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Multimodal measures of spontaneous brain
activity reveal both common and divergent
patterns of cortical functional organization

Hadi Vafaii 1 , Francesca Mandino 2, Gabriel Desrosiers-Grégoire 3,4,
David O’Connor 5, Marija Markicevic2, Xilin Shen2, Xinxin Ge 6,
Peter Herman 2, Fahmeed Hyder 2, Xenophon Papademetris2,5,7,
Mallar Chakravarty3,4,8,9, Michael C. Crair 10,11,12, R. Todd Constable 2,5,13,
Evelyn M. R. Lake 2,5,17 & Luiz Pessoa 14,15,16,17

Large-scale functional networks have been characterized in both rodent and
human brains, typically by analyzing fMRI-BOLD signals. However, the rela-
tionship between fMRI-BOLD and underlying neural activity is complex and
incompletely understood, which poses challenges to interpreting network
organization obtained using this technique. Additionally, most work has
assumed a disjoint functional network organization (i.e., brain regions belong
to one and only one network). Here, we employ wide-field Ca2+ imaging
simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory
neurons. We determine cortical networks discovered by eachmodality using a
mixed-membership algorithm to test the hypothesis that functional networks
exhibit overlapping organization. We find that there is considerable network
overlap (bothmodalities) in addition todisjoint organization.Our results show
that multiple BOLD networks are detected via Ca2+ signals, and networks
determined by low-frequency Ca2+ signals are only modestly more similar to
BOLDnetworks. In addition, the principal gradient of functional connectivity is
nearly identical for BOLD and Ca2+ signals. Despite similarities, important dif-
ferences are also detected acrossmodalities, such as inmeasures of functional
connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers
overlapping functional cortical organization in themouse that reflects several,
but not all, properties observed with fMRI-BOLD signals.

Brains show evidence of functional organization across spatio-
temporal scales, from synapses to the whole organ, which varies
between individuals, over time, as well as with injury or disease.
Understanding the principles that govern brain organization enables
their use as clinical indices. Closing knowledge gaps requires work in
humans and model species, across scales, and using complementary
sources of image contrast. Here, we focus on large-scale systems (i.e.,
networks), as a deeper understanding of their characteristics stands to

have broad prognostic and diagnostic utility, in part because they can
be assessed with noninvasive imaging methods that are applicable in
human subjects.

Much of what we know and can access about large-scale systems,
especially in humans, comes from the blood-oxygenation-level-
dependent (BOLD) contrast obtained with functional magnetic reso-
nance imaging (fMRI). Recent and growing evidence shows that mea-
sures of large-scale systems obtained with fMRI-BOLD (or proximal
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optical measures of hemoglobin) are, to an extent, reflective of neural
activity1–5. Yet, despite important progress, the relationship between
fMRI-BOLD and underlying neural activity is complex and incomple-
tely understood6–8, which poses several challenges to interpreting
network organization obtained using this technique9–13.

A powerful tool for investigating the functional organization of
large-scale networks is wide-field fluorescence imaging in mouse
models bearing genetically encoded calcium (Ca2+) sensitive
indicators14,15. Critically, Ca2+ imaging affords a large field of view cov-
ering much of the mouse cortical mantle and provides image contrast
that is a more direct measure of neural activity than BOLD. Applied
with fMRI-BOLD (or BOLD-like measures), Ca2+ imaging can reveal the
neural component captured by the BOLD signal1,2,5,16–18. Here, we
leverage a simultaneous multimodal framework, BOLD-fMRI and Ca2+

imaging1, to determine both cross-modal convergent and divergent
features of large-scale functional networks.

As in previous studies using similar3,16 or the same experimental
approach1, we examine functional connectivity, a widely employed
measure of inter-regional synchrony, to define and characterize large-
scale brain networks. Importantly, we consider networks as having
overlapping, rather than disjoint, functional organization. Many com-
plex systems, including biological, technological, and social ones, are
inherently overlapping (nodes participate in multiple communities or
clusters) rather than disjoint (each node belongs to a single
community)19–21. In the brain, overlap means that regions participate
across multiple networks (to varying degrees), consistent with the
notion that functionally flexible regions can contribute to multiple
brain processes22–25. Although evidence for overlap in human brain
networks has accruedbasedonmultiple analysis techniques applied to
BOLD-fMRI data25–28, it is unclear whether the putative overlapping
organization is driven, at least in part, by the nature of BOLD signals.
To the best of our knowledge, the potentially overlapping functional
organization of cortical networks has not been tested in animal mod-
els, where fMRI-BOLD can be obtained together with Ca2+ signals that
exhibit greater spatiotemporal resolution and capture neural activity
more directly.

Here, we use highly-sampled simultaneously recorded wide-field
Ca2+ and fMRI-BOLD data to resolve whether functional networks dis-
covered with BOLD are also detected with Ca2+ imaging while deter-
mining their overlapping organization (Fig. 1). We use a Bayesian
generative algorithm that estimates the membership strength of a
givenbrain region to all networks25,27,29. Importantly, this approach also
allows detection of disjoint organization in a data-driven manner. In
addition, region-level properties are quantified including node
degree30,31 and diversity32–34, while a wide range of parameters are
explored to test the robustness of our findings (Table 1).

Overall, we find that overlapping network organization is robustly
detected in simultaneously recorded wide-field Ca2+ and fMRI-BOLD
data regardless of the parameters selected. Evidence of rich over-
lapping organization advances our fundamental understanding of
cortical brain organization, helping to further validate the neural ori-
gins of clinically accessible fMRI-BOLD network organization.

Results
Mice (n = 10) expressing GCaMP6f in excitatory neurons underwent
simultaneous wide-field Ca2+ and BOLD-fMRI, as described previously
by us (ref. 1; “Methods”, Fig. 1a). Animals were lightly anesthetized
(0.50–0.75% isoflurane) and head-fixed. Data were collected at each of
three longitudinal sessions; each session contained four runs, each
lasting 10min for a total of 1200min of data (Fig. 1b).

BOLD data (acquisition rate 1 Hz, “Methods”) were processed
using RABIES (Rodent Automated BOLD Improvement of EPI
Sequences)35–37 and high-pass filtered38 (0.01–0.5 Hz). Given that Ca2+

and BOLD signals are maximally correlated when Ca2+ is temporally
band-passed tomatch BOLD1,2,17, and the “lowpass” nature of the BOLD

signal39–41, we investigated network measures within a slow (BOLD-
matched) and fast (0.5–5Hz) Ca2+ frequency range (herein, Ca2+slow and
Ca2+fast). Ca

2+ data were acquired at an effective background-corrected
rate of 10Hz and processed using a pipeline that we have published
previously (ref. 42; “Methods”). Critically, we collected both GCaMP-
sensitive and GCaMP-insensitive optical measurements for the
removal of background fluorescence and hemoglobin signals from the
Ca2+ data (refs. 1,42–44; “Methods”).

To build functional networks, a common set of regions of interest
(ROIs) were defined (Fig. 1c; “Methods”). To relate 3D BOLD and 2D
Ca2+ data, we adopted the CCFv3 space for the mouse brain provided
by the Allen Institute for Brain Sciences45. ROIs covered most of the
cortex. Areasnotwell captured in thewide-fieldCa2+ imaging FOVwere
excluded (Fig. 1d). Correlation matrices were computed for each
acquisition run using pairwise Pearson correlation. Matrices were
binarized by retaining the top d% strongest edges (Table 1). We used a
mixed-membership stochastic blockmodel algorithm46 that can gen-
erate overlapping (or disjoint) networks25,27,29. The algorithm deter-
mines membership values for each ROI, with one value per network
(Fig. 1e). Membership values sum to 1 across networks, which allows
these values to be interpreted as probabilities. Overlapping networks,
and by extension membership values, were computed at the level of
runs and then averaged across sessions to determine an animal-level
result. Random-effects group analysis was evaluated based on animal-
level estimates and variability. Results in the main text are from 542
ROIs and d = 15%.

Cortical organization captured by overlapping network
solutions
Here, network is used interchangeably with overlapping community, as
is node with region. Existing work has shown decomposition of the
mouse cortex into as few as 2–3 networks4,33,47, but 7–10 is more
typical36,48–50. We explored a range of numbers of networks (3, 7, and
20). Our 3-network solution captured previously observed systems,
namely, the visual (overlapping community 2, OC-2) and somatomotor
(OC-3), as well as a large system (OC-1) that included territories pre-
viously classified as the mouse “default network”49,51–53 (Fig. 2a). To
facilitate comparisons to standard disjoint algorithms, we forced a
disjoint version of our solutions by assigning each region to the net-
work with the largest community membership value.

