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Petascale pipeline for precise alignment of
images from serial section electron
microscopy

Sergiy Popovych1,2,5, Thomas Macrina 1,2,5, Nico Kemnitz 1, Manuel Castro1,
Barak Nehoran 1, Zhen Jia1,2, J. Alexander Bae 1,3, Eric Mitchell1, Shang Mu1,
Eric T. Trautman 4, Stephan Saalfeld 4, Kai Li2 & H. Sebastian Seung 1,2

The reconstruction of neural circuits from serial section electron microscopy
(ssEM) images is being accelerated by automatic image segmentation meth-
ods. Segmentation accuracy is often limited by the preceding step of aligning
2D section images to create a 3D image stack. Precise and robust alignment in
the presence of image artifacts is challenging, especially as datasets are
attaining the petascale.We present a computational pipeline for aligning ssEM
images with several key elements. Self-supervised convolutional nets are
trained via metric learning to encode and align image pairs, and they are used
to initialize iterative fine-tuning of alignment. A procedure called vector voting
increases robustness to image artifacts ormissing imagedata. For speedup the
series is divided into blocks that are distributed to computational workers for
alignment. Theblocks are aligned to eachother by composing transformations
with decay, which achieves a global alignment without resorting to a time-
consuming global optimization. We apply our pipeline to a whole fly brain
dataset, and show improved accuracy relative to prior state of the art. We also
demonstrate that our pipeline scales to a cubic millimeter of mouse visual
cortex. Our pipeline is publicly available through two open source Python
packages.

In serial section electron microscopy (ssEM), a biological sample is
sliced into ultra-thin sections, which are collected and imaged at
nanoscale resolution1. When applied to brain tissue, this technique can
yield a 3D image with sufficient resolution for reconstructing neural
circuits by tracing neurites and identifying synapses2. The technique
has been scaled up to image an entire Drosophila brain3, and cubic
millimeter volumes of mammalian cortex4–6.

Purelymanual reconstruction of neural circuits from ssEM images
is slow and laborious. It is faster to proofread an automated recon-
struction generated via convolutional nets7. However, automated
reconstruction depends on the preceding step of aligning the 2D

section images into a 3D image stack. Misalignments can be the
dominant cause of errors in the automated reconstructions, so it is
important for the alignment to be precise and robust to image
artifacts.

State-of-the-art alignment methods identify a sparse set of cor-
responding points between neighboring images, and use an offline
solver to find image transformations that register corresponding
points subject to an elastic regularizer that prevents nonsmooth
transformations8–12. Correspondences may be identified by matching
image patches through some kind of cross-correlation9,11, or through
matching hand-designed features such as SIFT13.
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While these state-of-the-art methods are often sufficient to coar-
sely align images, they are inadequate in a number of ways to precisely
align. First, cracks and folds are common defects in serial sections
(Fig. 1a). Correctly aligning pixels on both sides of a crack or fold
(Fig. 1b,c) requires moving closely neighboring pixels in opposite
directions. Such a nonsmooth transformation is not possible by
interpolating between sparse correspondences, as done by state-of-
the-art methods. And even if the density of correspondences is
increased, the elastic regularizer also prevents nonsmooth
transformations.

Second, alignmentmust robustly handle image artifacts. Consider
a case where striped artifacts caused by knife chatter (Fig. 1d, top left)
occur in two sections in a row. High similarity alignment between such
a section pair can be produced in twoways: the correct alignment that
aligns biological objects, and an erroneous alignment that aligns the
stripe patterns. General purpose image feature extractors, such as
SIFT13, do not prevent such errors. While there exist methods that are
able to effectively suppress EM image artifacts after the dataset has
been aligned14, robust artifact suppression in EM images prior to
alignment has not been demonstrated.

Third, even without image artifacts, state-of-the-art approaches
make misalignment errors due to false correspondences. The fre-
quency of errors is reduced by hand-designed heuristics for rejecting
false correspondences9,10,12. For a large dataset, it is difficult or
impossible to set the parameters of the heuristics to remove all false
correspondences, somanual intervention at the level of single sections
or even single correspondences becomes necessary15.

