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Unraveling the causal genes and
transcriptomic determinants of human
telomere length

YingChang1,13, Yao Zhou2,13, Junrui Zhou3,4,13,Wen Li1, JiasongCao1, Yaqing Jing3,
Shan Zhang3, Yongmei Shen1, Qimei Lin1, Xutong Fan2, Hongxi Yang2,5,
Xiaobao Dong 3, Shijie Zhang5, Xianfu Yi 2, Ling Shuai 6, Lei Shi 7,
Zhe Liu 7, Jie Yang 7, XinMa 8, Jihui Hao9, Kexin Chen10,Mulin Jun Li 2,10 ,
Feng Wang 3,11,12 & Dandan Huang5,8

Telomere length (TL) shortening is a pivotal indicator of biological aging and is
associated with many human diseases. The genetic determinates of human TL
havebeenwidely investigated, however,most existing studieswere conducted
basedonadult tissueswhich are heavily influencedby lifetimeexposure. Based
on the analyses of terminal restriction fragment (TRF) length of telomere,
individual genotypes, and gene expressions on 166 healthy placental tissues,
we systematically interrogate TL-modulated genes and their potential func-
tions. We discover that the TL in the placenta is comparatively longer than in
other adult tissues, but exhibiting an intra-tissue homogeneity. Trans-ancestral
TL genome-wide association studies (GWASs) on 644,553 individuals identify
20 newly discovered genetic associations and provide increased polygenic
determination of human TL. Next, we integrate the powerful TL GWAS with
placental expression quantitative trait locus (eQTL) mapping to prioritize 23
likely causal genes, amongwhich 4 are functionally validated, includingMMUT,
RRM1, KIAA1429, and YWHAZ. Finally, modeling transcriptomic signatures and
TRF-based TL improve the prediction performance of human TL. This study
deepens our understanding of causal genes and transcriptomic determinants
of human TL, promoting the mechanistic research on fine-grained TL
regulation.

Telomeres are DNA and protein complexes that protect the ends of
chromosomes, yet degradative processes that shorten telomeric DNA
can lead to loss of telomere function and genomic instability1,2. Telo-
meres shorten with each round of DNA replication in the organism’s
aging process3. Thus, telomere length (TL) has been recognized as a
critical indicator of cellular senescence, biological aging, and disease
progression4–6. In previous studies, determinants of human TL have
been extensively interrogated, including different genetic, environ-
mental, and lifestyle factors2,7. For example, genetic variants associated
with TL have been systematically identified through family studies8,9

and genome-wide association studies (GWASs)10–12. Nongenetic fac-
tors, such as cigarette smoking13, alcohol consumption14, and endur-
ance training15, could modulate telomere attrition processes. In
addition, a large-scale cross-tissue TL analysis revealed that TL varied
across tissue types andwas the shortest inwholeblood16. Despite these
successes, most of the current studies on human TL were performed
on postnatal or adult tissues, which confounds the understanding of
independent determinates from genetic or environmental factors,
especially for non-Medawarian tissues affected by unobserved lifetime
exposures17,18.
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Current TLGWASs have uncoveredmore thana hundred genomic
loci significantly associated with leukocyte TL10–12, however, the true
causal genes underlying these polygenic determinants of TL remain
elusive. The majority of the identified associations lie in the non-
coding regions of the human genome, suggesting that causal variants
could influence TL via gene regulatory codes. Expression quantitative
trait loci (eQTLs) analysis using gene expression as a key intermediate
molecular phenotype, improves the functional interpretation of GWAS
findings19. Thus, integrating powerful TL GWAS results with eQTLs on
tissue rarely affected by non-genetic factors would enhance the TL-
causal gene discovery20,21 and also facilitate accurate TL prediction by
incorporating both genomic and transcriptomic information.

In the present study, by assuming that telomere is less affected by
extraplacental exposure or other non-genetic effects in the placenta,
we profiled terminal restriction fragment (TRF) length of telomere,
genotypes, and gene expression on 166 healthy placental tissues. We
found that placental TL expresses the intratissue homogeneity and is
relatively longer among different human tissues, except for testis. The
analysis of gene expression association with placental TL revealed
several unique telomere-maintaining patterns. Importantly, we inte-
grated three large-scale TL GWASs from worldwide cohorts and per-
formed a trans-ancestralmeta-analysis. Then, placental eQTLmapping
and complementary statistical approaches were leveraged to com-
prehensively prioritize the putative causal genes affecting TL pheno-
type. We also experimentally validated several newly discovered TL-
causal genes in vitro. Finally, we developed an accurate TL prediction
model that outperforms the existing strategies.

Results
Placental TL demonstrates intra-tissue homogeneity and is
relatively longer than in other adult tissues
To measure the telomere-associated phenotypes of human tissues at
the early life stage, we conducted population-scale southern blots of
TRFs22, an accurate characterization of telomeres, on 166 healthy pla-
cental tissues (see methods for details). These placentae were col-
lected within 10min of a vaginal delivery from full-term singleton
pregnancies (37+0–41+6 weeks) (Fig. 1A), and none of the participants
had any medical disorders or adverse pregnancy outcomes. The
average age of the participants was 32 ± 4.0 years, and no tobacco-
smoking or alcohol-drinking behavior was noted. Among these new-
borns, 73 were females and 93 were males. No significant differences
wereobserved inmaternal age,maternal bodymass index (BMI), infant
weight, and gestation weeks with regard to infant gender (all P
values > 0.05) (Supplementary Data 1). In addition to these placental
tissues, genotypes [the Infinium Asian Screening Array (ASA), n = 166]
and gene expression [RNA sequencing (RNA-seq), n = 166] were also
profiled for in-depth analysis of the causal genes and transcriptional
determinants of placental TL (Fig. 1A).

Previous studies reported that the TRF length of telomere is
highly synchronized among various tissues at birth, whereas in adults,
TL across tissue types varies within individuals16,23,24. The sampling of
eight symmetrical sets of placental tissue on the fetal side and
maternal side revealed a consistent distribution of telomere frag-
ments, suggesting a homogeneous telomere status across the whole
placenta (Fig. 1B). However, compared to intraplacental telomere sta-
tus, the ranges and variances in TRF lengths were enlarged as assessed
by randomly sampling of 15 unrelated individuals (Supplementary
Fig. 1). These results implied that the telomere content of placental
tissue varies among individuals and could be attributed to varied
genetic conditions and intrauterine environments. To evaluate the
homogeneity of our measurements and to identify potential sampling
errors, we conducted repeated measurements on different regions of
the same placental sample three additional times (Supplementary
Fig. 2A). This approach allowed us to assess the uniformity of telomere
status across the entire placenta and provided critical insights into

possible measurement and sampling errors. Our findings indicated
that the quantitative analysis error did not surpass 10% between dif-
ferent experimental batches (Fig. 1C), underscoring the reliability of
our TRF measurements. To further ensure the robustness of our data
analysis, we employed the TeloTool25 software with a stringent fit
threshold setting. This rigorous criterion enabled us to include only
those length determinations that met the predefined standards in our
final results, thereby minimizing any potential bias or errors during
data analysis (Supplementary Fig. 2B).

Since the southern blot of TRF contains abundant information on
telomere content, based on TRF analysis of the fetal side placental
tissues from 166 unrelated singleton pregnancies, we quantified the
average TRF length (aTL), relative TL (RTL), and short telomere pro-
portion (STP), respectively (see methods for details). Briefly, the RTL
was used to evaluate the aTL relative to a standard reference, and the
STP measured the percentage of the telomere shorter than 5 kb over
fragments, indicating severe telomere damage or wear26. Placental aTL
ranges from 7.95–17.85 kb among 166 placental tissues (mean =
11.83 kb). Leveraging aTL data of five different adult tissues revealed
that aTL in the placenta is longer than that of rest of other tissues,
including blood (N = 231,mean=9.44 kb), skin (N = 12,mean= 8.73 kb),
heart (N = 6,mean = 8.69 kb), and lung (N = 6,mean = 9.15 kb) (Fig. 1D).
This conforms to the expectation that TL is associated with cellular
senescence; it is maximal at birth and decreases with age and
exposure27. No clear association was observed between RTL and the
collected demographic factors, including maternal age, gestational
days, maternal BMI, infant weight, and placental size (Supplementary
Fig. 3). Notably, neonatal sex showed weak evidence of association
with RTL in the placenta, wherein males have longer RTL than females
(P-value = 0.032, t-test, Supplementary Fig. 3). Given the limited sam-
ple size of our existing TRF measurements in newborns23,28, the
underpowered associations require further ascertainment on large-
scale samples. Moreover, the current data revealed that placental STP
wasnegatively correlatedwithRTL (Fig. 1E), indicating the dependency
between TL and short telomere, and RTL could partially explain telo-
mere damage. However, we did not observe significant differences
between placental STP and any collected demographic factors (Sup-
plementary Fig. 4). Taken together, the intra-tissue homogeneity of
telomere content, long RTL across tissues, as well as less external
environmental intervention make placental tissue an ideal proxy for
studying the genetic determinants and causal genes of human TL.