With 7 networks, well-defined visual and somatomotor networks
(OC-2 and OC-3, respectively) were again identified36,50, alongside
additional systems covering bilateral and well-defined cortical terri-
tories (Fig. 2c). OC-1 encompassedmedial areas including the cingulate
cortex but also extendedmore laterally. OC-4 spanned frommedial to
lateral areas, including the somatosensory cortex. For both Ca2+fast and
Ca2+slow, OC-4 also included the frontal orienting field (FOF), a possible
homolog of the frontal eye field in primates54–58. OC-5 largely over-
lapped with the anterior lateralmotor area, a region involved inmotor
planning43,59–61; notably, for Ca2+fast this network also included the
supplementary somatosensory area. OC-6 overlapped with the barrel
field for BOLD and Ca2+slow, but captured the upper limb somatosen-
sory cortex for Ca2+fast. Finally, OC-7 was very different for BOLD and
Ca2+ signals; for BOLD, it was centered around FOF, and for both Ca2+

signals it was centered around the retrosplenial cortex. We also
investigated the 7-network organization in a subset of animals that
underwent an additional awake imaging session that measured Ca2+

signals outside the MRI scanner. Notably, the overall organization in
awake animals (Supplementary Fig. 5) was qualitatively very similar to
that obtained with lightly anesthetized animals.

The 20-network solution is shown in Supplementary Fig. 1, which
revealed finer spatial networks that were again bilateral (like the 3- and
7-network solutions). Notably, even with 20 networks, the FOF did not
appear as a separate network for eitherCa2+ signal, in contrast toBOLD.
In sum, across solutions (3, 7, and 20 networks), recognized functional
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organization (established brain regions, functional networks, and a
high degree of bilateral symmetry) was uncovered using our algorithm
across imaging modalities.

Intermodal network organization similarity
For 7 networks, BOLD, Ca2+slow, and Ca2+fast were quantitatively com-
pared (Fig. 2d–f) to test the hypothesis that band-pass filtering Ca2+ to
match BOLD leads to greater inter-modal agreement. The comparison
was based on cosine similarity (1 indicates identical organization,
0.5 indicates “orthogonal/unrelated” organization, and 0 indicates
perfectly “opposite” organization). The similarity between BOLD and

Ca2+slow networks was relatively high (>0.73), except for OC-7 (0.26), a
network that was evident in both Ca2+ conditions but not captured by
BOLD. In comparison, BOLD and Ca2+fast similarity was generally lower
but still relatively high forOC-1 toOC-4 (>0.77), thoughmodest forOC-
5 and OC-6 (0.59 and 0.65, respectively). Overall, band-pass filtering
Ca2+ seemed to have a modest network-dependent impact when
comparing network territories across modalities.

To generate a summary metric, we collapsed across networks to
generate an overall index of similarity (Fig. 2f). As expected1–3, BOLD
and Ca2+slow solutions were more similar than BOLD and Ca2+fast
(p < 0.05, permutation test, Holm-Bonferroni corrected). This result

Fig. 1 | Experimental setup and overlapping community analysis.
a Simultaneous fMRI-BOLDandwide-fieldCa2+ imaging1. Ca2+ data are background-
corrected (illustrated by three colored wavelengths; “Methods”). b Hierarchical
data structure. n = 10 mice, scanned across three longitudinal sessions, with four
runs per session, each lasting 10min. c Definition of ROIs within the Allen Mouse
Brain Common Coordinate Framework (CCFv3)45. (I) Division of the mouse dorsal
flatmap into N = 1024 spatially homogeneous ROIs. (II) Add depth by following
streamlines normal to the cortical surface. The resulting ROIs are “column-like".
(III) Transform ROIs from common space into 3D and 2D individual spaces
(“Methods”). Dorsal flatmap, layer masks, and columnar streamlines from CCFv3.

d Analyses were restricted to ROIs that appeared in the Ca2+ imaging FOV after
multimodal co-registration (“Methods”). Lateral areas including the insula and
temporal association areas were excluded. e We applied a mixed-membership
stochastic blockmodel algorithm to estimate overlapping communities29. Mem-
bership strength (values between 0 and 1) quantifies the affiliation strength of a
node in a network. Here, node A belongs only to the green community, node B
belongs to all three communitieswith varying strengths, and nodeCbelongs to the
blue and red communities with varying strengths. a was created with https://
BioRender.com. Mouse illustrations in (b) and (e) were downloaded from https://
scidraw.io/ (refs. 122,123).
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was stable across 3, 7, and 20 networks, data processing parameters
(Supplementary Fig. 3), including edge density, and number of ROIs
(Supplementary Fig. 2).

To further probe some of the differences between BOLD and Ca2+

results, we repeated our network similarity analysis after applying a
gamma-variate hemodynamic filter2 to the calcium signal, which we
obtained fromour previous work1 (Supplementary Fig. 6). By doing so,
Ca2+ data would presumably better approximate BOLD data. Filtering
Ca2+ signals changed network organization in relatively modest ways
for Ca2+slow, although some of the differences were statistically sig-
nificant (Supplementary Fig. 6b). Filtering produced more pro-
nounced quantitative changes to Ca2+fast networks, especially OC-4,
OC-5, and OC-6.

Cortical networks show prominent overlapping organization
All results are described at the group level. However, we confirmed
that the basic organization of the 7-network solution was observed at
the individual level (Supplementary Fig. 4). Thus, group-level proper-
ties, including network overlap, are not driven by the process of per-
forming group analysis.

To quantify overlapping organization, we examined the distribu-
tion of membership values across networks. Membership values range
from 0–1, and sum to 1 across networks. Thus, a disjoint organization
would be characterized by all regions having high membership values
for a single network (a “right-peaked” distribution; Fig. 3a, left).
Importantly, this outcome is observed with our algorithm when syn-
thetic, disjoint data are simulated (see Supplementary Fig. 7). In con-
trast, a roughly uniform distribution of membership values would
correspond to a network whose regions affiliate with multiple net-
works with varying strengths (Fig. 3a,middle). Finally, extremeoverlap
would be when regions tend to not affiliate with any network very
strongly (Fig. 3a, right).

In simulations,we constructed synthetic disjoint networkswith no
overlap62 and found that the algorithm detected membership values
>0.8 (Supplementary Fig. 7). In other words, in a completely disjoint
network, every node belongs to a single network with >0.8 strength
and, given that a node’smembership strength sums to 1, the remaining
<0.2 strength is distributed across the remaining networks. This
establishes afloor value (0.2) for robust networkmembership. Thus, to
examinemembership distributions, we considered the range (0.2, 1.0];
membership values <0.2 were not considered so as to conservatively
characterize network overlap.

Across conditions (BOLD, Ca2+slow, andCa2+fast), nomore than 60%
of brain regions within any network were within the “disjoint” range
(>0.8). The least overlapping networks were the visual and somato-
motor (OC-2 andOC-3) for all conditions and the retrosplenial network
(OC-7) for the two Ca2+ conditions. Networks with the greatest amount
of overlap were OC-1 and OC-4 (Fig. 3b), which included the cingulate
cortex (OC-1) as well as medial and lateral areas, including somato-
sensory cortex (OC-4) and the FOF (OC-4, Ca2+).

For several of the conditions, we observed a roughly reverse
L-shapeddistribution (Fig. 3b). In the caseofOC-2,OC-3, andOC-7 they

were reminiscent of the disjoint pattern of Fig. 3a, except that the
“base” had a considerably higher level than zero. Thus, these networks
have considerable disjoint organization, in some cases with 60% of the
regions affiliating with a single network. OC-1, OC-5, and OC-6 exhib-
ited a more true U shape with relatively more strongly disjoint regions
(right side) and weakly affiliated regions (left side), with relatively
fewer regions with intermediate membership strengths (middle two
values). Nevertheless, it is important to note that in many cases the
proportion of regions with intermediate membership values (0.4–0.8
range) was around 40%.

To visualize network overlap, we divided membership strength
into four categories, or membership tiers. Because we considered 7
networks, bin thresholds were multiples of 1/7 (all statistics are FDR-
corrected). Based on this representation, we observed that over-
lapping network organization was arranged in a spatially coherent
fashion that showed a nested pattern of membership tiers (Fig. 4a). To
quantify overlap across networks, if a region had a membership value
statistically greater than 1/7 for a given network, we classified it as
“belonging to” to that network. We then summed the number of net-
works to which regions belonged (Fig. 4b). By this definition, ~50% of
brain regions belonged to more than one network (Fig. 4c). Further,
brain regions belonging to more than one network were distributed
across networks (Fig. 4d). In even the most disjoint-like cases (OC-2
and OC-3), >25% of regions affiliated significantly with more than one
network across all conditions.

Membership diversity reveals intermodal differences
The preceding analyses showed clear evidence for overlapping orga-
nization alongside disjoint organization in the mouse cortex across
imaging modalities and frequency bands. The characteristics of this
overlapping organization were further quantified using (normalized)
Shannon entropy, a continuous measure of membership diversity
computed from regional membership values (“Methods”, Fig. 5a, left).
A region that belongs to all networkswith equalmembership strengths
will have maximal diversity. Conversely, a region that belongs to a
single networkwill haveminimaldiversity. Thus,membership diversity
is indicative of a region’s multi-functionality and/or involvement in
multiple processes.