Fourth, the offline solver in state-of-the-art methods does not
scale well to large datasets. The number of variables in the optimiza-
tion increases with image volume and the complexity of the alignment
transformations. We have found that the optimization can be slow
because long-wavelength modes of an elastic energy tend to relax
slowly. It could be possible to speed up convergence by advanced
optimization techniques. Here we take a different approach, which is
to completely eliminate the need for a global optimization over the
entire dataset.

The above difficulties are all overcome by our computational
pipeline for precise alignment of ssEM images. The input to the
pipeline is assumed to have been already aligned coarsely, which
can be done by conventional methods. The global rotations and
scale changes in the input, for example, should be small. We show
that our pipeline significantly improves alignment over state-of-
the-art methods on the challenging whole brain female adult fly
dataset (FAFB) and can align a petascalemouse cortex dataset5. The

pipeline demonstrates ability to align near cracks and folds up to
10 μm wide.

Our pipeline contains several elements. First, we use metric
learning to train convolutional nets to extract encodings of EM images
(Fig. 6), and align the images using the encodings (Fig. 5). Themethod
of training is called Siamese Encoding and Alignment by Multiscale
Learning with Self Supervision (SEAMLeSS), though there are some
differences from a preliminary version of the method16 that will be
described later. Alignment based on the encodings is more robust,
because image artifacts are suppressed by the encodings. The con-
volutional nets are applied in a coarse-to-fine hierarchy (Fig. 2a), which
enables correction of large displacements. The use of convolutional
nets to compute saturated correspondences between images is now
standard in computer vision17–22. Our approach extends prior work to
correct nonsmooth distortions and large displacements.

Second, the alignment transformation is fine-tuned by gradient
descent on a cost function that is the squared difference between the
image encodings plus an elastic regularizer. Gradient descent is initi-
alized at the alignment transformation that was generated by the
convolutional net. The fine-tuning achieves more precise alignment
than SEAMLeSS alone, at the expense of moderately more computa-
tion. Both in SEAMLeSS training and in fine-tuning, the elastic reg-
ularizer is ignored at locations where nonsmooth transformations are
required, using a convolutional net trained todetect cracks and folds23.

Third, for more robust alignment, each section is aligned to sev-
eral preceding sections and a procedure called vector voting is used to
arrive at a consensus alignment. If the data were defect-free, it would
be sufficient to align each section to the previous section. But virtually
every section contains one or more regions with defects or missing
data. Therefore it is helpful to also align to sections that are further
back in the series. Previous elastic alignment schemes added springs
between the next nearest neighbor and further sections, motivated by
similar considerations9. The advantage of vector voting over naive
averaging schemes is that the effect of outliers on final alignment is
minimized (Fig. 3a).

Fourth, we divide the entire series of sections into blocks of
contiguous sections, and sequentially align the sections in each block.
The blocks are distributed over multiple computational workers,
speeding up the computation.

Fifth, we have to combine the aligned blocks into a single global
alignment. Naively, this could be done by aligning the start of each
block with the end of the previous block, and then composing these
transformations. If there are many blocks, however, the composition
of many non-rigid transformations could result in highly distorted

Fig. 1 | Challenges in ssEM alignment. a Mechanics of discontinuous defect
creation. Discontinuous defects cause tissue loss and make neighboring areas
particularly challenging to align. b Example of a crack (white line). c Example of a

fold (black line). d Examples of other artifacts: knife chatter (top left), grid pattern
(top right), dust (bottom left), brightness variation (bottom right).
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sections later in the series. This was previously solved by a global
relaxation of a spring mesh that extends across the entire series of
sections9. Here we avoid any global relaxation, which would be com-
putationally expensive for petascale datasets with dense high-
resolution transformations. Instead, we compose transformations,

but force each transformation to decay in time/depth and in spatial
frequency. We call this approach Alignment of Blocks and Composi-
tion with Decay (ABCD). ABCD is a computationally efficient and
scalable approach, but it can distort morphologies more than global
optimization when initial coarse alignment is poor.