Trans-ancestral GWAS reveals increased polygenic
determination of TL
In order to explore the extent of genetic contribution on TL, we first
integrated three large-scale TL GWASs from different cohorts on
worldwide populations, including Singapore Chinese Health Study
(SCHS)10, NHLBI Trans Omics for Precision Medicine (TOPMed)12, and
UK Biobank (UKBB)11. Next, we conducted a trans-ethnic meta-analysis
based on these leukocyte TL GWASs, containing 644,553 participants
from five human subpopulations (including European, African, East
Asian, South Asian, and Hispanic/Latino) (Fig. 2A, B and Supplemen-
tary Data 2) (see methods for details). A total of 220 sentinel common
variants (R2 < 0.01 between sentinels, minor allele frequency (MAF) ≥
0.01 across separate GWAS cohorts) were associated with leukocyte
TL at genome-wide statistical significance threshold (P value < 5E-8), of
which 20 variants were new (R2 < 0.01 with previously documented
sentinels), and the remaining variants were originally reported or
associated with the sentinels in the three GWASs (Supplementary
Data 3 and Supplementary Data 4). We successfully validated 86% of
the initially reported loci from the three GWAS resources (Supple-
mentary Data 5). However, those signals not reported in our trans-
ethnic GWAS may be attributable to our concentrated focus on com-
mon variations. Additionally, the heterogeneity of variant effects and
discrepancies in TL measurements might also have played significant
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roles. Among the newly discovered loci, the most significant sentinel
variant rs10798002 received moderate signals in UKBB and TOPMed
cohorts and reached genome-wide significance after meta-analysis,
but therewasno evidence of the effect of heterogeneity across cohorts
(Phet = 0.899, I2 = 0) (Fig. 2C). This variant is located in the SWT1 gene,
affecting the surveillance of nuclear messenger ribonucleoprotein
particles29. Gene-set enrichment analysis of these TL GWAS signals
identified that themost significantly associated pathways were related
to telomere maintenance, telomere organization, and telomere main-
tenance via telomere lengthening (Fig. 2D), which is consistent with
the previous findings11 and implies that TL GWAS signals were related
to the regulation of telomere maintenance.

The trans-ancestral TL GWAS meta-analysis, with the largest
sample size to date, provided an effective resource to test the agree-
ment between the genetic determination of TL and observed TL,
especially that from fetal tissues under minimal extrauterine inter-
vention. Thus, we genotyped and imputed 6,091,762 genetic variants
for the 166 placental samples and performed polygenic risk score

(PRS) analyses based on the TL meta-analysis results. The estimated
PRS score of TL was significantly correlated with placental TL mea-
sured in our study (r = 0.21, P value = 0.007) (Fig. 2E), suppressing the
correlations using GWAS summary statistics of the single cohort
(Supplementary Fig. 5). This suggested that the trans-ancestral GWAS
boosts the predictive power of PRS on TL. Also, no significant differ-
ences were observed in the distribution of the individual PRS with
respect to sex or maternal age (Supplementary Fig. 6). SNP-level
associations for each of the significant TL GWAS hits with placental
RTL was provided in Supplementary Data 6. In contrast, the evaluation
of such correlations based on 442 GTEx whole blood samples revealed
a weak association between TL PRS and tested TL measured by bio-
chemical assays (Fig. 2E). SinceGTEx applied a Luminex-basedmethod
to estimate RTL, the suboptimal measurement may undermine the
consistency between PRS-predicted and assayed TL compared to
southern blot analysis of TRFs. Additionally, we estimated PRS score of
TL based on GWAS hits from the trans-ethnic analysis that showed
nominal (P value < 0.05) association in the SCHS study. The result
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Fig. 1 | Placentalmaterial extraction andmeasurement. A Schematic depicts the
collection procedures of placental samples and the workflow of analysis in this
study. TRF analysis, genotyping, and RNA-seq were conducted simultaneously for
each sample. Created with BioRender.com [https://www.biorender.com/]. B TL of
different sets from the same placental tissue was analyzed by TRF with regular
electrophoresis gels (n = 4). C The statistical analysis presents the telomere length
measurements of the same placental sample obtained from different positions and
different batches of measurements (n = 4). D Scatter dot plots of individual data

points and mean and standard deviation (SD) showing the distribution of RTL
across placenta and 4 different adult tissues. Data are presented asmean values +/-
SD (n = 166 for placenta, n = 231 for blood, n = 12 for skin, n = 6 for heart, n = 6 for
lung).E Scatter plot shows the correlations between short telomere proportion and
RTL (n = 166), with a simple linear regression line fitted. For boxplots, five-number
summary of the data set (minimum, lower quartile, median, upper quartile and
maximum) and outliers are shown. The two-sided P-value of Pearson’s correlation
test was 1.48e-18.
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showed that PRS is still significantly associated with TL (r = 0.18, P-
value = 0.023, Supplementary Fig. 7). Collectively, combinatory ana-
lysis of trans-ancestral GWAS and placental TL measured by TRF assay
indicated that human TL could be determined and predicted only
genetically.

Association of placental TL maintenance with telomere reg-
ulatory genes and functional gene connectivity
Since 91.5% of sentinel variants of TL GWAS loci are located in the non-
coding genomic region, investigating their regulatory potential on
gene expression would improve the accuracy of genetic/tran-
scriptomic-based TL predictions. Thus, we profiled transcriptomics
using RNA-seq for the 166 placental samples with paired genotypes
and TL measurements. Through rigorous literature review and data-
base search, we collected genes postulated to influence telomere
length regulation. Our curated sets encompass genes associated with
the regulation of telomerase activity (81 genes), telomere capping (5
genes), and alternative lengthening of telomere mechanisms (ALT, 24
genes). These datasets now serve as a foundation for our ensuing
analysis (Supplementary Data 7). We first evaluated the association
between placental RTL and each of collected telomere regulatory
genes with multiple comparison correction. As the results, for genes
involved in telomerase activity regulation, NFX1 (r =0.24, P value =
0.002, false discovery rate (FDR) < 0.2) and BMI1 (r =0.22, P value =
0.004, FDR <0.2), which regulated hTERT, were positively correlated
with placental RTL (Fig. 3A). The expression levels ofmajor telomerase