The distribution ofmembership diversity values across all regions
is shown in Fig. 5a (right). The peak near zero captures a group of
regions, ~30% for Ca2+slow and Ca2+fast, and 15% for BOLD, that are pri-
marily associated with one network. Beyond this peak, the majority of
regions displayed values more or less along a continuum, with a sec-
ond smaller peak (at ~0.35) with regions affiliated with two networks
(dashed line in Fig. 5a, right inset). For visualization purposes, we rank-
ordered membership diversity values to inspect the overall pattern
across conditions (BOLD, Ca2+

slow, and Ca2+fast; Fig. 5b; for the non-
rank-ordered version, see Supplementary Fig. 8a). The resulting pat-
terns revealed modest agreement between BOLD and both Ca2+ con-
ditions, and especially strong agreement between the two Ca2+

frequency bands. To quantify this agreement, we (Pearson) correlated
membership diversity values: between BOLD and Ca2+slow:
r =0.54± 0.11; BOLD and Ca2+fast: r =0.63 ± 0.09; and Ca2+slow and
Ca2+fast: r =0.90 ± 0.07 (Fig. 5c). Contrary to expectations, measures of
BOLD membership diversity were not more similar to those obtained
from Ca2+slow relative to between BOLD and Ca2+fast (Fig. 5c).

We also identified regions that showed significant differences in
membership diversity magnitude between conditions by subtracting
each pair of measures (Fig. 5d; FDR corrected). Spatially broad differ-
ences (BOLD versus both Ca2+ frequency bands) were observed.
Diversity was consistently larger for BOLD compared to both Ca2+

conditions, except for two bilateral sectors that showed the opposite
pattern (one in higher-order visual areas and one, for Ca2+slow only, in a
primary somatosensory area). This final observation was made along-
side Ca2+fast exhibiting a large territory of regions with higher

Table 1 | Parameters explored in the present study

Parameter Values and figures

Number of networks 3 (Fig. 2a); 7 (Figs. 2–5); and 20 (Supplemen-
tary Fig. 1)

Initial parcellation
granularity

Fine (542 regions, Fig. 1d, main paper); and
Coarse (152 regions, Supplementary Fig. 2)

Edge density 10–25% (Supplementary Figs. 3 and 11b)

fMRI preprocessing
pipeline

Supplementary Fig. 11a

To ensure the robustness of our findings, we explored a range of parameters and found that our
results were qualitatively reproduced across all conditions.
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membership diversity thanCa2+slow. Overall, differenceswere observed
despite similar proportions across modalities for values above 0.1
(Fig. 5a, right).

For a comparison between membership diversity (entropy) and
participation coefficient, a measure commonly used to quantify link
diversity32–34,63,64, see Supplementary Fig. 8. We found membership
diversities and participation coefficients to be in good agreement for

BOLD: r =0.71 ± 0.09, and Ca2+slow: r = 0.77 ± 0.12, and to be more
weakly related for Ca2+fast: r =0.47 ±0.28.

Region degree is substantially different across modalities
Degree is a measure of centrality that quantifies the number of func-
tional connections of a region30,31 (Fig. 6a, left). Importantly, degree
differs from membership diversity by being independent of
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community (regions have functional connections both within and
between communities). As in the previous section, the distribution of
degree across regions was plotted for each condition (BOLD, Ca2+slow,
and Ca2+fast) (Fig. 6a, right), and the spatial patterns of degree ranks
were displayed on the cortex (Fig. 6b; actual values in Supplementary
Fig. 9), and (Pearson) correlation was used to measure agreement
between conditions (Fig. 6c).

Across conditions, degree distributions showed weak similarity
(Fig. 6a, right). As expected, Ca2+slow and Ca2+fast were more similar to
one another than to BOLD, and Ca2+slow was more like BOLD than
Ca2+fast. BOLD and both Ca2+ measures showed differences at the low-
extreme (near zero) as well as across the range: Ca2+ having fewer low-
mid degree regions, and more high-degree regions than BOLD. Inter-
modal differences were more pronounced when we looked at the
spatial distribution of degree (Fig. 6b), and the (Pearson) correlationof
degree across conditions (Fig. 6c). Similar to the case of membership
diversity, degree showed a consistent spatial pattern across Ca2+ con-
ditions (Fig. 6b), and was highly correlated: r =0.87 ± 0.08 (Fig. 6c,
right). Unlike membership diversity, BOLD and both Ca2+ degree
measures showed opposing spatial patterns (Fig. 6b), and were nega-
tively correlated with BOLD: between BOLD and Ca2+slow:
r = −0.29 ±0.16, and BOLD andCa2+fast: r = −0.46 ± 0.14 (Fig. 6c, left and
middle). To account for differences based solely on the magnitude/
variability of degree values, we computed percentile maps by calcu-
lating t-statistics followedby rank-ordering33 and found the patterns to
be unchanged (Supplementary Fig. 10). Further, differences across
modalities persisted across edge thresholds and changes in data pre-
processing steps (Supplementary Fig. 11).

Different entropy-degree relationships across modalities
How a given brain region affiliates across multiple networks (as
indexed bymembership diversity/entropy) is closely linked to its roles
as an integrative and/or coordination hub34. Furthermore, member-
ship diversity and degree are measures that, when combined, can
further uncover brain organization32,33. In particular, regions with low
entropy and high degree have few inter-network functional connec-
tions (low entropy) and many intra-network functional connections
(high degree) and can be thought of as provincial hubs33,63,64. Regions
with high entropy and low degree have few functional connections but
link many networks, and can be conceptualized as connector hubs.
Inspired by theworkof Yang and Leskovec65, suchorganization reveals
what can be called “sparse” network overlap (Fig. 7a, left). Finally,
regionswith high entropy and high degree interlinkmany networks via
an organization that can be called “dense” overlap (Fig. 7a, right). To
determine cortical functional organization based on these measures,
we visualized region entropy-degree relationships for each condition
(BOLD, Ca2+slow, and Ca2+fast) (Fig. 7b) color-coded by disjoint network
assignment (Fig. 7b; inset).

Entropy and degree were inversely (Pearson) correlated for BOLD
(r = −0.44 ±0.16; Fig. 7b, left). This pattern was partly driven by a
concentration of regions showing sparse overlap (lower right quad-
rant) with connector hubs present in most networks, alongside two
networks (overlapping with OC-3 and to a lesser extent OC-2; Fig. 2c),

that included regions with a more provincial hub characterization
(upper left quadrant). In contrast, entropy and degree were positively
correlated for Ca2+slow (r = 0.44 ±0.09), and Ca2+fast (r =0.69 ± 0.07)
(Fig. 7b, middle and right). Like BOLD (but to a lesser extent), Ca2+slow
results included regions with sparse overlap (lower right quadrant);
these overlapped with OC-6, and to a lesser extent OC-1 and OC-7
(Fig. 2c). However, unlike BOLD, there were regions with high entropy
(densely overlapping regions; upper right quadrant), as well as regions
with low overall functional connectivity (lower left quadrant). This
pattern was more pronounced in the Ca2+

fast results where fewer
regions exhibited sparse overlap (lower right quadrant; Fig. 7b, right).
Together, these results uncovered distinct functional cortical organi-
zation observed with BOLD, Ca2+slow, and Ca2+fast, such that Ca2+ signals
expressed patterns of denser overlap not captured by BOLD signals.

Nearly identical principal functional gradient across modalities
Large-scalegradients characterize brain regions along continuous axes
of variation, complementing parcellation and clustering approaches
that emphasize discreteness66,67. Previous work in mice has explored
different measures of structural68 and functional69 gradients, and the
relationships between them47,68,69. Here, we tested the extent to which
functional connectivity gradients determined with fMRI data are
replicated with Ca2+ signals.

We estimated group-level functional connectivity matrices
(separately for each modality), which were used to compute gra-
dients (“Methods”). Here, we focus on the top four gradients (Fig. 8a),
as they captured a large portion of the variance (Fig. 8b). The prin-
cipal gradient (G-1) was organized in terms of primary visual cortex
on one extreme and somatomotor regions on the other end, con-
sistent with previous findings47,69. Notably, across conditions (BOLD,
Ca2+

slow, Ca2+
fast), the spatial pattern of G-1 was nearly identical

(Pearson r > 0.96; Fig. 8c) but the amount of variance explained
(Fig. 8b) wasmuch lower for BOLD (<5%) relative to Ca2+

fast (~17%) and
especially Ca2+slow (~30%). Although differences in spatial pattern
were observed across conditions for the remaining gradients, strong
similarities were also observed (note that we ordered gradients as
typically done in the literature based on the magnitude of the cor-
responding eigenvalues); for example, BOLD G-2 was similar to G-4
for both Ca2+

slow (r = 0.70) and Ca2+
fast (r = 0.77), and BOLD G-3 was

similar to Ca2+
slow G-2 (r = 0.73) and Ca2+fast G-3 (r = 0.69). Finally, we

note that BOLD G-4 exhibited a very dissimilar spatial pattern to that
observed with Ca2+ signals.

