective-FD excels in handling non-IID data and significantly improves
test accuracy compared to the baselines. Remarkably, Selective-FD
with hard labels achieves performance close to the one sharing soft
labels. Furthermore, our proposed Selective-FD significantly reduces
the communication cost during federated training compared with the
conventional FedAvg approach. We anticipate that the proposed
method will serve as a valuable tool for training large models in the
federated setting for future applications.

Results
Performance evaluation
The experiments are conducted on a pneumonia detection task30 and
three benchmark image classification tasks31–33. The pneumonia
detection task aims todetectpneumonia fromchest X-ray images. This
task is based on the COVIDx dataset30 that contains three classes,
including normal people, non-COVID-19 infection, and COVID-19 viral
infection. We consider four clients, e.g., hospitals, in the federated
distillation framework. To simulate the non-IID data across clients,
each of them only has one or two classes of chest X-ray images, and
each class contains 1,000 images. Besides, we construct a proxy
dataset for knowledge transfer, which contains all three classes, and
each class has 500 unlabeled samples. The non-IID data distribution is
visualized in Fig. 3. The test dataset consists of 100 normal images and

Fig. 1 | The overall framework of Selective-FD. The federated distillation involves
four iterative steps. First, each client trains a personalized model using its local
private data. Second, each client predicts the label of the proxy samples based on
the localmodel. Third, the server aggregates these local predictions and returns the
ensemble predictions to clients. Fourth, clients update local models by knowledge

distillation based on the ensemble predictions. During the training process, the
client-side selectors and the server-side selector aim to filter out misleading and
ambiguous knowledge from the local predictions. Some icons in this figure are
from icons8.com.
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100 images of pneumonia infection, where half of the pneumonia
infections are non-COVID-19 infections and theother half areCOVID-19
infections. Moreover, we evaluate the proposed method on three
benchmark image datasets, including MNIST31, Fashion MNIST32, and
CIFAR-1033. The datasets consist of ten classes, each with over 50,000
training samples. To transfer knowledge in a federated distillation
setting, we randomly select 10% to 20% of the training data from each
class as unlabeled proxy samples. In the experiments, ten clients par-
ticipate in the distillation process, and we evaluate the model’s per-
formance under two non-IID distribution settings: a strong non-IID
setting and a weak non-IID setting, where each client has one unique
class and two classes, respectively. Several representative federated
distillation methods are compared, including FedMD13, FedED19, DS-
FL20, FKD34, and PLS26. Among them, FedMD, FedED, and DS-FL rely on
a proxy dataset to transfer knowledge, while FKD and PLS are data-free
KD approaches that share class-wise average predictions among users.
Besides, we report the performance of independent learning (abbre-
viated as IndepLearn), where each client trains the model on its local
dataset. The comparison includes the results of sharing hard labels
(predicted labels) and soft labels (normalized logits). To evaluate the
training performance of these methods, we report the classification
accuracy on the test set as a metric. More details of the datasets and
model structures are deferred to Supplementary Information.

The average test accuracy of clients on the pneumonia detection
task is depicted in Fig. 4. It is observed that the proposed Selective-FD
method outperforms all the baselinemethods by a substantial margin,
and the performance gain ismore significant when using hard labels to
transfer knowledge. For example, sharing knowledge by hard labels
and soft labels resulted in improvements of 19.42% and 4.00%,

respectively, over the best-performed baseline. This is because the
proposed knowledge selection mechanism can adapt to the hetero-
geneous characteristics of local data, making it effective in selecting
useful knowledge among clients. In contrast, some baselines perform
even worse than the independent learning scheme. This finding high-
lights the potential negative influence of knowledge sharing among
clients, which can mislead the local training. Notably, while hard label
sharing provides a stronger privacy guarantee35, soft label sharing
provides additional performance gains. This is because soft labels
provide more information about the relationships between classes
than hard labels, alleviating errors from misleading knowledge.

We also evaluate the performance of different federated distilla-
tion methods on the benchmark image datasets. As shown in Table 1,
we find that all the methods achieve satisfactory accuracy in the IID
setting. On the contrary, the proposed Selective-FD method con-
sistently outperforms the baselines when local datasets are hetero-
geneous. The improvement of our method becomes more significant
as the severity of the non-IID problem increases. Specifically, it is
observed that the FKD and PLS methods degrade to IndepLearn in the
strong non-IID setting. This is because each client only possesses one
unique class, and the local predictions are always that unique class.
Such misleading knowledge leads to significant performance
degradation.

Effectiveness of density-ratio estimation
We verify the effectiveness of the density-ratio estimation in detecting
incorrect predictions of localmodels. Specifically, as an ablation study,
we replace the density-ratio based selector in Selective-FD with
confidence-based methods27 and energy-based models (EBMs)28,
respectively. The confidence score refers to the maximum probability
of the logits in the classification task, which reflects the reliability of the
prediction. The EBMs distinguish the in-distribution samples and out-
distribution samples by learning anunderlying probability distribution
over the training samples. The predictions of proxy samples detected
as out-distribution samples will be ignored.