catalytic subunits in telomerase activity regulation pathway, including
TERT, DKC1, NOP10 and WRAP53, were not correlated with placental
RTL (Supplementary Fig. 8), whereas TERC andNHP2 expressions were
undetectable in placenta (i.e., transcripts per million (TPM) =0 in all
samples). For genes involved in telomere capping, a SHELTERIN
component TPP1 showed a moderate correlation with placental RTL
(r =0.19, P value = 0.015, FDR >0.2) (Fig. 3A), unlike other protein
subunits of SHELTERIN andCTC1-STN1-TEN1 (CST) complexes, such as
TINF2, RTEL1, POT1, and CTC1 (Supplementary Fig. 8). CGGBP1was also
moderate correlation with placental RTL (r =0.18, P value = 0.021,
FDR >0.2). Interestingly, we observed that placental RTL was posi-
tively correlatedwith somecomponents of theALTpathway, including
ATRX (r = 0.17, P value = 0.022, FDR >0.2), DAXX (r =0.21, P value =
0.008, FDR >0.2), and SMARCAL1 (r =0.23, P value = 0.003, FDR >0.2)
(Fig. 3A and Supplementary Fig. 9). Tomitigate the potential impact of
infant sex and maternal age on our association test, we then applied
multi-variable linear regression and t-tests to examine the relation-
ships between RTL and gene expressions. Infant sex and maternal age
were treated as covariates in this analysis. Post-adjustment, placental
RTL exhibited a positive association with NFX1 (P value = 0.006) and
SMARCAL1 (P value = 0.005) expressions (Supplementary Data 7).
However, most of these correlations did not achieve statistical sig-
nificance following adjustment for covariates and multiple testing
corrections. This highlights the need for more extensive research,
potentially involving a larger sample size, to further explore these
associations.
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Moreover, we found that several canonical telomeremaintenance
genes were significantly correlated with placental STP (Supplementary
Data 8). Notably, genes involved in telomerase activity regulation, such
as SP1 (r = −0.27, P value = 0.0003, FDR <0.1), HMBOX1 (r = −0.28, P
value = 0.0003, FDR <0.1), EGFR (r = −0.26, P value = 0.001, FDR <0.1),
exhibited significant associations with STP (Fig. 3B), whole some genes
involved in telomere capping showed weak correlation (Supplemen-
tary Fig. 10). Furthermore, genes involved in ALT pathway, such as
TOP3A (r = −0.26, P value = 0.001, FDR <0.1), SMC5 (r = −0.24, P
value = 0.002, FDR <0.1) were significantly associated with STP. This
phenomenon suggested that short telomere phenotype could be an
effective indicator sensitive to changes in telomere regulatory genes in
the placenta.

To inspect the underlying biological functions associated with
placental TL maintenance, we performed two gene module analyses
based on transcriptome data from the 166 placentae. First, we used a
weighted gene co-expression network analysis (WGCNA)30 to con-
struct the co-expression networks of the human placenta and identi-
fied 26 network modules (Fig. 3C). The correlation test between each
module eigengene (ME) score and RTL identified turquoise module
was significantly associated with RTL, and the genes in this module
were enriched in the ubiquitin-like protein transferase activity

(GO:0019787, adjusted P value = 1.61e–06) (Fig. 3C and Supplementary
Fig. 11); this finding was supported by previous studies on the
ubiquitin-like proteins on telomere regulation31,32. Second, to investi-
gate whether RTL affects gene connectivity in the placenta, we calcu-
lated the connectivities of 4679 genes with high variance from the 166
placental RNA-seq data, starting from the upper quarter RTL (left side
of Fig. 3D) and subsequently added one sample with shorter RTL and
removed one sample with longer RTL to recalculate the connectivities.
Based on the hierarchical clustering of the RTL-driven gene con-
nectivities, we detected five gene clusters by Elbow method. For
example, 1424 genes in cluster 1 were predominantly interconnected
among samples with longer RTL and these genes were significantly
enriched in the cell adhesionmolecule binding (GO:0050839, adjusted
P value = 1.39e-20), while 585 genes in cluster 4 were highly linked
among samples with shorter RTL and these genes were related to
receptor ligand activity (GO:0048018, adjusted P value = 6.16e-
09) (Fig. 3E).

Integrating placental eQTL and TL GWAS for systematic prior-
itization of TL-causal genes
Recent genetic studies have identified many new TL-associated genes
by eQTL-based methods11,33, but they mainly employed eQTLs derived
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from adult tissues, probably leads to biased estimation through
unobserved lifetime exposures. A genome-wide cis-eQTL mapping on
166 placental samples from Asia population (see methods for details)
was conducted to examine new TL-causal genes based on our trans-
ancestral GWAS meta-analysis. Compared to the previous placental
eQTLs on European cohort34, we observed similar distributions of
genomic distances to the gene transcription start site (TSS) and end
site (TES) (Supplementary Fig. 12A), but identified 3913 more eQTL-
associatedgenes (eGenes) (Supplementary Fig. 12B). The effect sizes of
eQTLs in the two cohorts were also correlated (Supplementary
Fig. 12C, r = 0.42, P value < 2.2E-16). Based on RoadMap chromHMM 15
core states of placenta35, we observed thatmost of the placental eQTLs
are located in the active chromatin regions and significantly enriched
in the placental active promoter (TssA) and enhancer (Enh and EnhG)
states (Supplementary Fig. 12D, E). These results indicated the validity
and the gained power of our placental eQTL mapping.

To systematically prioritize the potential TL-causal genes, we
integrated our placental eQTLs and aforementioned trans-ancestral
GWAS results using two complementary statistical strategies. First,
colocalization analysis via COLOC36 was performed to test the shared
causal variants between gene expression (from eQTL) and TL trait
(from GWASs). We provide results of the colocalization with strong
evidence using a rigid standard (PP4 ≥0.8 and PP4/PP3 ≥ 5) and the
likely colocalization with suggestive evidence using a liberal standard
(PP4 ≥0.5 and PP4/PP3 ≥ 3).We identified 17 and 43 signalswith strong
and suggestive evidence of colocalization between placental eQTL and
TL GWAS loci, respectively (Supplementary Data 9). Second, Fusion
Transcriptome-wide association analysis (TWAS)37 and Summary-
based Mendelian Randomization (SMR)38 were applied to test for a
significant genetic correlation between cis-expression and GWAS sig-
nal. Thus, we observed 64 genes reaching transcriptome-wide sig-
nificance (FDR <0.1, two-tailed Z-test) in TWAS (Fig. 4A,
Supplementary Data 10) and identified 61 genes showing a potential
association with TL after heterogeneity in dependent instruments
(HEIDI) test (FDR<0.1) in SMR (Supplementary Data 11), respectively.

The intersection of gene prioritization results from COLOC with
suggestive evidence and the union of TWAS and SMR retrieved 23
likely causal genes related to TL (Supplementary Data 12). These can-
didates encompassed several genes responsible for canonical telo-
mere regulation, such as telomere length maintenance39 and telomere
end protection40. Moreover, some of the mechanisms underlying the
causal genes have been explored recently. For example, TSPYL5 is
required to maintain POT1 protein levels and suppresses POT1 poly-
ubiquitination and degradation exclusively in ALT cells41. GEN1 is
required for telomere replication and prevents the cutting of
telomeres42. RFWD3 plays a role in DNA damage response and facil-
itates translesion DNA synthesis43. ATE1 encodes an arginyltransferase
for ubiquitin-dependent degradation and is associated with sub-
telomeric regulation44. We also discovered several new genes whose
TL-related function was rarely documented, such as RRM1, MMUT,
KIAA1429, YWHAZ, PEX6, POLI, CDC25B, and HDDC2, and exemplified
strong evidence of positive causal associations between genetic
determined expressions and TL in genomic loci of four new genes
(Fig. 4B–I). Collectively, the stringent prioritization of TL-causal genes
based on placental eQTL and large-scale TL GWAS summary informa-
tion would provide new insight for understanding TL regulation.

Experimental validations of top prioritized genes in TL
regulation
To evaluate the causal effect of the new hits in our prioritization, we
functionally verified the positive regulation of TL by perturbing the
four genes screened above: RRM1, MMUT, KIAA1429, and YWHAZ.
Briefly, HTR8/SVneo cell lines were established by immortalizing a
physiological extravillous trophoblast cell by transfection with a
plasmid containing the simian virus 40 large T antigen45. Stable HTR8/

SVneo cell lines were established by the knockdown of the above four
genes by shRNA plasmids. Next, we detected whether TL in these cell
lineswould shorten via southern blots of TRF a ssays to verify the likely
causal correlation between investigated genes and TL.

RRM1 gene encodes the large and catalytic subunit of ribonu-
cleotide reductase (RNR), an enzyme for converting ribonucleotides
into deoxyribonucleotides, which is essential for DNA replication and
DNA repair processes46. However, the direct correlation between
human RNR and TL has not yet been established. Consequently, the
knockdown of RRM1 gene in eight monoclonal HTR8/SVneo lines
consistently showed telomere shortening compared to control cells
(Fig. 5A, B). One cell clone (shRRM1-2-6) was picked for continuous
passage. The results demonstrated that TL was gradually shortened
with cell passage (Fig. 5C), further confirming the positive regulatory
effect of the RRM1 gene on TL in the placenta. Besides, MMUT gene
encodes the mitochondrial enzyme methylmalonyl-CoA mutase. In
humans, the product of this gene is a vitamin B12-dependent enzyme
that catalyzes the isomerization of methylmalonyl-CoA to succinyl-
CoA, yet the causal correlation between MMUT and TL is unknown.
We also found that MMUT knockdown in most monoclonal HTR8/
SVneo lines significantly reduced TL (Fig. 5D, E). With continuous
passage, the TL of the shMMUT-1-2 monoclonal cell line shortened
continually (Fig. 5F). Finally, the inhibition of the other two new
genes KIAA1429 (a vital component of the m6A methyltransferase
complex) and YWHAZ (tyrosine3-monooxygenase/tryptophan
5-monooxygenase activationprotein zeta) showeda similar patternof
telomere shortening (Fig. 5G–J). This functional validation greatly
supports the causal association between these enzymes and TL
maintenance.