Functional gradients of the cortex
An individual gradient can be thought of as a continuous representa-
tion of an organization feature66, where the position of a brain region
along the corresponding axis provides information about its
function67. The overarching organization can be understood by
examining how regions are situated in the space spanned by a few top
gradients. We visualized this organization (Fig. 8d) as two-dimensional
maps spanned by the principal gradient (G-1) and G-2/G-3 (specifically,
the y coordinate refers to the G-1 value in column 1 of part a, and the x
coordinate refers to the G2/G-3 value in columns 2/3 of part a).

Fig. 2 | Overlapping functional networks of themouse cortex. aDecomposition
based on 3 networks. Color scale indicates membership strengths (Fig. 1e). The
disjoint approximation is obtained by taking each region’s maximummembership
value. b Cortical areas (top view) as defined in the CCFv3 Allen reference atlas45. In
addition, dashed lines approximately correspond to functionally defined sub-
regions in the secondary motor area55,59. c Decomposition with 7 networks.
d Network similarity based on cosine similarity (1 = identical, 0.5 = “orthogonal",
0 = perfectly dissimilar or “inversely correlated"). Color scale emphasizes simila-
rities and strong dissimilarities. e Diagonal elements of matrices in (d) are plotted.
fOverall similarity collapsing across networks as a function of number of networks
(3, 7, and 20). e, f Empty circles correspond to individual animals (n = 10); large solid

circles are the group average. Error bars are 95% confidence intervals based on
hierarchical bootstrap (“Methods”). Comparison of BOLD and Ca2+slow networks
(paired permutation test, two-sided, p <0.05, Holm–Bonferroni corrected). The
exact p values were as follows (uncorrected): OC-1, 7.4 × 10−1, OC-2, 4.0 × 10−5, OC-3
to 6, 2.0 × 10−6, OC-7, 1.1 × 10−2; and, K = 3 and 7, 2.0 × 10−6, K = 20, 4.3 × 10−3. OC
overlapping community, ACA anterior cingulate area, ALM anterior lateral motor
cortex, FOF frontal orienting field,MO somatomotor areas, PL prelimbic area, PTLp
posterior parietal association areas, RSP retrosplenial area, SSp primary somato-
sensory area, SSs supplemental somatosensory area, VIS visual areas. See also
Supplementary Figs. 1–6. Source data are provided as a Source Data file.
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Two patterns emerged that were largely reproduced across
modalities. First, a “triangular” shape with sensory and somatomotor
areas on two extremes, and transmodal areas on the other extreme
(panels 1, 3, and 5 of Fig. 8d). Notably, two ends of the triangular shape
were anchored by visual (orange) and somatomotor (green) areas
across all conditions. In contrast, the third anchoring point differed
across conditions. For BOLD, it was populated by frontal areas

including the anterior lateral motor cortex (purple), whereas for Ca2+

the third anchor was the retrosplenial area (cyan). The second shape
was an “arch” (panels 2, 4, and6of Fig. 8d) starting fromvisual areason
one end of the spectrum (orange), progressing toward areas usually
considered part of the default network, and ending in regions within
the somatomotor network (green).

Discussion
We used recently developed simultaneous wide-field Ca2+ and fMRI-
BOLD acquisition to characterize the functional network architecture
of the mouse cortex. The spatial organization of large-scale networks
discovered by both modalities showed many similarities, with some
temporal frequencydependence (BOLDnetworkswere generallymore
similar to Ca2+slow than Ca2+fast). Functional connectivity interrogated
using a mixed-membership algorithm, instead of traditional disjoint
approaches, confirmed the hypothesis that mouse cortical networks
exhibit robust overlap in addition to disjoint organization when either
BOLD or Ca2+ signals were considered. Further, despite the consider-
able agreement, we also uncovered important differences in organi-
zational properties across signal modalities.

Previous multimodal studies comparing cortical functional orga-
nization via concurrent GCaMP6 Ca2+ and hemoglobin-sensitive ima-
ging have predominantly employed seed-based analyses3,16,70. Such
work provides information on how one or a limited set of a priori
regions are functionally related to other areas but does not reveal how
all regions are interrelated, which was the goal of the present work. A
few studies using optical imaging have gone beyond seed-based ana-
lysis; however, the number of identified networks in these studies was
limited. For example, Vanni et al.4 investigated cortical networks in
GCaMP6 mice and reported 3 networks based on slow temporal fre-
quencies (<1 Hz) and two based on faster temporal frequencies (3 Hz)
(see also ref. 5). Here, when we decomposed the cortex into 3 net-
works, we observed visual (OC-2) and somatomotor (OC-3) networks
and a network that overlapped with territories possibly linked to the
default network (OC-1)49,51–53 (Fig. 2a). At this coarse scale, our results
agreed with Vanni et al.4 and other seed-based approaches3,16,36,51.
Importantly, we sought to determine functional organization at finer
spatial levels, too. With 7 networks, we still observed visual (OC-2) and
somatomotor (OC-3) networks, now together with a finer decom-
position of other cortical systems (Fig. 2c). Overall, our analyses
reproducedprevious observations at a coarse scale but characterized a
more fine-grained decomposition of cortical functional organization.

Next, we quantified the concordance between BOLD and Ca2+

networks. Overall, collapsing across networks, outcomes from Ca2+slow
(BOLD-frequencymatched) weremore similar thanCa2+fast to BOLD, as
expected1–3,17,39–41. However, when networks were characterized sepa-
rately, three scenarios emerged: (1) Low and high frequency Ca2+ sig-
nals bothmanifested networks thatwere also recovered by BOLD (e.g.,
OC-1 to 4); (2) Low, relative to high, frequency Ca2+ networks were a
bettermatch to their BOLD counterparts (e.g., OC-5 andOC-6); and (3)
Networks that were dissimilar across modalities regardless of Ca2+

temporal frequency (e.g., OC-7). This observation should be qualified
by the finding that Ca2+slow and Ca2+fast results were in close agreement.

Fig. 3 | Distributionofmembership values. a Three illustrative distributions. Left,
disjoint organization;Middle, overlappingwith uniformmembership values; Right,
completely overlapping with nomid-range or strongmemberships. bMembership
distributions computed from multimodal data indicate substantial overlapping
organization. Note that the y-axis is capped at 80%, indicating that none of the
networks are truly disjoint. Empty circles correspond to individual animals (n = 10);
large solid circles are the group average. Error bars are 95% confidence intervals
based on hierarchical bootstrap (“Methods”). OC overlapping community. Com-
pare with Supplementary Fig. 7 for membership distributions obtained from syn-
thetic graphs with known ground truth overlap. Source data are provided as a
Source Data file.
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Overall, linking the functional organization obtained with BOLD to
slow Ca2+ signals is not fully supported by our findings. In particular,
the proposal that different bands capture distinct neurophysiological
properties71 was not supported for the large-scale system organization
uncovered in the present work.

The pronounced differences involving network OC-7 merit parti-
cular attention (Fig. 2c). In the case of BOLD, this networkwas centered
around parts of the secondary motor cortex known as the frontal
orienting field (FOF), considered a homolog of the primate frontal eye
field54–58. For Ca2+ signals, FOF was consistently detected as part of a
large medial network spanning somatosensory, motor, and parietal
cortex (OC-4 in Fig. 2c), without forming an independent network
(even in the 20-network solution; Supplementary Fig. 1). In contrast,
the Ca2+ OC-7 network was centered around the retrosplenial area in a
manner that was not captured by any of the seven BOLD networks.We
note, however, that the spatially finer 20-network solution for BOLD
detected a retrosplenial network, although not to the same extent as
identifiedwithCa2+ signals (panel RSP inSupplementary Fig. 1). Overall,
we speculate that the differences observed in the case of networkOC-7
may reflect particularities of the signal contrasts of the twomodalities.
To evaluate this question, it will be useful to interrogate Ca2+ indicators

that are sensitive to different cell populations such as inhibitory neu-
rons (see below).

We quantified whether networks discovered for each condition
(BOLD, Ca2+slow, and Ca2+fast) showed significant overlapping archi-
tecture. This was accomplished by examining the distribution of
membership values and by quantifying the number of networks each
region “belonged to”. Notably, our algorithm detects disjoint organi-
zation in synthetic data, and the robustness of our findings was tested
using a range of parameters (Table 1). Without exception, across
conditions, parameter choices, and for all networks, we observed
evidence of overlapping organization. On average, slightly over half of
brain regions were affiliated with more than one network. Critically,
although the extent of network overlap was largest for BOLD, it was
also detected in Ca2+ data regardless of temporal frequency. These
results lend strong support to the validity of overlapping organization
in the human brain discovered with BOLD25–28.