Fig. 2 | SEAMLeSS image pair alignment. a Coarse-to-fine multi resolution alignment. Input to each subsequent stage increases physical resolution, while keeping the
same pixel resolution. b Architecture of a single resolution alignment pipeline: Encoder, Aligner and Online Field Finetuner.
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We release two open-source packages, metroEM and corgie,
that together implement our computational pipeline. metroEM
implements SEAMLeSS training and inference for image pair align-
ment. All the multi-resolution Encoder/Aligner pairs (Fig. 2a) can be
trained with a single metroEM command. corgie implements large
scale global alignment, including block alignment, stitching, and
vector voting. corgie is able to handle images that do not fit into
single machine memory, provides intuitive tools for distributing
tasks to cloud and cluster workers, and can use both metroEM-
based or any other user supplied method for image pair alignment.
Both packages are implemented using the python (3.6+) program-
ming language and can be installed with the pip package-
management system. The released tools enable training of the
convolutional nets in our pipeline and application of the convolu-
tional nets to align petascale datasets using cloud Kubernetes or
SLURM clusters.

Results
SEAMLeSS image pair alignment
Given a source image and a target image, the task of image pair
alignment is to produce a transformation that aligns the source to the
target. Transformations are represented as displacement fields, which
assign a 2D displacement vector to each pixel (formal definition in
Methods). SEAMLeSS works at multiple resolution scales in a coarse-
to-fine manner11,24,25 (Fig. 2a). At each resolution, there is an Encoder
net, Aligner net, and Online Field Finetuner (Fig. 2b). The Encoder is
applied to both source and target images26, and the resulting encod-
ings are the inputs to the Aligner. The Aligner computes a residual
displacement field, which is composed with the estimate of the dis-
placement field from a coarser resolution, to align the source to the
target. The Field Finetuner refines the initial field produced by Aligner
through gradient descent to minimize the difference between the
image encodings after alignment while keeping the transformation

Fig. 3 | Vector voting, distributed block alignment, and composition
with decay. a Sequential alignment with vector voting. During block alignment
sections are aligned sequentially to the already aligned portion of the stack. Vector
voting is performed by aligning the source image to multiple target images, and
passing the resulting fields through a pixel-wise smooth median computation.
b Producing block stitching fields. To produce global alignment, the dataset is

broken into overlapping blocks, which are aligned independently. The overlapping
regions are aligned to each other to produce a stitching field between each two
neighboring blocks. c Block stitching. The blocks are stitched together by applying
each stitching to successive sections, while reducing its influence with a distance
based weight decay.
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smooth in the areas without defects27. A separate instance of Encoder/
Aligner pair is trained for each resolution level.

SEAMLeSS training
The training dataset for Aligner and Encoder nets consists of neigh-
boring image pairs from an unaligned EM stack. Both Aligner and
Encoder are trained in a self-supervised manner, meaning that no fine
alignment ground truth is required for training. Training is performed
sequentially for resolutions in a coarse-to-fine manner.

Training proceeds in two stages. The first stage begins with ran-
domly initializedweights for both Encoder andAligner.During thefirst
stage, the training loss for both encoder and aligner is based on the
squared difference between the images after alignment by the Aligner
net, plus an elastic regularizer. (SeeMethods for precise description of
the loss function with Supplementary Fig. 1.) The elastic regularizer
penalizes the network from canceling out natural independentmotion
of biological objects. Sincenonsmooth transformations are required at
cracks and folds, these defects are detected by another convolutional
net, and the regularizer is zeroed out at these locations. The first
training stage continues until the loss plateaus As Encoder outputs are
not considered during the first stage loss calculation, the Encodings
will not suppress artifacts at the end of the first stage. The Encoder/
Aligner pair resulting from the first stage will be able to correct most
deformations, but generally make errors around image artifacts and
other challenging locations.