Incorporating genetic and transcriptomic information for
accurate TL prediction
This study, together with previous GWAS findings, has strengthened
the polygenic basis of TL variation, yet the genetic determinants for TL
explained by all genome-wide variants were not substantial (<10%
variance explained)10–12. The accurate estimation of TL only relies on a
single angle of information, such as genetic or epidemiological factors,
which shows a low agreement with actual TL measured by different
biochemical assays16,47. To improve the performance of TL prediction
and facilitate TL-related clinical applications48,49 when accurate TL
measurement (such as TRF-based or fluorescent in situ hybridization
(FISH)-based test) is absent, we incorporated transcriptomic infor-
mation of placental tissue into TRF-based RTL prediction model and
systematically compared it to the existing strategies. First, an elastic
net regression model was constructed on our 166 placental multi-
omics data and individual demographic information. Next, we
inspected the ability of TL inference using transcriptional risk score
(TRS)50,51 over static PRS. As a result, the TRS model based on genes
regulated by variants linked to TL (r2 =0.48, P value = 1.38e-20, 10-fold
cross-validation) outperformed the PRS-based model (r2 =0.10, P
value = 3.17e-05) in predicting placental RTL (Fig. 6A), suggesting that
transcriptomic information reflects an additional layer of TL determi-
nants than solely genetic information. Since both PRS- and TRS-based
models largely depend on GWAS significant variants, we investigated
whether incorporating expression signatures from a specific number
of genes could enhance the performance of TL prediction. Thus, the
elastic net regression was applied to model the TRF-based RTLs of 166
placentas alone with individual PRS and gender information, resulting
in 32 selected genes, independent of PRS, which showed non-zero and
significant coefficients (see Methods for details) and found that TL
predictionmodel building on transcriptomic score calculated from the
expression of these 32-gene signature (TS-32Gene) surpassed the TRS-
based model (r2 =0.48, P value = 3.18e-24) (Fig. 6A). Additionally, the
network enrichment analysis by EviNet52 showed that both signature
genes and TL-causal genes were enriched in DNA replication signaling
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pathway (SupplementaryFig. 13), indicating thatTS-32Gene represents
a unique and powerful predictor of TL. To further gain predictive
performance, we combined transcriptomic signature and genetic
determinants of TL on several full models training. Notably, the com-
bination model of TS-32Gene, PRS, and TRS exhibits the best perfor-
mance (r =0.85, r2 =0.72, P value = 1.70e-47) among all trained models
(Fig. 6A, B).

To evaluate the validity of TRF-based RTL prediction model
independently, we applied the most practical model (with parsimo-
nious information) only based on TS-32Gene and PRS to GTEx multi-
omics data and observed a good agreement between the predicted

and observed RTL measured by Luminex-based assay across different
GTEx tissues (Fig. 6C, r = 0.26, P value = 5.92e-45), especially in whole
blood, ovary, and esophagus tissues (Supplementary Data 13). This
result not only demonstrated the generalizability of our TL prediction
model in different contexts but also implied a shared pattern of TL
regulation between the placenta and other tissues. In addition, TL
estimated by TelSeq53, a sequencing-based TL measurement (see
Methods for details), showed aweak correlation with Luminex-derived
TL in GTEx whole blood tissues (Fig. 6D, r = 0.13, P value = 0.006),
further indicating the superiority of our strategy. Further, to sub-
stantiate our TL prediction strategies in an additional cohort, we

−0.94 −0.47 0 0.47 0.94
eQTL effect sizes

−0.005

0

0.005

0.009

0.014

G
W

AS
 e

ffe
ct

 s
iz

es

ENSG00000146085.7 (MUT)

top cis-eQTL
cis-eQTL

0.09

0.27

0.46

0.64

0.82

1.00

r2

−0.1 0 0.1 0.21 0.31
eQTL effect sizes

−0.003

0

0.003

0.007

0.01

ENSG00000167325.14 (RRM1)

top cis-eQTL
cis-eQTL

0.35

0.48

0.61

0.74

0.87

1.00

r2

−0.2 −0.1 0 0.1 0.2
eQTL effect sizes

−0.009

−0.004

0

0.004

0.009

ENSG00000164944.11 (KIAA1429)

top cis-eQTL
cis-eQTL

0.08

0.27

0.45

0.63

0.82

1.00

r2

−0.32 −0.16 0 0.16 0.32
eQTL effect sizes

−0.006

−0.003

0

0.003

0.006

ENSG00000164924.17 (YWHAZ)

top cis-eQTL
cis-eQTL

0.05

0.24

0.43

0.62

0.81

1.00

r2

rs4348317

0

5

10

15

20

25

0 2 4
TL GWAS  −log10(P)

eQ
TL

 −
lo

g1
0(

P)

rs1103111

0

2

4

6

0 2 4 6 8
TL GWAS  −log10(P)

eQ
TL

 −
lo

g1
0(

P)

rs1992370

0

1

2

3

4

5

0 5 10 15 20

TL GWAS  −log10(P)

eQ
TL

 −
lo

g1
0(

P)

rs3134376

0

5

10

15

0 1 2 3 4 5

TL GWAS  −log10(P)

eQ
TL

 −
lo

g1
0(

P)

I

B C D E

F G H

0.8
0.6
0.4
0.2

r2

A
STN1 TEN1

PPDPFHEATR3

KIAA0319L
HDDC2

RPA1UPK3B ACOT2KHK MUT
GTF2H2 PEX6

UHRF1BP1

GATC EXOSC6VARS2
TRMT61B

WDR6 ZNF492−5

0

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22
Chromosome

TW
AS

 Z
 s

co
re

Fig. 4 | Causal associations between genetically determined gene expressions
and TL. A Manhattan plot of transcriptome-wide association results. The x-axis
represents the genome in physical order; the y-axis shows Z score for all genes.
Genes that passed multiple testing corrections (FDR<0.1) are highlighted in red
and labeled with gene name.B–E LocusCompare plots for the (B)MMUT, (C) RRM1,
(D) KIAA1429, and (E) YWHAZ loci, where the GWAS signals (x-axis) colocalized the
eQTL signals (y-axis). LD is colored with respect to the GWAS lead SNPs. The lead

SNPs are plotted as a purple upright triangle. The x-axis and y-axis show the -log P
values for variants located at the respective loci. F–I Scatter plot of the effect sizes
of variants reported inTLGWAS andplacental eQTLs from (F)MMUT, (G)RRM1, (H)
KIAA1429, and (I) YWHAZ. Effect sizes of the variants in the TL GWAS (y-axis) and
eQTL (x-axis) are plotted. Error bars indicate 95% confidence interval. The red
triangle shows the top cis-eQTL, blue circles indicate cis-eQTLs. Error bars show the
standard errors of the SNP effects.

Article https://doi.org/10.1038/s41467-023-44355-z

Nature Communications |         (2023) 14:8517 7



exploited the UKBB Chinese dataset, encompassing both genotype
and telomere length data. By leveraging estimated gene expressions
from genotype and placental eQTL, the observed correlation between
predicted and actual TL values was significant (Supplementary Fig. 14,
r = 0.35, P value < 2.2e-16). This underscores the robustness and pre-
cision of our approach that amalgamates both PRS and transcriptomic
data for TL prediction.