Measures of network overlap consistently identified the visual
(OC-2) and somatomotor (OC-3) networks as among the most disjoint
across all conditions, a finding that is well aligned with their sensory
and motor roles and their potential involvement in fewer brain pro-
cesses. Although visual and somatomotor networks (OC-2 and OC-3)
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Fig. 4 | Quantifying overlap extent. a Membership values binned by statistical
thresholding. Bins were incremented by 1/7 (for the 7 network solution). Blue
(membership > 3.5 × 1/7) indicates regions with disjoint-like network affiliation. At
the opposite end of the spectrum, orange (>0.05 × 1/7) indicates regions affiliated
with multiple networks. Contour lines correspond to regional divisions in the Allen
reference atlas (Supplementary Fig. 1b). b Collapsing across networks. Using a
statistical threshold of 1/7 to determine if a region affiliated with a network, we

counted the number of networks each region “belonged to”. Most regions belon-
ged to more than one network. c We defined a global overlap score as the ratio of
overlapping regions divided by the total number of regions. dOverlap score at the
network level shows that regions that affiliate with more than one network are
spread across networks andpresent in both BOLDaswell as Ca2+fast andCa2+slow. OC
overlapping community. Source data are provided as a Source Data file.
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exhibited the least amount of overlap among the seven networks, they
were still far from being entirely disjoint. This observation is in line
with previous proposals that cortical territories should be regarded as
essentially multisensory72, such that mechanisms of multisensory
integration extend even into early sensory areas (see refs. 73,74).
Unexpectedly, in the case of Ca2+ data, the retrosplenial area (OC-7)
also appeared predominantly as a disjoint network. Given the retro-
splenial area’s recognized multisensory75,76 and multifunctional76,77

characteristics, further investigation is warranted to understand the
underlying factors contributing to the organization detected.

Properties of network overlap, membership diversity (entropy),
and degree, were quantified at the region level and compared across
conditions (BOLD, Ca2+slow, Ca

2+
fast). As expected, Ca

2+ results showed

low diversity in sensorimotor regions relative to areas that have been
implicated in multiple processes and have widespread anatomical
connections such as the posterior parietal cortex (PTLp; which
includes higher-order visual areas)78,79. Despite a positive correlation
with Ca2+ results, BOLDmembership diversity measures showed some
peculiarities. Specifically, in contrast to Ca2+, the posterior parietal
cortex exhibited low diversity, while parts of somatosensory areas
exhibited high diversity. This was unexpected given that these regions
arenot known tobe functionally diverse (again, Ca2+ dataproduced the
anticipated outcome). These discrepancies did not disrupt a positive
correlation between BOLD and Ca2+ but raised questions about the
extent to which the two imaging techniques are capturing the same
phenomena.
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Fig. 5 | Regional entropy, ormembership diversity. a Left: equation for Shannon
entropy (“Methods”). Values are normalized [0, 1]. hi =0 if a node i belongs to a
single network (is disjoint); hi = 1 if a node belongs to all networks with equal
strength (is maximally overlapping). Right: distribution of entropies for all regions.
The peak at h =0 corresponds to disjoint regions. The second peak at h / logð2Þ
corresponds to regions with membership values of 0.5 for two networks and 0
elsewhere. Error bars are 95% confidence intervals based on hierarchical bootstrap
(“Methods”). b Spatial patterns of regional entropies rank-ordered (total of 542
regions) to facilitate comparisons across conditions (BOLD, Ca2+slow, and Ca2+fast).
The non-rank-ordered version is shown in Supplementary Fig. 8a. Unimodal areas

such as visual and somatomotor areas have low entropy (cool colors), whereas
transmodal regions have high entropy (hot colors). c Entropy was positively
(Pearson) correlated across modalities (variability obtained based on hierarchical
bootstrapping; “Methods”). d Differences in entropy between conditions are
quantified by subtracting each pair of conditions. A statistical test (paired permu-
tation test, two-sided, p <0.05, Holm–Bonferroni corrected) revealed BOLD>Ca2+

inmost regions, except for some frontal areaswhereBOLD=Ca2+, and higher visual
areas where BOLD<Ca2+ (left and middle). Ca2+slow exhibited a large territory of
regionswith entropy<Ca2+fast (right). Source data areprovided as a SourceDatafile.
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Article https://doi.org/10.1038/s41467-023-44363-z

Nature Communications |          (2024) 15:229 10



The story became more complicated when we examined region
degree, a measure of centrality used at times as an indicator of region
“hubness” and/or importance. Degree showed a negative correlation
between BOLD and Ca2+ measurements with clearly different spatial
patterns. Ca2+ degree maps highlighted association areas such as the
posterior parietal cortex (PTLp), an area that is anatomically and
functionally thought to be important for multimodal integration78. In
contrast, BOLD degree maps produced counter-intuitive results
where, for example, lateral somatomotor areas exhibited high degrees
though they are likely to be involved in relatively fewer processes.
Thus, it appears that while Ca2+ degree maps capture region “impor-
tance” well, the same cannot be said for BOLD. Indeed, the present
finding resonates with previous suggestions that degree centrality
alone should not be used to determine the hubness status of brain
areas32, particularly in the case of BOLD data.

The relationship between entropy and degree helped to uncover
additional properties of cortical functional organization. For BOLD,
membership diversity and degree were inversely correlated, a pattern
indicative of “sparse overlap” alongside some networks that included

“provincial” hubs. Notably, this pattern has been observed in human
BOLD data32,34. In contrast, Ca2+ data exhibited a positive correlation
(that was more pronounced for Ca2+fast), suggestive of “dense overlap”
alongside regions showing few connections. Together, these results
indicated that BOLD and Ca2+ capture distinct forms of overlapping
network organization, with Ca2+ signals particularly able to uncover a
“diverse club” of regions34 that are densely overlapping65, reminiscent
of the “communication core” organization of structural connections in
nonhuman primates80,81.

Functional gradients characterize continuous axes of variation
and/or organization across the cortex66. Here, we investigated the top
four gradients, which revealed that the principal gradient was nearly
identical acrossmodalities, and captured a visual-to-somatomotor axis
(Fig. 8). Indeed, other studies have identified this gradient as a key
organizational feature of the mouse cortex47,69. Two other gradients
(G-2 andG-3) were also well captured acrossmodalities, although their
ordering (based on eigenvalues) was different (but note that the per-
centage of variance explained was very similar). Finally, the spatial
organization of BOLD G-4 was not reflected in the gradients identified
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each point is a brain region color-coded according to its disjoint network assign-
ments (legend from last column of Fig. 2c). Two patterns emerged. A "triangular"
shape (panels 1, 3, 5), reminiscent of previous work inmice47 and humans67, and an
"arch" (panels 2, 4, 6) connecting sensory and somatomotor areas on two ends
through transmodal areas in the middle. Source data are provided as a Source
Data file.
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based on Ca2+ signals. Intriguingly, this gradient highlights regions
overlapping with the frontal orienting field captured by BOLD OC-7
(Fig. 2c), a network that was not detected by Ca2+ even in the case of a
20-network decomposition (Supplementary Fig. 1). It is also note-
worthy that some of the gradients detected spatial organization that
was not reflected in the network organization maps (Fig. 2). Overall,
our results unveiled three functional gradients that exhibited strong to
intermediate correspondence across conditions, as well as one spatial
organization seen in BOLD that was not present in Ca2+ signals.

It is possible that some of the discrepancies between BOLD and
Ca2+ results stemmed from Ca2+ signals originating from excitatory
neurons,while the BOLD signal is cell-type agnostic. Despite excitatory
neurons being the most populous cell type in the cortex, it is still
unclear to what extent the activity of other cell populations such as
inhibitory neurons82,83 and astrocytes84, or vascular effects7,8,85,86,
influence the BOLD signal. This will be explored in our future work
utilizing the methods established here. Another important considera-
tion is our use of anesthesia. Due to the challenges of imaging awake
mice87, especially head motion, we opted to use low levels of anes-
thesia. Head motion systematically alters the correlation structure of
functional data and was therefore of particular concern in our
analyses88,89 (“Methods”). However, the effects of anesthesia on brain
activity and neurovascular coupling are complex and may vary by
region, anesthetic agent, and dose70,90–92. Our future studies will eval-
uate how functional networks, and their properties, differ between
awake and anesthetized animals. Notably, the effects of brain state on
functional organization were minimized because the same “ground
truth”brain activity underlies the results fromeachmodality, given the
simultaneous nature of our multimodal data. Thus, moment-to-
moment brain-state differences were not driving factors behind our
findings. Nevertheless, to evaluate the impact of anesthesia on our
results, we performed initial, exploratory analyses in a group of N = 5
animals for which we had Ca2+ recordings in both anesthetized and
awake states. These animals, which participated in the sessions
reported in the main results, underwent an additional Ca2+ recording
session outside of the scanner while awake. The results (Supplemen-
tary Fig. 5) clearly show that the large-scale network organization that
we reported in the lightly anesthetized state is also observed in awake
mice. Relativelyminor changes were also observed but require a larger
sample for proper statistical comparisons. Nevertheless, the findings
with this small group of animals considerably strengthen the gen-
eralizability of our findings.