In the second stage of training, the training loss is based on the
squared difference between the encodings (not the images) after
alignment by the Aligner net. This can be viewed as metric learning, if
the Aligner net is regarded as part of the (trainable) distance function.
In otherwords, thedistance function is the Euclideandistancebetween
the encodings (plus an elastic regularizer) after alignment by the
Aligner net. Then the goal of the Encoder is to produce encodings that
are similar for images that are aligned, and dissimilar for images that
are not aligned. The goal of the optimization is to produce image
encodings and alignment fields such that the pixel-wise difference
between encodings is high before alignment, but low after alignment.
Under such training, the Encoder will learn to suppress image artifacts
while preserving information about the biological objects. Image
artifacts must be suppressed to achieve low pixel-wise difference
between aligned encodings because image variation due to artifacts is
not generally correlated across the samepixel positions inneighboring
aligned sections. At the same time, highlighting biological objects will
increase the difference between unaligned encodings. In order to
satisfy both training goals, the Encoder ends up suppressing image
artifacts and highlighting biological objects.

It is desirable for the encodings to include information about each
pixel in the image, as opposed to sparsely representing selected fea-
tures. With dense encodings, it is possible to precisely correct dis-
continuous defects based on encoding similarity. We introduce
additional training constraints to encourage encodings to be dense as
described in Methods. At the end of the second training stage, the
Encoder is able to suppress artifacts in EM images.

After a given resolution scale Aligner/Encoder pair has finished
training, it is used to process the whole training dataset to produce
displacement fields that will be used for subsequent resolution scales
training. Training of multi-resolution hierarchies of Aligner/Encoder
pairs is implemented in the metroEM package released with this work.

Online field finetuner
Online Field Finetuner refines the initial displacement field through
gradient descent. Optimization loss is based on the squared difference
between the encodings after alignment plus an elastic regularizer.
Similarly to the training stages, the elastic regularizer ensures that
natural motion of biological objects between the images will be
preserved.

Finetuning by gradient descent is facilitated by using the encod-
ings. Using the raw images instead may cause catastrophic errors
because image artifacts are often high contrast, andmay end up being
the features that are aligned (Fig. 1d). For example, alignment can be
corrupted by the parallel stripes of knife chatter (Fig. 1d, top left).

Vector voting
In principle, one could align an entire series of sections by applying
SEAMLeSS to align each new section to the previously aligned section.
This sequential alignment procedure is well-known28 and effective if
each alignment step is perfect, but lacks robustness to occasional
misalignments. These may happen near image artifacts, and are una-
voidable in regions where the image data is entirely missing. To
increase robustness, we instead align the source image to several last
sections of the already aligned portion (Fig. 3a) and apply a pixel-wise
smooth median computation over the resulting displacement fields.
This Vector Voting operation discards the outlier values for each pixel
location of the field, ensuring that only errors that occur at the same
pixel location in several neighboring sections will propagate through
the block (Methods). Aligning source sections to n target sections is
referred to as n-way Vector Voting, where n is referred to as voting
distance. For n-way Vector Voting with odd n, only the errors that
occur in (n + 1) / 2 out of n consecutive sections will be propagated
through the block. Increasing voting distance improves error resi-
lience at the cost of increasing the computational cost of alignment.

In alignment methods based on relaxation of a spring mesh9,
springs are sometimes added between next nearest and further
neighbor sections, in addition to the springs betweennearest neighbor
sections. This is a kind of voting, and tends to reduce themagnitude of
a misalignment due to a false correspondence but also spreads the
misalignment over a larger area. The robustness delivered by Vector
Voting should be superior because the effects of outliers are sup-
pressed almost completely.

Distributed alignment of blocks
In order to speed up the computation, we partition the entire series
along the cutting dimension into overlapping blocks of contiguous
sections. Each block is sequentially alignedwith Vector Voting, and the
blocks are distributed over independent computational workers.