Discussion
Telomere shortening is a classical hallmark of cell senescence and
aging, and there are many known elements that contribute to the
individual variations of TL, such as genetic, environmental, and life-
style factors2. Although several large-scale GWASs have identified a
large number of genetic loci associated with TL;11,12,33 however, the true
causal genes underlying the telomere content regulation are yet to be
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MMUT, RRM1, KIAA1429, and YWHAZ. A 34 days after HTR8/SVneo cells were
infected with shRRM1 lentiviral particles, 8 shRRM1 monoclonal cell lines grown in
96-well plates were transferred to 6-well plates. TRF assay was used tomeasure the
TL of these cell lines. B RRM1 RNA levels were estimated by qPCR and analyzed by
GraphPad Prism software version 6.0. Data are represented as mean ± SD (n = 3).
The two-sidedP values of t testwere (1.36e-7, 7.23e-8, 6.28e-7, 1.01e-5, 1.35e-7, 1.48e-
7, 3.20e-7, 4.08e-7). ****P value < 0.0001. (C) HTR8/SVneo cells stably expressing
control (shScramble) and shRRM1 were passaged over time (DAY) and examined
for average TL by TRF (n = 4).D 34 days after HTR8/SVneo cells were infected with
shMMUT lentiviral particles, six shMMUT monoclonal cell lines grown in 96-well
plates were transferred to 6-well plates. TL of these six cell lines was measured by
TRF assay. EMMUT RNA levels were estimated by qPCR and analyzed by GraphPad
Prism software version 6.0. Data are represented as mean ± SD (n = 3). The two-
sided P-values of t test were (1.23e-04, 2.34e-05, 2.05e-04, 2.19e-04, 7.63e-05, 1.78e-

04). ***P value < 0.001; ****P value < 0.0001. F HTR8/SVneo cells stably expressing
control (shScramble) and shRNA sequences against MMUT were passaged over
time (DAY) and examined for average TL by TRF (n = 4).G 32 days after infection of
shKIAA1429 lentiviral particles, six shKIAA1429 monoclonal cell lines from 96-well
plates were grown in 6-well plates. The TL of these cell lines was measured by TRF
assay. (H) KIAA1429 RNA levels were tested by qPCR and analyzed by GraphPad
Prism software version 6.0. Data are represented as mean ± SD (n = 3). The two-
sided P values of t test were (6.15e-05, 2.51e-05, 2.82e-05, 2.59e-05, 3.14e-05, 2.96e-
05). ****P value < 0.0001. I 32 days after infection of shYWHAZ lentiviral particles,
5 shYWHAZ monoclonal cell lines grew from 96-well plates to 6-well plates. TL of
these cell lines wasmeasured by TRF assay. J YWHAZ RNA levels were estimated by
qPCR and analyzed by GraphPad Prism software version 6.0. Data represent
mean ± SD (n = 3). The two-sided P-values of t test were (7.80e-05, 7.80e-05, 7.30e-
05, 7.70e-05, 1.01e-03). ****P-value < 0.0001.
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elucidated. By leveraging TRF assay, genotyping chip, and RNA-seq on
hundreds of placenta samples together with trans-ancestral TL GWAS
and functional validations, we systematically investigated the causal
genes and developed a powerful prediction model for human TL.

A recent study by GTEx consortium has investigated the deter-
minants of TL across various adult human tissues and cell types16.
However, samples included inGTEx experienced life-course exposures
to the external environment and physiological status. The inherently
short or long TL might be largely determined at birth and may be
crucial for lifelong health28. Studies on TL of human tissues with a
primitive state are lacking. The placenta embeds in the maternal
uterus, allowing nutrition delivery and promoting the growth and
development of the fetus54. In addition, heritability estimates on adults
are often affected by environmental factors, impeding the identifica-
tion of the true genetic determinants. Since newborn TL could predict
later life TL55, it is critical to investigate TL determinants of the new-
born. However, no existing study has harnessed a significant number
of early samples without postnatal environmental exposure to
study TL.

In the placenta, the telomere is less affected by extraplacental
exposure or other non-genetic effects, which provide an ideal proxy
for studying the genetic determinants and causal genes of TL. Using
the TRF measurement, we are able to not only calculate the mean TL,
but also characterize the STP. Next, this study investigated the corre-
lation between RTL and genes involved in telomerase activity regula-
tion, telomere capping, and the ALT pathway. We found that placental
RTL and STP were significantly correlated with genes involved in the
telomerase activity regulation and ALT pathway, but not with telo-
merase subunit genes. Despite our data indicating an association of
increased ATRX, DAXX, and SMARCAL1 expression with longer pla-
cental telomere length, this contradicts conventional ALTmechanisms
seen in cancer56, where such genes are typically lost. This discrepancy
questions ALT discussions’ applicability in healthy placenta, under-
scoring the need for larger-scale studies. Besides, we observed a dis-
crepancy in RTL characteristics between the placenta and other adult
human tissues. Consistent with previous studies, the present study
revealed that placental RTL exhibits intra-tissue homogeneity but is
longer than other somatic adult tissues23,24,57. Nevertheless, the pla-
cental RTL ofmale infants is slightly longer than that of female infants,
while RTL is longer in females than males in adult tissues, suggesting
that the femalesmay sustain long RTL during postnatal developments.
Furthermore, recent studies have reported that longer telomere length
is associated with an increased risk of adolescent-onset ependymoma
and osteosarcoma58,59. These findings highlight the criticality of
investigating TL regulation during early life stages andpave theway for
future research exploring how genetic effects, thatmay alter TL, could
possibly contribute to developmental disorders and diseases.

Studies frommultiple worldwide cohorts were pooled to perform
trans-ancestral GWAS meta-analysis in over 500,000 individuals. The
power to detect genome-wide significant signals associated with TL
was improved; as a result, we could detect 20 new genetic associations
and recover 87% of the previously reported TL GWAS significant loci.
Notably, PRSs of 166 placental samples constructed by TL-associating
variants identified via trans-ancestral GWAS were significantly asso-
ciated with RTL. However, when evaluating PRSs using either GWAS
variants from a single cohort or genotypes from GTEx whole blood/
UKBB leukocyte samples, we only detected weaker RTL correlations,
suggesting that leveraging the trans-ancestral GWAS andTRF-basedTL
measurement could boost the predictive power of PRS on TL. On the
other hand, gene expressions in placental tissue are less perturbed
through lifetime exposures. Based on genotype and transcriptome
profiling from 166 placental samples, we conducted genome-wide cis-
eQTLmapping and performed TL-causal gene discovery together with
our trans-ancestral GWAS results. Complementary statistical methods
(such as COLOC, Fusion-TWAS, and SMR) yield 23 likely causal genes

related to TL, and some are rarely or inadequately associated with TL,
such asMMUT, RRM1, KIAA1429, and YWHAZ, which showed a positive
regulation of TL. By establishing HTR8/SVneo cell lines with a stable
knockdown of these four genes, we validated their functional rele-
vance in maintaining TL via TRF assay. However, the biological
mechanisms and tissue/cell-type specificity of these new TL-causal
genes still need an in-depth investigation in the future. Supposedly,
some causal genesmay not have been detected in this study due to the
limitations of sample size, population difference, and tissue specificity
of TL maintenance and regulation.

Recent genetic studies havemade significant strides in identifying
new genes associated with TL using eQTL-based methods. However,
these studies have primarily relied on eQTLs derived from adult tis-
sues, potentially resulting in biased estimations due to unobserved
lifetime exposures. In this manuscript, we present our findings on TL-
associated genes, highlighting our unique approach that addresses
these limitations. By incorporating tissue-specific sources, as well as
integrating transcriptome, sequence variants, and TL data, we aim to
provide a comprehensive understanding of TL regulation. While our
study showcases its unique aspects, it is essential to highlight the
potential drawbacks, such as the absence of additional functional
genomic annotations and predictions utilized in recent adult tissue-
based eQTL studies, as well as incomplete causal gene prioritization
strategies60,61. Our study acknowledges the limitation of insufficient
sample size, which can influence the detection of associations between
genetic variants and gene expression levels in eQTL analysis. Future
investigations with larger sample sizes are anticipated to enhance
statistical power, enable the detection of weaker eQTL signals, and
improve the precision and generalizability of the results. This
advancement is expected to providemore reliable and comprehensive
insights into the genetic regulation of gene expression in the placenta.
Furthermore, the accuracy of meta-analysis can be attenuated in the
presence of cross-study heterogeneity, which can be attributed to
several factors. One significant consideration is the meta-analysis of
multiple TL studies, whichmight utilize slightly different definitions of
the phenotype under investigation. Consequently, the effect sizes
across these studies may vary. Additionally, the presence of ancestry-
specific effects can further contribute to the observed heterogeneity.
Together, these factors highlight the importance of carefully inter-
preting GWAS results in the context of diverse study populations and
varying definitions of phenotypes, thereby emphasizing the need for
rigorous validation and comprehensive understanding of the under-
lying genetic associations of TL.