Our experiments are conductedonbenchmark datasets under the
strong non-IID setting, where hard labels are shared among clients for
distillation.Weuse the area under the receiver operating characteristic
(AUROC) metric to measure the capability of selectors to detect
incorrect predictions. In addition, we evaluate the performance of
various selectors by reporting test accuracy. As shown on the left-hand
side of Fig. 5, the AUROC score of our method is much higher than the
baselines. Particularly, the confidence-based method and energy-
based model perform only marginally better than random guess
(AUROC=0.5) on the MNIST and Fashion MNIST datasets. This is

Fig. 3 | Visualization of non-IIDdata distribution.The horizontal axis indexes the
proxy dataset and the local datasets, while the vertical axis indicates class labels.
The size of scattered points denotes the number of samples.

Fig. 2 | Predict the label of aproxy sampleon the client side (left) and the server
side (right).Theprediction takes the formof a soft label (i.e., a logits vector), where
each element represents the probability of the corresponding label. The predicted
label is the element with the highest probability. We measure the quality of
knowledge in federated distillation by accuracy and precision. The accurate pre-
diction matches the ground truth label, while misleading knowledge does not.

Meanwhile, precise knowledge has low entropy, while ambiguity implies high
entropy and uncertainty. The client-side selectors are responsible for filtering out
incorrect local predictions, while the server-side selector aims to eliminate
ambiguous knowledge. The X-ray icon in this figure is from Chanut-is-Industries,
Flaticon.com.
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because the neural networks tend to be over-confident36 about the
predictions, and thus the confidence score may not be able to reflect
an accurate probability of correctness for any of its predictions.
Besides, the energy-based model fails to detect the incorrect predic-
tions because they often suffer from the problem of overfitting with-
out the out-of-distribution samples37. The right-hand side of Fig. 5
shows the test accuracy after federateddistillation. As the density-ratio
estimation can effectively identify unknown classes from the proxy
samples, the ensemble knowledge is lessmisleading and our Selective-
FD approach achieves a significant performance gain.

Ablation study on thresholds of selectors
In Selective-FD, the client-side selectors and the server-side selector
are designed to remove misleading and ambiguous knowledge,
respectively. Two important parameters are the thresholds τclient and
τserver. Specifically, each client reserves a portion of the local data as a
validation set. The threshold of the client-side selector is defined as the
τclient quantile of the estimated ratio over this set. When the density
ratio of a sample falls below this threshold, the respective prediction is
considered to be misleading. Besides, the server-side selector filters
out the ambiguous knowledge according to the confidence score of
the ensemble prediction. Specifically, when a confidence score is
smaller than 1 − τserver/2, the corresponding proxy sample will not be
used for knowledge distillation.

We investigate the effect of the thresholds τclient and τserver on the
performance. We conduct experiments on three benchmark image
datasets in the strong non-IID setting, where the predictions shared
among clients are soft labels. Fig. 6 displays the results, with pproxy
representing the percentage of proxy samples used to transfer
knowledge during the whole training process. The threshold τclient is
set as 0.25 when evaluating the performance of τserver, and the
threshold τserver is set as 2 when evaluating the performance of τclient.
We have observed that both τclient and τserver have a considerable
impact on the performance. When τclient is set too high or τserver is set
too low, a significant number of proxy samples are filtered out by the
server-side selector, which decreases the test accuracy. On the other
hand, setting τclient too low may cause the client-side selectors to be
unable to remove the inaccurate local predictions, leading to a nega-
tive impact on knowledge distillation. When τserver is set too high, the
server-side selector fails to identify the ensemble predictionswith high
entropy, which results in a drop in accuracy. These empirical results
align with Theorem 2 and the analysis presented in Remark 1.

Comparison with FedAvg
Compared with the standard FL setting, such as FedAvg8, Selective-FD
introduces a different approach by sharing knowledge instead of
model parameters during the training process. This alternative
method offers several advantages. First, Selective-FD naturally adapts
to heterogeneous models, eliminating the need for local models to
share the same architecture. Second, Selective-FD largely reduces the
communication overhead in comparison to FedAvg, since the size of
knowledge is significantly smaller than the model. Third, Selective-FD
provides a stronger privacy guarantee than FedAvg. The local models,
which might contain encoded information from private datasets22,
remain inaccessible to other clients or the server. To better demon-
strate the advantages in communication efficiency and privacy pro-
tection offered by the proposed method, the following content
provides the quantitative comparisons between Selective-FD and
FedAvg.