We note that the analysis methods we used do not strictly require
simultaneous data collection. Further, although the findings reported
in the main text were at the group level, our highly-sampled
dataset allowed network organization to be determined at the level
of the individual, lending considerable strength to our group-level
findings, and underscoring the translational potential of our
approach93. Future work will further explore individualized network
properties while exploiting the simultaneous nature of these data.

Processing and analyzing multimodal data entails making several
parameter choices that potentially affect outcome measures. In par-
ticular, network overlap could be inflated by spatial misalignment. We
took great care in co-registering our data and optimizing our para-
meter set (from the Advanced Normalization Tools package94). Fur-
ther, issues of misalignment were considerably reduced by estimating
network measures at the level of runs and combining values subse-
quently. Thus, modest misalignment after registration did not inflate
the overall evaluation of overlap (“Methods”). In addition, the quanti-
fication of membership strength was applied to values that were
thresholded based on statistical significance. We also used relatively
sparse graphs (15% density in the main text), such that only the
strongest correlations were considered; further analyses that quanti-
fied the extent of overlap considered only membership values that
statistically exceeded 1/7 (for the 7-network solution). We also probed

the effects of parameter changes (Table 1) and found that our results
were qualitatively robust. Finally, we emphasize that, while we believe
our results provide evidence for considerable network overlap, esti-
mating the extent of overlap quantitatively remains a challenging
problem in network science. Important progress in this direction
involves developing principled approaches based on statistical infer-
ence and generative modeling95,96.

In conclusion, we employed simultaneous wide-field Ca2+ imaging
and fMRI-BOLD in a highly sampled group of mice expressing
GCaMP6f in excitatory neurons to determine the relationship between
large-scale networks discovered by the two techniques. Our findings
demonstrated that (1) most BOLD networks were detected via Ca2+

signals. (2) Considerable overlapping, in addition to disjoint, network
organization was recovered from both modalities. (3) The large-scale
functional organization determined by Ca2+ signals at low temporal
frequencies (0.01–0.5Hz), relative to high frequencies (0.5–5Hz), was
more similar to those recovered with BOLD. (4) The principal func-
tional connectivity gradient was nearly identical across all modalities,
yet, quantitative and qualitative differences were also observed across
gradients. (5) Key differences were uncovered between the two mod-
alities in the spatial distribution of membership diversity and the
relationship between region entropy (i.e., network affiliation diversity)
and degree. Together these findings uncovered a distinct overlapping
network phenotype across modalities. In sum, this work revealed that
the mouse cortex is functionally organized in terms of overlapping
large-scale networks that are observed with BOLD, lending funda-
mental support for the neural basis of such a property, which is also
observed in human subjects. The robust differences that were
uncovered demonstrate that Ca2+ and BOLD also capture some com-
plementary features of brain organization. Future work exploring
these commonalities and differences, using the simultaneous multi-
modal acquisition usedhere, promises to help uncover how large-scale
networks are supported by underlying brain signals in health and
disease.

Methods
Experimental model and subject details
All procedures were approved by the Yale Institutional Animal Care
and Use Committee (IACUC) and followed the National Institute of
Health Guide for the Care and Use of Laboratory Animals. All surgeries
were performed under anesthesia.

Animals. Mice (n = 10) were group-housed on a 12-h light/dark cycle
with ad libitum food and water. Cages were individually ventilated. As
per IACUC policy, at all locations where mice were housed, the tem-
perature was between 68–79°F and humidity was between 30–70%.
Animals were 6–8 weeks old, 25–30 g, at the time of the first imaging
session. We explicitly conducted our study on a mixed-sex sample but
did not consider sex as an independent variable given the small sample
size. Although both male and female mice were used, sex information
was not recorded. Animals (SLC, Slc17a7-cre/Camk2α-tTA/TITL-
GCaMP6f also known as Slc17a7-cre/Camk2α-tTA/Ai93) were generated
from parent 1 (Slc17a7-IRES2-Cre-D) and parent 2 (Ai93(TITL-GCaMP6f)-
D;CaMK2a-tTA). Both were on a C57BL/6J background. To generate
these animals, male CRE mice were selected from the offspring of
parents with different genotypes, which is necessary to avoid leaking
ofCRE expression. Animalswereoriginallypurchased from the Jackson
Laboratory.

Head-plate surgery. All mice underwent a minimally invasive surgical
procedure enabling permanent optical access to the cortical surface1.
Mice were anesthetized with 5% isoflurane (70/30 medical air/O2) and
head-fixed in a stereotaxic frame (KOPF). After immobilization, iso-
flurane was reduced to 2%. Paralube was applied to the eyes to prevent
dryness, meloxicam (2 mg/kg body weight) was administered
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subcutaneously, and bupivacaine (0.1%) was injected under the scalp
(incision site). Hair was removed (NairTM) from the surgical site and
the scalp was washed with betadine followed by ethanol 70% (three
times). The scalp was removed along with the soft tissue overlying the
skull and the upper portion of the neck muscle. Exposed skull tissue
was cleaned and dried. Antibiotic powder (Neo-Predef) was applied to
the incision site, and isoflurane was further reduced to 1.5%. Skull-
thinning of the frontal and parietal skull plates was performed using a
hand-held drill (FST, tip diameter: 1.4 and 0.7mm). Superglue (Loctite)
was applied to the exposed skull, followed by transparent dental
cement (C&B MetabondⓇ, Parkell) once the glue dried. A custom in-
house-built headplatewas affixed using dental cement. The head-plate
was composed of a double-dovetail plastic frame (acrylonitrile buta-
diene styrene plastic, TAZ-5 printer, 0.35mm nozzle, Lulzbot) and a
hand-cutmicroscope slide designed tomatch the size and shape of the
mouse skull. Mice were allotted at least 7 days to recover from head-
plate implant surgery before undergoing the first of three multimodal
imaging sessions.

Multimodal image acquisition
All mice, n = 10, underwent 3 multimodal imaging sessions with a
minimum of 7 days between acquisitions. All animals underwent all
imaging sessions. None were excluded prior to the study end-point.
Data exclusion (based onmotion etc.) is described below. During each
acquisition, we simultaneously acquired fMRI-BOLD and wide-field
Ca2+ imaging data using a custom apparatus and imaging protocol1.
Functional MRI data were acquired on an 11.7T system (Bruker, Bill-
erica, MA), using ParaVision version 6.0.1 software. During each ima-
ging session, 4 functional resting-state runs (10min each) were
acquired. In addition, 3 runs (10min each) of unilateral light stimula-
tion data were acquired. These data are not used in the present study.
Structural MRI data were acquired to allow both multimodal registra-
tion and registration to a common space. Mice were scanned while
lightly anesthetized (0.5–0.75% isoflurane in 30/70O2/medical air) and
freely breathing. Body temperature wasmonitored (Neoptix fiber) and
maintained with a circulating water bath.

Functional MRI. We employed a gradient-echo, echo-planar-imaging
sequence with a 1.0 s repetition time (TR) and 9.1ms echo time (TE).
Isotropic data (0.4mm×0.4mm×0.4mm) were acquired along
28 slices providing near whole-brain coverage.

Structural MRI. We acquired four structural images for multimodal
data registration and registration to a common space. (1) A multi-spin-
multi-echo (MSME) image sharing the same FOV as the fMRI data, with
a TR/TE of 2500/20ms, 28 slices, two averages, and a resolution of
0.1mm×0.1mm×0.4mm. (2) A whole-brain isotropic (0.2mm×0.2
mm×0.2mm) 3D MSME image with a TR/TE of 5500/20ms, 78 slices,
and two averages. (3) A fast-low-angle-shot (FLASH) time-of-flight
(TOF) angiogram with a TR/TE of 130/4ms, resolution of 0.05mm×
0.05mm×0.05mm and FOV of 2.0 cm× 1.0 cm× 2.5 cm (positioned
to capture the cortical surface). (4) A FLASH image of the angiogram
FOV, including four averages, with a TR/TE of 61/7ms, and resolution
of 0.1mm×0.1mm×0.1mm.

Wide-field fluorescence Ca2+ imaging. Data were recorded using
CamWare version 3.17 at an effective rate of 10Hz. To enable frame-by-
frame background correction, cyan (470/24, Ca2+-sensitive) and violet
(395/25, Ca2+-insensitive) illumination (controlled by an LLE 7Ch Con-
troller from Lumencor) were interleaved at a rate of 20Hz. The
exposure time for each channel (violet and cyan) was 40ms to avoid
artifacts caused by the rolling shutter refreshing. Thus, the sequence
was: 10msblank, 40ms violet, 10ms blank, 40ms cyan, and so on. The
custom-built optical components used for in-scanner wide-field Ca2+

imaging have been described previously1.