Although TRF assay is a gold standard to quantify TL, it also has
manydrawbacks; it is time-consuming, less cost-effective, and requires
large DNA material62. Since the fine-grained determinants of placental
TL couldbe explored effectivelyusingbothgenetic and transcriptomic
information, we constructed several TL prediction models and sys-
tematically compared them to the existing strategies. The proposed
model relying on transcriptomic signature not only exhibited a great
performance in our TRF-based data but also generalized well in the
GTEx data. Our model performs better than a whole-genome sequen-
cing (WGS)-based TL estimation method, TelSeq. The gained perfor-
mance in the independent datasets, especially in whole blood, lung,
and esophagus tissues, highlighted that the regulators of placental TL
might have similar biological roles in other tissues. Thus, we specu-
lated that our TLprediction strategy could assist the TL-related clinical
applications48,49 when accurate TLmeasurement (such as TRF-based or
FISH-based test) is not reachable.

Methods
Sample collection and processing
The healthy singleton Chinese pregnancies (n = 166) were recruited
prior to delivery at Tianjin Central Hospital of Gynecology Obstetrics,
China. These study participants did not have any recorded medical
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disorders or adverse pregnancy outcomes. The hospital ethics com-
mittees approved the collection and use of human placental samples
(approval no. 2022KY071). All participants provided written informed
consent before sample collection. Placentas were treated within 10min
of a vaginal delivery from full-term pregnancies (37 +0–41 + 6 weeks).
The average age of the participants was 32 ± 4.0 years, and no tobacco-
smokingor alcohol-drinkingbehaviorwasnoted. The cohort comprised
73 female and 93male infants. No significant differences were observed
in maternal age, maternal BMI, infant weight, and gestation weeks with
regard to infant gender (P value >0.05).

We optimized the placenta sampling protocol recommended in
the Amsterdam Placenta Workshop Group Consensus Statement to
allow standardized tissue collection for this study63. Specifically, four
equidistant sampling points were selected from a hypothetical con-
centric area with a radius of 2 cm centered at the placental umbilical
cord insertion point to collect a 1.5 × 1.5 cm full-thickness placental
biopsy. The placenta was placed with the fetal side up and oriented
with the largest umbilical artery on the fetal side of the placenta as a
reference. To avoid contamination with cells of non-target origin, the
membranes were excised and excess blood was removed using sterile
filter paper. A processed full-thickness biopsy was divided into three
equal parts, and samples were taken from both sides, located in the
fetal and maternal layers. A total of eight samples were obtained per
placenta. All samples were stored in RNAlater at −80 °C until extrac-
tion. To analyze the potential intraplacental variation of TL, one ran-
dom sample from the four fetal layer-derived biopsies collected from
each of the 166 placentas, was selected for subsequent testing,
including TRF assay, genotyping, and RNA-seq.

This study investigated telomere length in healthy individuals
using 231 blood samples and 12 skin samples (approval no.
2023YS105). The blood samples comprised 143 males and 88 females,
with an average age of 46.9 years (ranging from 5 to 89 years). Per-
ipheral blood samples of 0.5–2.5ml were collected from the elbow
vein of each participant and preserved in EDTA-coated venous blood
collection tubes for subsequent genomicDNAextraction. Additionally,
12 skin samples were obtained from healthy individuals (6males and 6
females) with an average age of 37.6 years (ranging from 26 to 59
years), and genomic DNA was extracted for further telomere length
analysis. Furthermore, the study included normal adult cardiac and
lung tissues (N = 6 each) for telomere length analysis. Ethical regula-
tions were strictly followed, and the use of fetal samples was approved
under protocol number 2022ky071-1. Approximately 100mg tissue
samples were used for genomic DNA extraction.

TRF length analysis
TRF method combined with pulsed-field electrophoresis was used to
detect the TL length of 166 placental tissues. Genomic DNA isolation
kit (Biomiga, BW-GD2211-02) was used to extract genomic DNA from
placental tissue and HTR8/SVneo cells in the following experiments.
TRF length analysis was applied to measure the TL of these DNA
samples. Briefly, 1μg genomic DNA of each sample was digested with
HinfI and RsaI and then analyzed by agarose gel electrophoresis in0.5×
TBE. Pulsed-field gels [1% (wt/vol)] were run at 6 V, 14 °C for 16 h, and
normal electrophoresis gels [0.8% (wt/vol)] were run at 100V, 0–4 °C
for 3 h. Subsequent procedures, such as gel depurination, gel dena-
turation, gel neutralization, DNA transfer to membrane, hybridization
with DIG-labeled telomere probe, chemiluminescent detection, and
TRF length analysis, were conducted. The sequence of telomere probe
is TAACCCTAACCCTAACCCTAACCC. As an internal control, HeLa cell
DNA was added in the first lane of each experiment to correct for
batch-to-batch variation, and the RTL of 166 placental tissues was
estimated by the ratio of their TL vs. HeLa DNA’s TL. Besides, we also
consider the telomere <5000bp as the short telomere and the ratio of
the band’s intensity <5000bp to the total intensity of the entire telo-
mere band as the STP. The quantification and normalization of TRF

length were performed using TeloTool25. To enhance the credibility of
our data analysis, TeloTool was utilized with a stringent Fit threshold
setting of 60%.

Genotyping, imputation, and quality control
Placental samples were genotyped using the Asian Screening Array
(ASA) 750k platform, an Illumina whole-genome single nucleotide
polymorphism (SNP) chip designed based on a large-scale East Asian
whole-genome sequencing data that encompasses about 750,000
markers. Genotype calling by ASA resulted in a dataset of 166 indivi-
duals typed at 738,980 markers. Data cleaning was performed using
PLINK v1.964. All genotyped variants were subjected to quality control
(QC) before imputation. Consequently, variants with (1) call rate
(<95%) in all samples, (2) MAF <0.0001, and (3) departures from
Hardy-Weinberg equilibrium (P value < 1E-5) were removed. Also,
individuals with the following criteria were removed: (1) overall SNP
genotyping call rate <95% and heterozygosity rate > 3 SD; (2) geneti-
cally inferred sex mismatches between genotype and self-report; (3)
related individuals with an identity-by-descent value > 0.1875; Before
imputation, we removed SNPs with C/G and A/T alleles to avoid strand
flipping. Then, we used Michigan Imputation Server65 to impute
untyped SNPs by borrowing the LD information from all samples using
GAsP with Minimac4 for imputation and Eagle v2.4 for phasing. Fol-
lowing imputation, any imputed variant with an imputation quality
score <0.3 or MAF<0.01 was removed.

To determine if DNA for genotyping included maternal side tis-
sue, we employed the following steps using B allele frequency (BAF)
and log R ratio (LRR)66–68. Firstly, we calculated the BAF and LRR values
and plotted themon scatter plots or histograms to visually assess their
distribution patterns. In nonmixed DNA samples, BAF values typically
cluster around specific patterns based on the genotype (homozygous
or heterozygous). Deviations from these expected patterns may sug-
gest a DNA mixture. Subsequently, we identified BAF values that sig-
nificantly deviated from the expected patterns, such as clustering
around 0.5 for heterozygous SNPs. Substantial variations in BAF values
could suggest the presence of DNA from multiple individuals. Addi-
tionally, we examined LRR values for aberrations that deviated from
the normal diploid states. Copy number alterations or imbalances in
LRR values might indicate the presence of a DNA mixture from mul-
tiple individuals. Finally, samples that did not pass the examination
based on BAF and LRR criteria were excluded from further analysis.