Communication overhead. We compare the communication over-
head of Selective-FD with FedAvg on the benchmark datasets in the
strong non-IID setting. In each communication round of FedAvg, the
clients train their models locally and upload them to the server for
aggregation. This requires that all local models have the same archi-
tecture. For the MNIST classification task, the local models consist of
two convolutional layers and two fully-connected layers. In the case of
Fashion MNIST, we initialize each model as a Multilayer Perceptron
(MLP) with two hidden layers, each containing 1024 neurons. Fur-
thermore, we employ ResNet1838 as the local model to classify CIFAR-
10 images. Our Selective-FD method requires clients to collect proxy
samples prior to the training process, which consequently results in an
additional communication overhead. However, Selective-FD sig-
nificantly reduces the amount of data uploaded and downloaded per
communication round comparedwith FedAvg. This is because the size
of predictions used for knowledge distillation is much smaller than
that of model updates utilized for aggregation. Fig. 7 plots the test
accuracy and communication overhead with respect to the commu-
nication round.

It is observed that our Selective-FD method has comparable or
inferior accuracy to FedAvg. But it considerably improves commu-
nication efficiency during federated training. Further improving the
performance of Selective-FD is a promising direction for future
research. Additional information regarding the experiments can be
found in Supplementary Information.

Fig. 4 | Test accuracy of different methods on the pneumonia detection task.
The error bar represents the mean ± standard deviation of five repetitions. The
results show that the proposed Selective-FD method achieves the best perfor-
mance, and the accuracy gain is more significant when using hard labels to transfer
knowledge. Specifically, some baselines perform even worse than the independent
learning scheme. These results demonstrate that knowledge sharing among clients
can mislead and negatively influence local training. The NIH Chest X-ray Dataset53

and RSNA-STR Pneumonia Detection Challenge image datasets54 are used for
model training and testing. NIHChest X-rayDataset is available at https://nihcc.app.
box.com/v/ChestXray-NIHCC, which is provided by the NIH Clinical Center. The
RSNA-STR Pneumonia Detection Challenge image datasets is available at https://
www.rsna.org/education/ai-resources-and-training/ai-image-challenge/RSNA-
Pneumonia-Detection-Challenge-2018.
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Privacy leakage. We compare the privacy leakage of Selective-FD and
FedAvg under model inversion attacks18,39. The objective of the
attacker is to reconstruct the private training data based on the shared
information from clients. In FedAvg, a semi-honest server can perform
white-box attacks39 based on the model updates. In contrast, our
Selective-FDmethod is free from such attacks since the clients’models
cannot be accessed by the server. However, our method remains vul-
nerable to black-box attacks,where the attacker can infer local samples
by querying the clients’ models18. To assess the privacy risk quantita-
tively, we employGMI39 and IDEAL18 to attack FedAvg and Selective-FD,
respectively. This experiment is conducted on MNIST, and the results

are shown in Fig. 8. It is observed that the quality of reconstructed
images from FedAvg is better than that from Selective-FD. This
demonstrates that sharing model parameters leads to higher privacy
leakage than sharing knowledge. Besides, compared with sharing soft
labels in Selective-FD, the reconstructed images inferred from the hard
labels have a lower PSNR value. This indicates that sharing hard labels
in Selective-FD exposes less private information than sharing soft
labels. This result is consistent with Hinton’s analysis40, where the soft
labels provide more information per training case. In federated train-
ing where the local data are privacy-sensitive, such as large genomic
datasets41, it becomes crucial to share hard labels rather than soft

Fig. 5 | The AUROC scores for incorrect prediction detection (left) and the test
accuracy after federated distillation (right). The error bar represents the
mean ± standarddeviation across 10 clients. The results show that both the AUROC

score and the accuracy of our Selective-FD method are much higher than the
baselines, indicating its effectiveness in identifying unknownclasses from theproxy
dataset. This results in a remarkable performance gain in federated distillation.

Table 1 | Test accuracy of different methods

Strong non-IID MNIST FashionMNIST CIFAR-10

Hard label Soft label Hard label Soft label Hard label Soft label

IndepLearn 10.00 ±0.00 10.00 ±0.00 10.00 ±0.00

FedMD 18.89 ±0.30 88.71 ± 0.28 16.54 ±0.25 64.63 ±0.37 10.71 ± 0.38 15.78 ± 1.39

FedED 11.49 ±0.25 11.92 ± 0.41 12.45 ± 0.44 12.52 ± 0.38 11.83 ± 0.26 12.04 ±0.30

DS-FL 19.72 ± 0.32 35.25 ± 0.36 17.54 ±0.11 35.98 ±0.43 10.87 ± 0.25 12.07 ± 0.32

FKD 10.00±0.00 10.00 ±0.00 10.00 ±0.00 10.00 ±0.00 10.00 ±0.00 10.00± 0.00

PLS 10.00±0.00 10.00 ±0.00 10.00 ±0.00 10.00 ±0.00 10.00 ±0.00 10.00± 0.00

Selective-FD 85.92 ±0.37 94.68 ±0.52 73.41 ±0.98 75.31 ±0.29 80.22 ±0.74 80.98 ±0.39