Image preprocessing
Multimodal data registration. All steps were executed using tools in
BioImage Suite (BIS) specifically designed for this purpose1. For each
animal, and each imaging session, the MR angiogramwas masked and
used to generate a view that recapitulates what the cortical surface
would look like in 2D from above. This treatment of the data highlights
the vascular architecture on the surface of the brain (notably the
projections of themiddle cerebral arteries,MCA)which are also visible
in the static wide-field Ca2+ imaging data. Using these and other ana-
tomical landmarks, we generated a linear transform that aligns theMR
and wide-field Ca2+ imaging data. The same static wide-field image was
used as a reference for correctingmotion in the time series. To register
the anatomical and functional MRI data, linear transforms were gen-
erated and then concatenated before being applied.

Data were registered to a reference space (CCFv345) using iso-
tropic whole-brain MSME images via affine followed by non-linear
registration (ANTS, Advanced normalization tools94). The histological
volume inCCFv3wasusedbecauseof a better contrastmatchwithMRI
images. The goodness of fit was quantified using mutual information
and a hemispheric symmetry score that captured the bilateral sym-
metry of major brain structures. A large combination of registration
hyperparameters was explored, and the top 10 fits per animal were
selected. The best transformation out of this pool was selected for
each animal by visual inspection.

RABIES fMRI data preprocessing. For fMRI preprocessing, we used
RABIES (Rodent automated BOLD improvement of EPI sequences)
v0.4.235. We applied functional inhomogeneity correction N3 (non-
parametric nonuniform intensity normalization97,98), motion correc-
tion (ANTS, Advanced normalization tools94), and slice time
correction, all in native space. A within-dataset common space was
created by nonlinearly registering and averaging the isotropic MSME
anatomical images (one from each mouse at each session), which was
registered to the Allen CCFv3 reference space using a nonlinear
transformation (see above).

For each run, fMRI data were motion-corrected and averaged to
create a representative mean image. Each frame in the time series was
registered to this reference. To move the fMRI data to the common
space, the representative mean image was registered to the isotropic
structural MSME image acquired during the same imaging session.
This procedure minimizes the effects of distortions caused by sus-
ceptibility artifacts99. Then, the three transforms—(1) representative
mean to individual mouse/session isotropic MSME image, (2) indivi-
dual mouse/session isotropic MSME image to within-dataset common
space, and (3) within-dataset common space to out-of-sample com-
mon space—were concatenated and applied to the fMRI data. Func-
tional data (0.4mm isotropic) were upsampled to match anatomical
MR image resolution (0.2mm isotropic). Registration performance
was visually inspected and verified for all sessions. Motion was
regressed (6 parameters). Current best practices in both human38 and
mouse35 fMRI preprocessing include the application of a high-pass or
band-pass filter to remove physiological and other sources of noise.
Specifically, high-pass filtering removes slow (<0.01 Hz) drifts from
data38. Therefore, a high-pass filter (3rd order Butterworth) between
[0.01–0.5]Hz was applied, and 15 time points (15 s of data) were dis-
carded fromboth the beginning and the end of the time series to avoid
filtering-related edge artifacts. Finally, average white matter and ven-
tricle time courses were regressed.

Fluorescence Ca2+ imaging data preprocessing. The raw signal was
split between GCaMP-sensitive and GCaMP-insensitive imaging
frames. Spatial smoothing with a large kernel (16-pixel kernel, median
filter) was applied to reduce and/or remove focal artifacts (e.g., dust or
dead pixels from broken fibers). Focal artifacts do not move with the
subject and can biasmotion correction. Motion correction parameters
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were estimated on these data using normalized mutual information.
Rigid image registration was performed between each imaging frame
in the time series and the reference frame. Registration parameters
were saved, and the large kernel-smoothed images were discarded.
Modest spatial smoothing (4-pixel kernel, medianfilter) was applied to
the raw data, and these data were motion-corrected by applying the
parameters estimated in the previous step. Data were down-sampled
by a factor of two in both spatial dimensions, which yielded a per pixel
spatial resolution of 50× 50μm2 (original was 25 × 25μm2). Photo
bleach correction was applied to reduce the exponential decay in
fluorescence at the onset of imaging100. The fluorophore-insensitive
time series were regressed from the fluorophore-sensitive time series.
The first 50 s of data were discarded due to the persistent effects of
photobleaching in the Ca2+ data42. fMRI-BOLD and wide-field calcium
imaging have unmatched temporal sampling rates (1 versus 10Hz) and
different sources of noise. Accordingly, a band-pass filter (3rd order
Butterworth) was applied that matched the frequencies of BOLD and
Ca2+slow ( 0:01,0:5½ �Hz), and a complementary band with higher fre-
quencies (Ca2+fast: 0:5,5:0½ �Hz). The application of band-passing also
aids with the removal of noise, including slow drifts. Finally, 15 time
points (1.5 s of data) were discarded from both the beginning and the
end of the time series to avoid filtering-related edge artifacts89.

Frame censoring. Data were scrubbed formotion using a conservative
0.1mm threshold. High-motion frames were selected based on esti-
mates fromthe fMRI time series and applied toboth fMRI andCa2+ data.
Runs were removed from the data pool if half of the imaging frames
exceeded this threshold for a given run. In this dataset, 2 runs (or ~1.7%
of all runs) were removed for this reason. Additionally, two more runs
were removed because they did not pass our quality control criteria.

Parcellating the cortex into columnar regions of interest (ROI)
To create regions of interest (ROIs), we employed the Allen CCFv3
(2017) reference space45 and used their anatomical delineations as our
initial choice of ROIs. However, this led to poor performance (see
Supplementary Discussion). Here, we introduce a spatially homo-
geneous parcellation of themouse cortex that can be adopted for both
3D fMRI and 2D wide-field Ca2+ imaging data.

The procedure worked as follows. (1) We generated a cortical
flatmap within the CCFv3 space using code published by Knox et al.101

(link provided in “Code availability” section). (2)We subdivided the left
hemisphere into N regions via k-means clustering applied to pixel
coordinates (for most analyses reported, N = 512). The right hemi-
sphere was obtained by simple mirror-reversal to obtain a total of 2N
regions. (3) Depth was added to the ROIs to obtain column-shaped
regions. To do so, a path was generated by following streamlines
normal to the surface descending in the direction of white matter
(streamline paths were available at 10μm resolution in CCFv3; see
Fig. 3F in ref. 45). Here, we chose ROI depths so that we included
potential signals from approximate layers 1 to 4 (layer masks were
obtained fromCCFv3). Evidence fromwide-field Ca2+ imaging suggests
that signals originate from superficial layers but can extend into the
cortex to some extent15,43,102–104. (4) Finally, ROIs were downsampled
from 10μm to 100μm resolution, see Fig. 1c.

After co-registration, ROIs were transformed from the
CCFv3 space into each individual’s 3D and 2D anatomical spaces (see
above). On average, ROIs had a size of 8 ± 3 voxels (3D, fMRI) and
48 ± 20 pixels (2D, Ca2+) in individual spaces (mean± standard
deviation).

Functional network construction
Time series data were extracted and averaged from all voxels/pixels
within an ROI in native space to generate a representative time series
per ROI. For each modality, for each run, an adjacency matrix was
calculated by applying Pearson correlation to time series data to each

ROI pair. Next, we binarized the adjacency matrices by rank ordering
the connection weights and maintaining the top 15%; thus, after
binarization, the resulting graphs had a fixed density of d = 15% across
runs and modalities. This approach aims to keep the density of links
fixed across individuals and runs and better preserves network prop-
erties compared to absolute thresholding105. To establish the robust-
ness of our results to threshold values, we also tested values of 10% to
25% in 5% increments.

Finding overlapping communities
Overlapping network analysis was applied by using SVINET, a mixed-
membership stochastic blockmodel algorithm29,106, which has been
previously applied to human fMRI data by us25 and other groups27.
SVINETmodels the observed graph within a latent variable framework
by assuming that the existence (or non-existence) of links between
pairs of nodes can be explained by their latent community member-
ships. For binary adjacency matrix A and membership matrix π, the
model assumes the conditional probability of a connection as follows:

pðAijjπi,πjÞ /
XK

k = 1

πikπjk , ð1Þ

where K is the number of communities, and Aij = 1 if nodes i and j are
connected and 0 otherwise. Intuitively, pairs of nodes are more likely
to be connected if they belong to the same community or to (possibly
several) overlapping communities.More formally, SVINET assumes the
following generative process:
(1) For each node, draw community memberships πi ~ Dirichlet(α)
(2) For each pair of nodes i and j:

• Draw community indicator zi→j ~πi
• Draw community indicator zi←j ~πj
• Assign link between i and j if zi→j = zi←j.