Transcriptome profiling and quantification
During DNA genotyping and TLmeasurement, we performed RNA-seq
to quantify the genome-wide mRNA expression for 166 placental
samples. An equivalent of 3 µg RNA per sample was used as an input
material for the RNA sample preparations. RNA-seq was performed
using the IlluminaNEBNext®UltraTM RNA sample preparationprotocol.
The final libraries were sequenced on HiSeq 4000 platform using
150 bp paired-end chemistry and were run with a coverage goal of
80M reads. Reads containing adapter and ploy-N and those with low
quality were removed from raw sequencing reads using fastp69.
SequencingQCwas used to obtain the overall quality, GC content, and
adapter contamination using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc). Then, we used STAR v2.5.3a70 to
align the paired-end reads to the reference genome. Gene annotation
file was downloaded from GENCODE release 26 (https://www.
gencodegenes.org/human/release_26.html). RNA-SeqQC v1.1.971 was
applied to count the read numbers mapped to each gene. The genes
were selected based on the following expression thresholds: ≥0.1 TPM
and ≥ 6 reads count in at least 20% of samples.

Co-expression network construction
We used WGCNA30 to construct the co-expression modules and cal-
culate the gene connectivities. The co-expression networks were
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constructed with the soft power at 9, while other parameters were set
at default. The adjacency was transformed into a topological overlap
matrix (TOM), and the average linkage hierarchical clustering was
performed according to the TOM-based dissimilarity measure. The
module eigengene (ME) was the first principal component of a given
module and could be considered a representative of themodule’s gene
expression profile. The 26 MEs for the 26 distinct modules were each
tested for the correlations with RTL. Then, gene connectivities were
determined by calculating the connectivity values using soft-
Connectivity function of WGCNA. Briefly, connectivity describes how
strongly a gene is connected to all the other genes in the network. The
absolute value of Pearson’s correlation coefficient was calculated for
all pairwise comparisons of gene expression values across all samples.
The Pearson’s correlation matrix was then transformed into an adja-
cency matrix. softConnectivity constructed the adjacency matrix and
calculated the connectivity of each gene, i.e., the sum of the adjacency
to the other genes. A total of 4679 genes exhibiting the top 30% high
expression variance (captures more valid information) were selected
for the co-expression analysis. K-means clustering was used to deter-
mine the gene groups for the connectivity shift. We also determined
the number of clusters by Elbow method. Finally, GO enrichment
analysis was carried out via R package clusterProfiler72.

Correlation test for TL and TL-related genes
By conducting a comprehensive literature review and keyword search
on the Gene Cards website (https://www.genecards.org/) using terms
such as “telomerase activity”, “telomere capping”, and “alternative
lengthening of telomere”, we meticulously compiled three distinct
datasets. These datasets contain genes that potentially regulate telo-
mere length, including genes related to telomerase activity regulation,
telomere capping, and alternative lengthening of telomere for further
analysis. Subsequently, we computed the Pearson correlation coeffi-
cient and evaluated its significance using a two-tailed t-test. To control
the false discovery rate (FDR), we employed the Benjamini-Hochberg
(BH) procedure, setting a significance threshold of <0.2 to identify
statistically significant results after adjusting formultiple comparisons.
Furthermore, we conducted a multivariable linear regression model,
considering maternal age and infant gender as covariates in the
analysis.

eQTL mapping
The expression values for each gene were further inverse normal
transformed across samples by trimmed mean of M-values73. eQTL
mapping was performed using tensorQTL74, a GPU-basedmethodwith
high efficiency. Next, we used a linear regression model, with top 5
genotype principal components (PCs), age, and 30 PEER factors
adjusted. Genotype PCs were computed based on the post-QC geno-
typing VCF using EIGENSTRAT75. To detect cis-eQTLs effects, we tested
the nominal associations between all variant-gene pairs within a ± 1Mb
window around the TSS of each gene and estimated the beta-
approximated empirical P-values to obtain appropriate significance
thresholds based on 10,000 permutations of each gene. Multiple
testing corrections were assessed using the Benjamini–Hochberg
algorithm, with FDR across all cis-eQTL tests within each chromosome
estimated. The placental chromatin state regions predicted by
chromHMM35 15-core statemodelweredownloaded fromhttps://egg2.
wustl.edu/roadmap/. We performed Fisher’s exact test to investigate
whether eQTLs were prone to be located in a specific chromatin state
than expected. A two-sided P-value and odds ratio were calculated to
measure the enrichment of eQTLs in the chromatin state regions.

GWAS meta-analysis
We collected genome-wide summary statistics from three TL trait
GWASs based on large-scale individuals, including SCHS10, NHLBI
TOPMed12, andUKBiobank (UKBB)11. First, the variantswithMAF<0.01

were excluded. The rationale behind selecting this MAF cut-off value
stems from the limitation of available GWAS summary statistics for the
Singapore cohort, which only covered common variants (MAF ≥0.01).
Thus, to ensure compatibility with the available data, we use the filter
threshold at ≥1% for MAF across separate GWAS cohorts. We specifi-
cally excluded low-frequency variants to ensure the consistency of
variant selection across the multiple GWAS studies we incorporated.
Then a fixed-effect meta-analysis weighted by sample size of each
study was conducted using METAL76. Genome-wide statistical sig-
nificance for the meta-analysis was set at P value < 5E-8, HETERO-
GENEITYmodewas set to determinewhether the observed effect sizes
were heterogeneous across samples. To recognize the newgenetic loci
in trans-ancestral meta-analyses, we first identified the associated
genetic loci in TOPMed, UKBB, and SCHSmeta-analyses at a threshold
of P value < 5E-8. A locus was defined new in a trans-ancestral meta-
analyses if it did not overlapwith any loci of GWAS froma single cohort
(R2 > 0.01 with any of reported TL loci).Manhattan andQ-Qplots were
generated by CMplot77. In order to identify the positions of loci con-
taining TL-associated variants, linkage disequilibrium (LD) clumping
was conducted using PLINK v1.9. The variants were pruned with the
following parameters: a P-value cutoff of 5E-8, at a genomic distance of
10Mb, and R2 < 0.001 with the lead SNP, using the LD structure of the
1000 Genomes Project as a reference panel. The HBB variants were
removed from the results due to potential technical artifacts reported
by UKBB.

PRS analysis
Polygenic scores of TL were constructed using PRSice-278 to gauge the
associations between reported variations of TL in general populations
and in the current study. The scores were computed as the weighted
sum of effect allele dosages, as a matrix multiplication of SNP dosages
per individual by betas per SNP, i.e., the outcome is a single score of
each individual’s genetic loading for TL. Our measure of predictive
power is the incremental R2 from adding the score to a regression of
the phenotype while adjusting for top five genotyping PCs, sex, and
maternal age. The PRS was calculated by summing over all SNPs
meeting a set of thresholds, respectively. We used the default P-value
thresholds in PRSice-2 (from 5E-8 to 0.5, step size: 5E-5). All SNPs that
met the specified threshold underwent LD pruning to reduce over-
fitting, utilizing the default settings (distance for clumping: 250 kb, R2

threshold: 0.1). The null P value of the association of the best-fit GWAS
P value threshold was converted to the empirical P value under 10,000
permutations. Pearson’s correlations between PRS and RTL were used
to compare the PRS analytical performance for the Chinese samples in
UKBB, all samples in GTEx, and all samples in this study.

Colocalization analysis
COLOC was applied to colocalize eQTL and TL signals which provided
evidenceof aputativecausal correlationbetween the eQTL target gene
and TL36. Herein, we used coloc.abf function implemented in the R
package COLOC to performcolocalization analysis.We provide results
of colocalization with strong evidence and likely colocalization with
suggestive evidence using both a rigid standard (PP4 ≥0.8 and PP4/
PP3 ≥ 5) and a liberal standard (PP4 ≥0.5 and PP4/PP3 ≥ 3). The regio-
nal plotwas generatedusing locuszoom (http://locuscompare.com/)79,
and LD was calculated based on the genotype of all individuals from
1000 Genomes project phase380.

TWAS analysis
The summary-based TWAS was applied to GWAS meta-analysis data
using FUSION following the pipeline describedon theirwebsite (http://
gusevlab.org/projects/fusion)37. FUSION estimated the heritability of
gene expression levels explained by SNPs in cis regions to each gene
using the mixed-linear model (for instance, BLUP, BSLMM, LASSO,
Elastic Net, and Top1 models). The weights for gene expression in the
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placenta were calculated based on the correlation between SNPs and
the placental gene expression while accounting for LD among SNPs.
The genes that failed the heritability check (heritability P-value > 0.01)
were excluded from further analyses. We restricted the cis-locus to
500 kb on the either side of the gene boundary. Then, the associations
between the predicted expression of genes and TL were identified by
FUSIOIN at default settings. Finally, the proportion of variance in gene
expression, P-value, and Z-score was obtained from FUSION. TWAS
Manhattan plot was generated using TWAS-plotter (https://github.
com/opain/TWAS-plotter). TRS was constructed by the genetic value
weighted by their Z-score in the TWAS.