Weak Non-IID MNIST FashionMNIST CIFAR-10

Hard label Soft label Hard label Soft label Hard label Soft label

IndepLearn 19.96 ±0.00 19.82 ± 0.01 19.52 ± 0.02

FedMD 26.77 ± 0.57 95.16 ± 0.52 41.92 ± 0.30 74.83 ± 0.41 62.14 ± 0.22 84.31 ± 0.53

FedED 59.95 ± 1.11 60.26 ± 1.80 32.62 ± 1.09 37.12 ± 0.85 53.11 ± 0.34 56.13 ± 0.14

DS-FL 25.53 ± 1.43 47.87 ± 0.31 23.08 ±0.23 39.22 ± 0.26 33.22 ± 0.54 52.51 ± 0.70

FKD 19.97 ± 0.01 19.98 ±0.00 19.54 ±0.13 19.71 ± 0.07 19.50 ±0.02 19.51 ± 0.01

PLS 19.96 ±0.01 19.97 ± 0.00 19.64 ±0.09 19.70 ±0.03 19.51 ± 0.01 19.52 ± 0.01

Selective-FD 86.82 ±0.26 96.30 ±0.25 75.57 ±0.61 77.27 ±0.31 81.06 ±0.67 85.38 ±0.35

IID MNIST FashionMNIST CIFAR-10

Hard label Soft label Hard label Soft label Hard label Soft label

IndepLearn 98.18 ± 0.04 86.07 ± 0.07 84.06 ±0.03

FedMD 98.59 ±0.04 98.63±0.01 86.88 ±0.02 87.25 ±0.02 86.02 ±0.09 86.31 ± 0.06

FedED 98.20 ±0.11 98.26 ± 0.06 86.83 ± 0.14 86.88 ±0.04 86.54 ±0.07 86.87 ±0.12

DS-FL 98.22 ± 0.14 98.56 ±0.02 86.15 ± 0.07 86.62 ± 0.09 85.75 ± 0.08 85.82 ± 0.08

FKD 98.40 ±0.05 98.44 ±0.01 86.10 ± 0.15 86.14 ± 0.06 84.03 ±0.02 84.10 ± 0.08

PLS 98.45 ±0.02 98.48 ±0.03 86.27 ± 0.08 86.52 ± 0.05 84.60± 0.13 84.77 ± 0.06

Selective-FD 98.55 ± 0.01 98.60 ±0.04 86.92 ±0.08 87.16 ± 0.06 85.94 ±0.07 86.06 ±0.16

Each experiment is repeated five times. The results in bold indicate the best performance,while the results underlined represent the second-best performance. In the non-IID settings, our Selective-
FDmethod performs better than the baselinemethods, and the accuracy gain ismore significantwhen using hard labels in knowledge distillation than soft labels. In the IID scenario, all themethods
achieve satisfactory accuracy.
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labels. This serves as a protective measure against potential member-
ship inference attacks42. Finally, although the knowledge sharing
methods provide stronger privacy guarantees compared with FedAvg,
the malicious attackers can still infer the label distribution of clients
from the shared information. Developing a privacy-enhancing feder-
ated training scheme is a promising but challenging direction for
future research.

Discussion
Thiswork introduces the Selective-FDmethod in federated distillation,
which includes a selective knowledge sharing mechanism that identi-
fies accurate and precise knowledge from clients for effective knowl-
edge transfer. Particularly, it includes client-side selectors and a server-
side selector. The client-side selectors use density-ratio estimators to
identify out-of-distribution samples fromtheproxydataset. If a sample
exhibits a density ratio that approaches zero, it is identified as an
outlier. To prevent the propagation of potentially misleading infor-
mation to other clients, this sample is not used for knowledge dis-
tillation. Besides, as the local models could be underfitting at the
beginning of the training process, the local predictions could be
inconsistent among clients. To prevent the negative influence of
ambiguous knowledge, the server-side selector filters out the ensem-
ble predictions with high entropy.

Extensive experiments are conducted on both pneumonia
detection and benchmark image classification tasks to investigate the
impact of hard labels and soft labels on the performance of knowledge
distillation. The results demonstrate that Selective-FD significantly
improves test accuracy compared to FD baselines, and the accuracy

gain is more prominent in hard label sharing than in soft label sharing.
In comparison with the standard FL framework that shares model
parameters among clients, sharing knowledge in FD may not achieve
the same performance level, but this line of work is communication-
efficient, privacy-preserving, and heterogeneity-adaptive. When per-
forming federated training on large languagemodels (LLM)43,44, the FD
framework is especially useful since the clients do not need to upload
the huge amount of model parameters, and it is difficult for attackers
to infer the private texts. We envision that our proposed method can
serve as a template framework for various applications and inspire
future research to improve the effectiveness and responsibility of
intelligence systems.