Vector Voting is not possible for the first (n - 1) / 2 sections in a
series, which increases the likelihood of error across that region.
Therefore adjacent blocks are chosen to overlap by (n - 1) / 2 sections,
and the first (n - 1) / 2 sections of each block are discarded before
combining the blocks to create a global alignment (Fig. 3b), as will be
discussed next.

Composition with decay
After all the independent blocks are aligned, they should be stitched
together into a single globally aligned stack. We define the stitch field
between block N and block N + 1 as that obtained by aligning the
overlapping section region of blockN + 1 to the same sections in block
N and performing vector voting operations across the obtained fields
(Fig. 3b). The stitch fields can be used to create a global alignment as
follows. For each block, the stitch fields from the preceding blocks are
composed to create an accumulated transformation that is applied to
all sections in the block (Fig. 3). This straightforward procedure can
result in good alignment, in the sense that neurites follow smooth
paths through the stack. However, because each stitch field represents
a non-rigid transformation, the composition of many stitch fields can
accumulate errors and result in a high frequency field that distorts cell
morphology (Fig. 4h).

Therefore we modify the procedure as follows. When applying a
stitch field to subsequent sections, we decrease its weight relative to
the distance from the block interface (Fig. 3, Methods). The number of
sections that each stitch field influences is referred to as decay
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distance. Practically, decaying distances of 100-300 sections avoid
excessive drifts (Fig. 4b,f) while also preventing morphology distor-
tions (Fig. 4h). Figure 3c and g show an example alignment with decay
distance of 100.

Alignment of Blocks andCompositionwithDecay (ABCD) avoids a
global optimization with an offline solver, which becomes computa-
tionally expensive with saturated high-resolution fields8,9.

Whole fly brain alignment
We evaluate our alignment pipeline by applying it to the full adult fly
brain (FAFB) dataset3. As a baseline, we first consider the original
alignment (v14), whichwas created using a piecewise affine approach8.
We evaluated alignment accuracy on a cutout of 1000 full sections
using the following procedure. First, we divide neighboring image
pairs into 64 x 64 px chunks at 32 nm pixel resolution and compute
Pearson Correlation for each chunk, a block-based quality assessment
that we refer to as the Chunked Pearson Correlation or CPC29. High
CPC values indicate well-aligned sections, while low CPC values indi-
cate differing image contents between neighboring sections, which
could signify a potentialmisalignment, as well as naturalmotion of the
objects or a visual artifact (Fig. 4d).

To determine misaligned locations, we sampled 300 locations
with CPC <0.25, and manually classified the cause of low CPC for each
location (see Methods). We estimate that 78% of locations with CPC
<0.25 in v14 are caused bygenuinemisalignments. Extrapolating to the
total number of low CPC locations, 3.31% of total tissue area in v14 are
misaligned.

While the great majority of v14 is well-aligned, the misaligned
portion poses challenges for downstream image processing tasks30.
Therefore we were motivated to create a v15 alignment of FAFB using
the pipeline presented in this paper. The alignment was performed
from sections that were coarsely registered to v14 with a near-rigid
alignment at 512 nm resolution. Only 0.51% of v15 has CPC <0.25
(Fig. 5a, b), and we estimate that just 0.06% of v15 contains a genuine
misalignment. This is almost two orders of magnitude better than v14.

Not all of the v15 improvement can be attributed to alignment,
because the 2D section images for v15 were reworked to remove
montaging errors in v14. However, only a small fraction of total area
(<1%) was directly affected by montaging errors. Moreover, most
montaging errors occurred around tissue boundary, while our

evaluation shows that v15 specifically outperforms v14 at correction of
discontinuous defects inside the tissue (Fig. 5b, Supplementary Fig. 2).
As an additional effort to isolate the improvements due to alignment
rather than montaging, we evaluated another FAFB alignment (v14.1)
that was previously released31. v14.1 was created by applying a pre-
liminary version of our pipeline (Methods) to v14 images, so that
montaging errors in v14 were “baked in” and could not be corrected.
We estimate that 0.58% of v14.1 contains a genuine misalignment with
CPC <0.25. This is almost 6 × better than v14, suggesting that some of
the improvement in v15 is due to alignment alone. At the same time,
v14.1 alignment performs significantly worse around discontinuous
defects (Fig. 5b), which highlights the importance of pipeline compo-
nents introduced in this work.