SMR analysis
The summary-based SMR method allowed us to infer the causal
association between genetically determined gene expression and TL.
The SMR test was developed to test the association between the
exposure and the outcome using a single genetic variant as the
instrumental variable38. Based on the assumption of SMR, SNPs are
required to affect the TL only through the effects on gene expression.
cis-eQTLs were used as the instrumental variables in this analysis. The
HEIDI test was carried out to test the existence of linkage in the
observed association. Rejecting the null hypothesis (i.e., PHEIDI < 0.01)
indicated the presence of two or more variants in high LD underlying
the association. Thus, we used the default settings in SMR (i.e.,
MAF ≥0.01, excluded SNPs with LD R2 between top-SNP >0.90 and
<0.05 and one of each pair of the remaining SNPs with LD R2 > 0.90),
and leveraged the FDR for multiple testing corrections.

Elastic net regression
We also used an elastic net regressionmodel to regress TL onmaternal
age, infant sex, TL PRS, TRS, and gene expressions. It is a regularized
regression method that linearly combines the L1 and L2 penalties of
the LASSO and ridge methods81, emphasizing model sparsity while
appropriately balancing the contributions of co-expressed genes. The
raw values of all the features are standardized by removing the mean
and scaling to the unit variance before training. Optimal regularization
parameters were estimated via 10-fold cross-validation. The alpha
parameter was set to 0.14, and the lambda value from the best pre-
diction model selected by exhaustive grid search was set to 0.18. The
elastic net regression model automatically selected features for
building a TL predictor and reported an effect size for each feature. To
compare the incremental predictive power of PRS and TRS, we also
trained twomodels that includedmaternal age, infant sex, and TL PRS
only or TRS only. Since our sample size was <200, we did not leave a
testing set for validation but used a 10-fold cross-validation strategy.
Instead, GTEx was utilized as an independent validation source, where
only GTEx tissues with > 100 samples are used for validation. The
correlation (r2) between the predicted and the true TL across all sam-
ples was used to evaluate the accuracy. Moreover, we compared the
performance of the elastic net regressionmodel used in this study and
a WGS-based TL estimation tool, TelSeq53. The TelSeq tool estimates
the average TL using counts of sequencing reads containing a fixed
number of telomere signature TTAGGG repeats. A repeat number of 12
and a GC content window of 48–52% was applied in this calculation.
TelSeq was also used to estimate the TL for 670 GTEx whole blood
samples based on sequence alignment files derived from WGS data,
while r2 between the predicted and the true TL across all samples was
used to compare the performance. To further validate our TL predic-
tion strategies in UKBB Chinese data, which provides both genotype
and telomere length information. We employed a strategy akin to the
one used in TWAS. Specifically, we leveraged the weights obtained
fromTL eQTLs to predict gene expression from the available genotype
data in the UKBB Chinese dataset using FUSION. Then the elastic net
regression model was trained on age, sex, PRS, and predicted gene
expressions.

Cell culture
HEK 293 T cells were grown in DMEM (Corning, USA) supplemented
with 10% fetal bovine serum (LONSERA, UY) and 1% penicillin-
streptomycin. HTR8/SVneo cells were cultured in 1640 (Corning)
medium containing 10% fetal bovine serum and 1% penicillin-
streptomycin. The optimal culture conditions in the incubator were
37 °C, 5% CO2, and humidity of about 95%.

shRNA design and plasmid construction
shRNA sequences were introduced into pLKO.1-puro vectors. The
targeting sequences for various shRNAs oligos are as follows:

shMMUT-1: 5’-CCCTTGTATTCCAAGAGAGAT-3’;
shRRM1-1: 5”CCCACAACTTTCTAGCTGTTT-3’;
shRRM1-2: 5’-GCTGTCTCTAACTTGCACAAA-3’;
shKIAA1429-1: 5’-CGGAATATGAAGCAACAAATT-3’;
shKIAA1429-2: 5’-CGCTGAGCAAAGTTCTCATAT-3’;
shYWHAZ-1: 5’-GCAGAGAGCAAAGTCTTCTAT-3’;
shYWHAZ-2: 5’-GCAATTACTGAGAGACAACTT-3’;
shUBE2R2-1: 5’-CCAATGTCGATGCTTCAGTTA-3’;
shScramble: 5’-CCTAAGGTTAAGTCGCCCTCG-3’.

Establishment of stable cell lines
shRNA plasmids were transfected into HEK 293 T cells with poly-
ethylenimine (PEI), according to the manufacturer’s instructions.
Lentiviral particles produced by HEK 293 T cells were released into the
DMEM medium. At 48 and 72 h, the lentiviral particle-containing
medium was collected and filtered using a 0.45 µm Syringe Filter Unit.
HTR8/SVneo cells were cultured in a 6-well plate (400,000 cells/well)
for 24 h to achieve 70–80% confluency at the time of infection by 2mL
lentiviral particle-containing medium. After one day post-infection,
2 days of puromycin selection (2μg/mL), and knockdown determina-
tion, single cells were picked and seeded into 96-well plates to gen-
erate monoclonal cell lines.

Determination of knockdown by quantitative polymerase chain
reaction (qPCR)
When infection and puromycin selection of HTR8/SVneo cells were
completed ormonoclonal cells from96-well plates were transferred to
6-well plates, total RNA was extracted using the Eastep® Super Total
RNAExtractionKit (Promega). An equivalent of 1μγofRNAwas reverse
transcribed to synthesize cDNA using HiScript® II Q Select RT Super-
Mix (Vazyme Biotech). Then, 25 ng of cDNA was used as a template for
qPCR analysis with ChamQ Universal SYBR qPCR Master Mix (Vazyme
Biotech). The forward and reverse primers for qPCR are listed below:

qMMUT-F: 5’-CAGTTGGAAAAAGAAGACGCTGTA-3’;
qMMUT-R: 5’-ATCTGCCTGTTTCGCACTGA-3’;
qRRM1-F: 5’-ACTAAGCACCCTGACTATGCTATCC-3’;
qRRM1-R: 5’-CTTCCATCACATCACTGAACACTTT-3’;
qKIAA1429-F: 5’-GTTGTGCCACCACCAAGAGG-3’;
qKIAA1429-R: 5’-AACCCACCACGGGAAGAAAT-3’;
qYWHAZ-F: 5’-AGCCATTGCTGAACTTGATACA-3’;
qYWHAZ-R: 5’-AATTTTCCCCTCCTTCTCCTG-3’;
qGAPDH-F: 5’-TGACAACGAATTTGGCTACA-3’;
qGAPDH-R:5’-GTGGTCCAGGGGTCTTACTC-3’.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed RNA-seq data, full summary statistics of eQTL and
GWAS meta-analysis generated in this study are available at Figshare
(https://figshare.com/s/f6de1a56ad7c448c1f4c). The TRF-based TL
measurement of placenta samples generated in this study areprovided
in the Source Data. The raw genotyping and RNA-seq data are
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protected and are not available due to data privacy laws. The
individual-level genotypes of UKBB samples are available by applica-
tion to the UKBB (https://www.ukbiobank.ac.uk/register-apply/). The
data associatedwith the curated genome-wide studies which collected
from PubMed and literature, are listed at Supplementary Data. The full
GWAS summary statistics for TOPMed are available in the database of
Genotypes and Phenotypes (dbGaP), under accession code
phs001974.v3.p1. The full GWAS summary statistics for SCHS are
available at Figshare (https://doi.org/10.6084/m9.figshare.8066999).
The full GWAS summary statistics for UKBB data used in this study are
available in the https://figshare.com/s/caa99dc0f76d62990195. The
TL data of various tissues in GTEx are available in the (https://www.
gtexportal.org/home/datasets). The WGS data of GTEx Whole blood
samples are available in the dbGaP, under accession code phs000424.
v8.p2. Source data are provided with this paper.
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