However, we must acknowledge that our proposed method is not
without its limitations. Firstly, the federated distillation method relies
on proxy samples to transfer knowledge. If the proxy dataset is biased
towards certain classes, the client models may be biased toward these
classes. This leads to poor performance and generalization. Secondly,
the complexity of the client-side selector in our Selective-FD method
increases quadratically with the number of samples and the sample
space, which may limit its practical applicability. Some studies in open-
set learning have shown that other low-complexity outlier detection
methods, while lacking theoretical guarantees, can achieve comparable
performance. This finding motivates us to explore more efficient
selectors in future research. Thirdly, while our proposedmethod keeps
models local, it cannot guarantee perfect privacy. Attackers may infer
information from the private dataset based on the shared knowledge.
To further strengthen privacy guarantees in FD, we could employ
defense methods such as differential privacy mechanisms and secure

Fig. 6 | Test accuracy and percentage pproxyunder (top) different values
ofτclientand (bottom) different values ofτserver.We denote the percentage of proxy
samples selected for knowledge distillation as pproxy. When τclient is too large or
τserver is too small, the selectors filter out most of the proxy samples, leading to a
small batch size and increased training variance. Conversely, when τclient is too

small, the local outputs may contain an excessive number of incorrect predictions,
leading to a decrease in the effectiveness of knowledge distillation. Besides, when
τserver is too large, the ensemble predictions may exhibit high entropy, indicating
ambiguous knowledge that could degrade local model training. These empirical
results align with the analysis in Remark 1.
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aggregation protocols. However, these defense methods might lead to
performance degradation or increased training complexity. Future
research should develop more efficient and effective defensive techni-
ques to protect clients against attacks while maintaining optimal
performance.

Ethical and societal impact
It is essential to note that the proposed federated distillation frame-
work, like other AI algorithms, is a dual-use technology. Although the
objective is to facilitate the training process of deep learningmodels by
effectively sharing knowledge among clients, this technology can also
be misused. Firstly, federated distillation could be used to train algo-
rithms among malicious entities to identify individuals illegally and
monitor the speaking patterns of people without their consent45. This
poses threats to individual freedom and civil liberties. Secondly, it is
assumed that all the participants in federated distillation, including the
clients and the server, are trusted and behave honestly. However, if a
group of clients or the server are malicious, they could manipulate the
predictions and add poison knowledge during the training process,
heavily degrading the convergence46,47. Thirdly, while federated dis-
tillation is free fromwhite-box attacks, it is still potentially vulnerable to
black-box attacks such as membership inference attacks35. This is
because the local predictions are shared among clients, which may
allow an attacker to infer whether a particular sample is part of a client’s
training set or not. To mitigate this vulnerability, additional privacy-
preserving techniques such as differential privacyor secure aggregation
can be employed. Furthermore, there are concerns about the collection
of proxy samples to transfer knowledge between clients. This could
potentially lead to breaches of privacy and security, as well as ethical
concerns regarding informed consent and data ownership. In summary,

while the proposed federated distillation framework has great potential
for facilitating collaborative learning among multiple clients, it is
important to be aware of the potential risks and take measures to
ensure that the technology is used ethically and responsibly.

Methods
In this section, we provide an in-depth introduction to our proposed
method. We first define the problem studied in this paper, then
introduce the details of our method, and provide theoretical insights
to discuss the impact of the selective knowledge sharing mechanism
on generalization.

Notations and problem definition
Consider a federated setting for multi-class classification where each
input instance has one ground truth label from C categories. We index

clients as 1, 2,…,K, where the k-th client stores a private dataset D̂k ,
consisting of mk data points sampled from the distribution Dk . In

addition, there is a proxy dataset D̂proxy containingmproxy samples from
the distributionDproxy to transfer knowledge among clients. We denote

X as the input space and Y 2 V ðΔC�1Þ as the label space. Specifically,
V(ΔC−1) is a vertex set consisting of all vertices in a C − 1 simplex ΔC−1,
where each vertex corresponds to a one-hot vector. We assume that all
the local datasets and the test dataset have the same labeling function

ĥ
*
: X ! V ðΔC�1Þ. Client k learns a local predictor hk : X ! ΔC�1 to

approach ĥ
*
in the training phase and outputs a one-hot vector by

ĥk : X ! V ðΔC�1Þ in the test phase. The hypothesis spaces of hk and ĥk

are Hk and Ĥk , respectively, which are determined by the parameter
spaces of the personalized models. During the process of knowledge

Fig. 8 | Visualization of the reconstructed images by performing model inversion (MI) attacks. We utilize the Peak signal-to-noise ratio (PSNR) as a metric to
quantitatively evaluate the quality of the reconstructed images. A higher PSNR value indicates an increase in privacy risk.