Model parameters α are fit using stochastic gradient ascent107,108.
The algorithm was applied to data from each run using 500 different
random seeds. Results across seeds were combined to obtain a final
consensus for a run.

Aligning community results. Communities were identified in random
order due to the stochastic nature of our algorithm. Maximum cosine
similarity of the cluster centroids was used to match communities
across calculations (runs or random seeds), as follows. For each run,
membership vectors from all random seeds were submitted to k-
means clustering (sklearn.cluster.KMeans) to determine K clusters
(e.g., K = 7 for analyses with 7 communities). The similarity between
membership vectors from each random seed (source) and the cluster
centroids (target) was then established via pairwise cosine similarity,
yielding a K ×K similarity matrix from source to target per random
seed. A permutation of the rows of this similarity matrix was identified
such that diagonals had maximum average similarity, a procedure
known as the Hungarian algorithm. Finally, the identified permutation
was applied to seed results, thereby aligning themwith the targets. The
aligned communities were then averaged. The outcome was mem-
bership matrix π (Fig. 1e). Importantly, this matching procedure was
done for each condition (BOLD, Ca2+slow, Ca

2+
fast) separately.

Group results
Crucially, all measures were computed at the run level first before
combining at the group level.

Membership matrices. This is what’s visualized in Fig. 2a, c and Sup-
plementary Figs. 1 and 2a, c.

Thresholdingmembership values. To enhance the robustness of our
estimates of network overlap,membership values were thresholded to
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zero if they did not pass a test rejecting the null hypothesis that the
value was zero. After thresholding, the surviving membership values
were rescaled to sum to 1. Thresholding was performed for each ani-
mal separately by performing a one-sample t-test and employing a
false discovery rate of 5%. All results shown utilized this step, with the
exception of figures that illustrate the spatial patterns of membership
values (and do not estimate network overlap). Note that almost all
(~99%) memberships that did not reach significance had values in the
range [0, 0.2].

Region functional diversity. Shannon entropy was applied to mem-
bership matrices for each run separately before averaging. That is,
given a membership matrix π from a run, node entropies were com-
puted to get an entropy estimate per node at the run level:

ðnormalizedÞ entropyof node i at run level :¼ hi = f ðπiÞ = �
XK

k = 1

πik logKπik ,

ð2Þ

whereK = 7 is thenumber of communities and logK is logarithm in base
K. Entropy values were combined by averaging across runs to get the
group-level estimates. This is what’s visualized in Fig. 5b. Similarly,
group averages were used to calculate the correlations between
modalities in Fig. 5c.

Computing distributions. Similar to the above, distributions were
computed for each run separately before combining at the group level.
For example, consider hi (entropy of node i) from a run. We computed
percentage values using 20 bins of width 0.05 that covered the entire
range of normalized entropy values [0, 1]. We then averaged over run-
level histogram values to get group-level estimates shown in Fig. 5a.
Other distributions were computed in an identical way. Specifically, 57
bins of size 5 were used for Fig. 6a, and 4 bins of size 0.2 were used
for Fig. 3b.

Gradient analysis
To obtain functionally connectivity (FC) gradients, we closely followed
methods outlined by Huntenburg et al.69 and adapted their code for
this purpose (see “Code availability” section). Briefly, per-run FC
matrices were Fisher r-to-z transformed, averaged across all runs,
sessions, and animals, and back-transformed to Pearson’s r values. The
resulting group-averaged FC matrix was decomposed using diffusion
maps109, a nonlinear dimensionality reduction method commonly
employed by human67 and mouse47,69 literature for estimating FC gra-
dients. Gradients have arbitrary units and their absolute value is not
meaningful.We z-scored each gradient separately, which allowed us to
use a shared color bar in Fig. 8a.

LFR analysis
The followingparametersneed tobe specified to generate a binary and
overlapping LFR graph62. N, number of nodes; k, average degree; μ,
topological mixing parameter; t1, minus exponent for the degree
sequence; t2, minus exponent for the community size distribution;
Cmin, minimum for the community sizes; Cmax, maximum for the
community sizes; ON, number of overlapping nodes; OM, number of
memberships of the overlapping nodes.

To match basic statistics of the real data with LFR graphs we set
N = 542 (Fig. 1d); and, for every run from each data modality, we cal-
culated the average degree k and estimated t1 via an exponential fit to
the degree distributions (scipy.stats). We set t2 = 0.1,
Cmin = 0.05 ×N ≈ 27, Cmax = 0.35 ×N ≈ 190. For the fraction of over-
lapping nodes ON, we explored a wide range between 0 (disjoint) and
0.9 in incremental steps of 0.1. This yielded ON = 0 up to ON =0.9 ×
N = 488. Finally, we used OM = 2 and 3. This results in a total of 20 LFR
graphs per run, per data modality. We applied the community

detection algorithm to LFR graphs in an identical way to the real data
but with fewer seeds (N = 10 compared to N = 500). The alignment
procedure was performed in an identical way as described above, see
Supplementary Fig. 7.

Statistical analysis
Hierarchical bootstrapping. Statistical results were performed at the
group level by taking into consideration the hierarchical structure of
the data (for each animal, runs within sessions), which can be naturally
incorporated into computational bootstrapping to estimate variability
respecting the organization of the data110. For each iteration (total of
1,000,000), we sampled (with replacement) n = 10 animals,
n = 3 sessions, and n = 4 runs, while guaranteeing sessions were yoked
to the animal selected and runs were yoked to the session selected
(Fig. 1b). In this manner, the multiple runs were always from the same
session, which originated from a specific animal. Overall, the proce-
dure allowed us to estimate population-level variability based on the
particular sample studied here. To estimate 95% confidence intervals,
we used the bias-corrected and accelerated (BCa) method111, which is
particularly effective when relatively small sample sizes are considered
(SciPy’s scipy.stats.bootstrap). Hierarchical bootstrapping was used to
estimate variability in Figs. 2e, f, 3b, 5c, 6c, 7b and Supplementary
Figs. 2e, f, 3, 6b, c, 8c, 10.

One-sample t-test. We used a one-sample t-test to define "belonging"
in networks as a function of a threshold μ. The t-statistic for mem-
bership of node i in network k is given as:

tik =
�πik � μ
SEik

, ð3Þ

where �πik is the group averaged membership of node i in network k,
and SEik is the standard error estimated using hierarchical boot-
strapping (see above). We calculated p values using t-statistics for all
nodes andnetworks anddeclared a node amember of a network if itsp
value reached significancep =0.05. The results as a function of various
μ are shown in Fig. 4a. We applied Benjamini–Hochberg correction112

using Python statsmodels’ implementation (statsmodels.-
stats.multitest.multipletests) to correct for multiple comparisons.

Permutation test. Paired permutation tests (two-sided) were used to
compare conditions in Fig. 2e, f and Supplementary Figs. 2e, f, 3, 6b, c;
and to perform a node-wise comparison across modalities in Fig. 5d.
We used SciPy’s implementation (scipy.stats.permutation_test) with
N = 1,000,000 resamples. Holm-Bonferroni correction113 was applied
to correct for multiple comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data analyzed in the present study are available under
restricted access because of the complexity of the multimodal data
structure and the size of the data. Access can be obtained by con-
tacting the corresponding authors.Data from theAllenReferenceAtlas
and CCFv345 are available on their website: https://portal.brain-map.
org/ or through the Allen Software Development Kit (SDK): https://
allensdk.readthedocs.io/en/latest/. Source data are provided with
this paper.

Code availability
Our code is available in the following repository: https://github.com/
hadivafaii/Ca-fMRI114. The open-source software used for overlapping
community detection (SVINET29) is available in the following
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repository: https://github.com/premgopalan/svinet. Our regions of
interest definition method (Fig. 1c), makes use of Allen SDK v2.12.3
(https://allensdk.readthedocs.io/en/latest/) and code published by
Knox et al.101 (https://github.com/AllenInstitute/mouse_connectivity_
models). The code for generating LFR synthetic graphs62 can be
obtained from https://www.santofortunato.net/resources: “package 1,
undirected and unweighted graphs with overlapping communities”.
To perform functional connectivity gradient analyses, we utilized the
code byHuntenburg et al.69: https://github.com/juhuntenburg/mouse_
gradients. The following software packages were used for data pro-
cessing: multimodal data registration (BioImage Suite, https://
bioimagesuiteweb.github.io/webapp/), fMRI preprocessing (RABIES
v0.4.235, https://github.com/CoBrALab/RABIES), and Ca2+ preproces-
sing (a pipeline previously published by us42, https://github.com/
YaleMRRC/calPrep). All of our code used for this project is written in
Python, making extensive use of Python scientific computing envir-
onments, including NumPy v1.20.2115, SciPy v1.7.0116, statsmodels
v0.13.5117, scikit-learn v1.2.0118, pandas v1.3.3119, matplotlib v3.7.1120, and
seaborn v0.10.1121.
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