Petascale alignment of mouse cortex
A preliminary version of our pipeline, similar to the one used for the
v14.1 FAFB alignment, was applied to two mouse cortex volumes
amounting to over 1.1 mm3. The largest mouse cortex dataset5 was
composed of 19,939 square millimeter sections imaged at 4 nm reso-
lution (Supplementary Fig. 3). Numerous cracks and folds occurred in
every section, posing challenges more severe than in FAFB (Supple-
mentary Fig. 4). The discontinuous distortion introduced by cracks
and folds ranged up to roughly 10 μm, with the cross-sections of
neurites nearly 1000 × smaller than the distortion. Even our pre-
liminary pipeline was able to precisely correct such large dis-
continuous distortions, ensuring that neurites at the boundary of the
defect were still well-aligned (Supplementary Figs. 4, 5). This led to a
successful automated reconstruction32. The alignment took 230h on a
cluster of preemptible NVIDIA T4 GPUs on Google Cloud. The cluster
size fluctuated due to hardware availability constraints, with the
number of active GPUs averaging at 1200.

Discussion
Our pipeline computes saturated displacement fields, rather than the
sparse correspondences of traditional approaches8,9. This enables the
representation of nonsmooth transformations, which are necessary
for accurate alignment near cracks and folds. Displacement fields are
initially predicted by the SEAMLeSS convolutional nets, and then
improved by the Online Field Finetuner. This combination is more
reliable at avoiding false correspondences than traditional approaches

Fig. 4 | Alignment of blocks and composition with decay. A stack of 450 mouse
cortex sections5 was block aligned (10 sections per block), then globally aligned by
composing the linearly decayed stitching fields between blocks with varying decay
distances. a–d The rough aligned sections, the aligned sections with decay dis-
tances of 10, 100, and 500 sections. The vertical axis is orthogonal to the cutting

plane, while the horizontal axis is in the plane. e–h The 447th section of the sample
above (see blue arrow along sides of (a–d)), approximately centered on the same
bloodvessel to demonstrate thedistortion that results fromcomposingmanyfields
together without decay. The horizontal axes of the top and bottom row are the
same. Scale bars are 2 μm.
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based on Block Matching or SIFT features, as shown by our evaluation
on the FAFB dataset.

The rate of false correspondences can be reduced in traditional
approaches by various postprocessing schemes9, but even a low rate
amounts to a large absolute number of false correspondences in a
sufficiently large dataset, as in the FAFB v14 alignment. For a previous
terascale alignment, we eliminated the remaining false corre-
spondences bymanual intervention15, but the required labor would be
prohibitive at the petascale. Our approach is to drastically reduce the
rate of false correspondences by training the SEAMLeSS nets.

Preliminary version of the presented pipeline used to produce
FAFB v14.1 alignment Dorkenwald, et al.31 used a network architecture
presented in Hui, et al.33 in combination with loss drop similar to Yoo,
et al.17, but applied specifically to defects detected by a convolutional
net23. As described in Mitchell, et al.16, the preliminary version of the

pipeline struggled with large displacements, visual artifacts, and cat-
astrophic errors. When creating v15, we found that the Finetuner is
helpful for improving the accuracy of alignment, especially near folds
and cracks. Also, the Finetuner reduces the accuracy requirements for
the SEAMLeSS nets, making training them easier.