Fig. 7 | Test accuracy and communication cost as functions of the
communication round. Our Selective-FD method has a comparable accuracy as
FedAvg in the MNIST and CIFAR-10 datasets but is inferior in Fashion MNIST.

However, Selective-FD achieves a significant reduction in the communication
overhead, which is because the cost of model sharing in FedAvg is much higher
than knowledge sharing in our method.

Article https://doi.org/10.1038/s41467-023-44383-9

Nature Communications |          (2024) 15:349 7



sharing, we define the labeling function of the proxy samples as

h*
proxy : X ! ΔC�1, which is determinedbyboth the local predictors and

the knowledge selection mechanism. To facilitate the theoretical ana-

lysis, we denote ĥ
*

proxy : X ! V ðΔC�1Þ as the one-hot output of h*
proxy.

In the experiments, we use cross entropy as the loss function,
while for the sake of mathematical traceability, the ℓ1 norm is adopted
to measure the difference between two predictors, denoted by

LDðĥ,ĥ
0Þ : =Ex∼D k ĥðxÞ � ĥ

0ðxÞk1, where D is the distribution. Speci-

fically, LDtest
ðĥk ,ĥ

*Þ, LD̂k
ðĥk ,ĥ

*Þ, and LD̂proxy
ðĥk ,h

*
proxyÞ represent the loss

over the test distribution, local samples, and the proxy samples,
respectively. Besides, we define the training loss over both the private

and proxy samples as LD̂k ∪ D̂proxy
ðĥkÞ : =αLD̂k

ðĥk ,ĥ
*Þ+ ð1� αÞLD̂proxy

ðĥk ,h
*
proxyÞ, where α∈ [0, 1] is a weighted coefficient. The notation

PrD½�� represents the probability of events over the distribution D.

Selective knowledge sharing in federated distillation
Federated distillation aims at collaboratively training models
among clients by sharing knowledge, instead of sharingmodels as in
FL. The training process is available in Algorithm 1, which involves
two phases. First, the clients train the local models independently
on the local data. Then, the clients share knowledge among them-
selves based on a proxy dataset and fine-tune the local models over
both the local and proxy samples. Fig. 1 provides an overview of our
Selective-FD framework, which includes a selective knowledge
sharing mechanism. The following section will delve into the details
of this mechanism.

Client-side selector. Federated distillation presents a challenge of
misleading ensemble predictions caused by the lack of a well-trained
teacher. Local models may overfit the local datasets, leading to poor
generalization on proxy samples outside the local distribution, espe-
cially with non-IID data across clients. To mitigate this issue, our
method develops client-side selectors to identify proxy samples that
are out of the local distribution (OOD). This is done through density-
ratio estimation48,49, which calculates the ratio of two probability
densities. Assuming the inputdata spaceX is compact,wedefineU as a
uniform distribution with probability density function u(x) over X .
Besides, we denote the probability density function at client k as pk(x).
Our objective is to estimate the density ratiow*

kðxÞ=pkðxÞ=uðxÞ based
on the observed samples. Specifically, the in-sampple data x from the
local distribution with pk(x) > 0 results in w*

kðxÞ>0, while the OOD
samples x with probability pk(x) = 0 leads to w*

kðxÞ=0. Therefore, the
clients can build density-ratio estimators to identify the OOD samples
from the proxy dataset.

Considering the property of statistical convergence, we use a
kernelized variant of unconstrained least-squares importance fitting
(KuLSIF)29 to estimate the density ratio. The estimation model in
KuLSIF is a reproducing kernel Hilbert space (RKHS)50Wk endowed
with a Gaussian kernel function. We sample nk and nu data points from
Dk and U, respectively, and denote the resulting sample sets as Sk and
Su. Defining the norm onWk as k �kWk

, the density-ratio estimatorwk is
obtained as an optimal solution of

wk = argminw0
k
2Wk

1
2nu

X
x∼ Su

w0
k xð Þ� �2 � 1

nk

X
x∼ Sk

w0
k xð Þ+ β

2
k w0

kk2Wk
, ð1Þ

where the analytic-form solution wk is available in Theorem 1 of the
KuLSIF method29. The following theorem reveals the convergence rate
of the KuLSIF estimator.

Theorem 1. (Convergence rate of KuLSIF29). Consider RKHS Wk to be
the Hilbert space with Gaussian kernel that contains the density ratio

w*
k Given δ∈ (0, 1) and setting the regularization β =βnk ,nu

such that

lim
nk ,nu!0

βnk ,nu
=0 and β�1

nk ,nu
=O min fnk ,nug1�δ
� �

, we have Ex∼uðxÞ k

wkðxÞ �w*
kðxÞ k = Op β1=2

nk ,nu

� �
, where Op is the probability order.

The proof is available in Theorem 2 of the KuLSIFmethod29. This
theorem demonstrates that as the number of samples increases and
the regularization parameter βnk ,nu

approaches zero, the estimator
wk converges to the density ratio w*

k . During federated distillation,
we use a threshold τclient > 0 to distinguish between in-distribution
and out-of-distribution samples. If the estimated wk(x) value of a
proxy sample x is below τclient, it is considered as an out-of-
distribution sample at client k. In such cases, the client-side selec-
tor does not upload the corresponding local prediction as it could be
misleading.

Server-side selector. After receiving local predictions from clients,
the server averages them to produce the ensemble predictions. For
each proxy sample x, the ensemble prediction is denoted as
h*
proxyðxÞ 2 ΔC�1, and the corresponding one-hot prediction is repre-

sented as ĥ
*

proxyðxÞ 2 V ðΔC�1Þ. It is important to note that if the local
predictions for a specific proxy sample differ greatly among clients,
the resulting ensemble prediction h*

proxyðxÞ could be ambiguous with
high entropy. This ambiguity could negatively impact knowledge dis-
tillation. To address this issue, we developed a server-side selector that
measures sample ambiguity by calculating the ℓ1 distance between
h*
proxyðxÞ and ĥ

*

proxyðxÞ. The closer this distance is to zero, the less
ambiguous the prediction is. In the proposed Selective-FD framework,
the server-side selector applies a threshold τserver > 0 to filter out
ambiguous knowledge, where the ensemble predictions with an ℓ1
distance greater than τserver will not be sent back to the clients for
distillation.

Algorithm 1. Selective-FD
1: Setting the training round T and the client number K. Server and

clients collect the proxy dataset Dproxy.
2: Clients construct client-side selectors byminimizing (1) and initialize
local models.

3: for t in 1,…, T
4: GenerateEnsemblePredictions()
5: for Client k in 1,…,K (in parallel) do
6: Train the local model based on the private dataset Dk .
7: Utilize proxy samples and ensemble predictions for knowledge

distillation.
8: end for
9: end for

GenerateEnsemblePredictions():
10: Server randomly selects the indexes of proxy samples and sends

them to the clients.
11: for Client k in 1,…,K (in parallel) do
12: Client k computes the predictions on proxy samples, filters out

misleading knowledge based on the client-side selector, and
uploads the local predictions to the server.

13: end for
14: Server aggregates the local predictions, removes ambiguous

knowledge based on the server-side selector, and sends the
ensemble predictions back to the clients.

Theoretical insights
In this section, we establish an upper bound for the loss of federated
distillation, while also discussing the effectiveness of the proposed
selective knowledge sharing mechanism in the context of domain
adaptation51. To ensure clarity, we begin by providing relevant defini-
tions before delving into the analysis.
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Definition 1. (Minimum combined loss) The ideal predictor in the
hypothesis space Ĥk achieves the minimum combined loss λ over the
test and training sets. Two representative λk, λk,proxy are defined as
follows:

λk = min
ĥk2Ĥk

LDtest
ðĥk , ĥ

*Þ+LDk
ðĥk , ĥ

*Þ
n o

,

λk,proxy = min
ĥk2Ĥk

LDtest
ðĥk , ĥ

*Þ+LDproxy
ðĥk , ĥ

*Þ
n o

:
ð2Þ

The ideal predictor serves as an indicator of the learning ability of
the local model. If the ideal predictor performs poorly, it is unlikely
that the locally optimized model, which minimizes the training loss,
will generalize well on the test set. On the other hand, when the
labeling function ĥ

*
belongs to the hypothesis space Ĥk , we get the

minimum loss as λk = λk,proxy = 0. The next two definitions aim to
introduce a metric for measuring the distance between distributions.

Definition 2. (Hypothesis space Gk) For a hypothesis space Ĥk , we
define a set of hypotheses gk : X ! f0,1g as Gk , where gkðxÞ= 1

2 k
ĥkðxÞ � ĥ

0
kðxÞk1 for ĥk ,ĥ

0
k 2 Ĥk .

Definition 3. (Gk -distance
52) Given two distributions D and D0 over X ,

let Gk = fgk : X ! f0,1gg be a hypothesis space, and the Gk -distance
between D and D0 is dGk

D,D0ð Þ=2 sup
gk2Gk

PrD½gkðxÞ= 1� � PrD0 ½gkðxÞ= 1�
�� ��.

With the abovepreparations,wederive anupper boundof the test

loss of the predictor ĥk at client k following the process of federated
distillation.

Theorem 2. With probability at least 1 − δ, δ∈ (0, 1), we have

LDtest
ðĥk ,ĥ

*Þ≤ LD̂k ∪ D̂proxy
ðĥkÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Empirical risk

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2

mk
+
2ð1� αÞ2
mproxy

 !
log

2
δ

vuut
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Numerical constraint

+α λk +dGk
ðDk ,DtestÞ

h i ð3Þ

+ ð1� αÞ λk,proxy +dGk
ðDproxy,DtestÞ + pð1Þ

proxyLDð1Þ
proxy

ðĥ*
,h*

proxyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Misleading knowledge

+ pð2Þ
proxyLDð2Þ

proxy
ðĥ*

proxy,h
*
proxyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ambiguousknowledge

2
664

3
775,
ð4Þ

where the probabilities pð1Þ
proxy = PrDproxy

½ĥ*ðxÞ≠ ĥ*

proxyðxÞ� and

pð2Þ
proxy = PrDproxy

½ĥ*ðxÞ= ĥ*

proxyðxÞ� satisfy pð1Þ
proxy +p

ð2Þ
proxy = 1. Dð1Þ

proxy and

Dð2Þ
proxy represent the distributions of proxy samples satisfying

ĥ
*ðxÞ≠ĥ*

proxyðxÞ and ĥ
*ðxÞ= ĥ*

proxyðxÞ, respectively.
In (3), the first term on the right-hand side represents the

empirical risk over the local and proxy samples, and the second term is
a numerical constraint, which indicates that having more proxy sam-
ples, whose number is denoted as mproxy, is beneficial to the general-
ization performance. The last two terms in (4) account for the
misleading and ambiguous knowledge in distillation. FromTheorem 2,
two key implications can be drawn. Firstly, when there is severe data
heterogeneity, the resulting high distribution divergence
dGk

ðDk ,DtestÞ,dGk
ðDproxy,DtestÞ undermines generalization perfor-

mance. When the proxy distribution is closer to the test set than the
local data, i.e., dGk

ðDk ,DtestÞ≥dGk
ðDproxy,DtestÞ, federated distillation

can improve performance compared to independent training. Sec-
ondly, if the labeling function (i.e., the ensemble prediction) h*

proxy of
the proxy samples is highly different from the labeling function ĥ

*
of

test samples, the error introduced by the misleading and ambiguous

knowledge can be significant, leading to negative knowledge transfer.
Our proposed selective knowledge sharing mechanism aims to make
the ensemble predictions of unlabeled proxy samples closer to the
ground truths. Particularly, a large threshold τclient can mitigate the
effect of incorrect predictions, while a small threshold τserver implies
less ambiguous knowledge being used for distillation.

Remark 1. Care must be taken when setting the thresholds τclient and
τserver, as a τclient that is too large or a τserver that is too small could
filter out too many proxy samples and result in a small mproxy. This
would enlarge the second term on the right-hand side of (3). Addi-
tionally, the threshold τserver effectively balances the losses caused by
the misleading and ambiguous knowledge, as indicated by
the inequalities 2� τserver ≤ k ĥ

*ðxÞ � h*
proxy ðxÞk1 and k ĥ

*

proxyðxÞ �
h*

proxy ðxÞk1 ≤ τserver. This property aligns with the empirical results
presented in Fig. 6.

Remark 2. The proposed mechanism for selectively sharing knowl-
edge and its associated thresholds τclient, τserver might alter the dis-
tributions Dproxy,D̂proxy, thus influencing the empirical risk, the
minimum combined loss, the Gk -distance, and the probabilities
pð1Þ
proxy,p

ð2Þ
proxy in Theorem 2. A more comprehensive and rigorous ana-

lysis of these effects is left to our future work.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this paper are publicly available. The chest X-ray
images are from the COVIDx dataset, which is available at https://www.
kaggle.com/datasets/andyczhao/covidx-cxr2. Specifically, this dataset
consists of NIH Chest X-ray Dataset53 at https://nihcc.app.box.com/v/
ChestXray-NIHCCand RSNA-STR Pneumonia Detection Challenge
image datasets54 at https://www.rsna.org/education/ai-resources-and-
training/ai-image-challenge/RSNA-Pneumonia-Detection-Challenge-
2018. The benchmark datasets MNIST, Fashion MNIST, and CIFAR-10
are available at http://yann.lecun.com/exdb/mnist/, https://github.
com/zalandoresearch/fashion-mnist, and https://www.cs.toronto.
edu/~kriz/cifar.html, respectively. The usage of these datasets in this
work is permitted under their licenses. Source data are provided with
this paper.

Code availability
Codes55 for this work are available at https://github.com/shaojiawei07/
Selective-FD. All experiments and implementation details are thor-
oughly described in the Experiments section, Methods section, and
Supplementary Information.
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