Conversely, one can imagine eliminating SEAMLeSS from the
pipeline, and using the Online Field Finetuner only, but this would
lower accuracy for two reasons. By providing a good initial guess for
the displacement field, the SEAMLeSS nets prevent the Finetuner from
getting trapped in a bad local optimum16. Furthermore, the SEAMLeSS
Encoder suppresses image artifacts (Fig. 6), which otherwise can cause
misalignments to become global optima.

Our ABCD procedure provides a computationally efficient alter-
native to traditional approaches involving global optimizations over all
sections in an image stack9. All ABCD computations are local, involving

Fig. 5 | FAFB alignment quality. The v15 alignment of the FAFB dataset improves
over v14.131, which in turn improves over the original v143. Accuracy is quantified
using the Chunked Pearson Correlation (CPC), which tends to be high at well-
aligned locations. The evaluation was conducted for a range of 1000 sections. (a)
CPC percentile decreases with progressive improvement of the three alignment
versions. Chunks with low CPC (<0.25, dashed red line) are just 0.51% of v15. CPC
was computed for (2048 nm)2 chunks at 32 nm pixel resolution, and non-tissue
chunks and chunks that include a discontinuous artifact were excluded.
b Estimatedmisalignment rate based onmanual annotation of lowCPC chunks. v15
improves over v14 by two orders of magnitude (rightmost column). CPC may be
low for reasons other than misalignment, so 300 locations with CPC<0.25 were
randomly sampled from each alignment version, misalignments were identified by
a human expert, and the results were extrapolated to the entire image stack. Note

that v15 contains fewer low CPC locations caused by “Natural Variation” because it
has less consistent drift compared to v14 and v14.1 (c) Examplemisalignment in v14
corrected in v15. Arrows indicate cell body boundary position, and the horizontal
space between the arrow heads indicates misalignment. Horizontal and vertical
axes are parallel and perpendicular to the sections, respectively. Scale bar 1μm.
d Examples of low CPC (<0.25) chunks caused by natural variation of image con-
tent, image artifact andmisalignment, the categories thatweremanually annotated
in (b). Note that a misalignment of a large magnitude was chosen for visual clarity.
Scale bar 1 μm. e Percentage of low CPC (<0.25) chunks as a function of distance
from a discontinuous defect. In v15, such defects cause little increase in low CPC
chunks. f Single section CPC heatmap comparison between v14 and v15. Black
corresponds to non-tissue and discontinuous defect chunks, which are ignored in
(a). Scale bar 50μm.
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neighboring sections only. Within each block of sections, a section is
aligned to the previous n sections considered by the Vector Voting
procedure.When stitching blocks together, blocks donot interactwith
other blocks beyond the decay distance. Such locality enables graceful
extension to petascale datasets, and the blocks can be processed in
parallel by hundreds of distributed workers. At the same time, ABCD
has several shortcomings. ABCD introduces directional bias andmakes
the alignment outcome dependent on the starter sections. We prac-
tically find that suitable starter sections can be effectively identified by
manual annotation, although this process can be automated. ABCD
relies on the elastic regularizer used during image pair alignment to
conserve natural motion of biological structures.

The maximum deformation magnitude that SEAMLeSS can cor-
rect depends on the resolution of the coarsest Encoder/Aligner pair in
the pyramid. In the presented experiments, the maximum Encoder
resolution was set to 8μm, which led to consistent correction of dis-
continuous defects up to 10μm and near-rigid deformations up to
20μm. Such displacements could only be corrected in tissue islands
that constituted >100 pixels at 8μmresolution. Inability to align tissue
islands whose size is small relative to the magnitude of the displace-
ment is an inherent limitation of SEAMLeSS, as it becomes too difficult
for the nets to produce informative encodingswhen thewhole island is
only a few pixels wide. For such cases, SEAMLeSS has to rely on con-
ventional methods that perform initial coarse alignment.

The useof deep learning based dense features for ssEM alignment
was first proposed by Yoo, et al.17. Autoencoders attempt to preserve
all of the information in the image including visual artifacts, unless
specifically designed training data augmentations are used. In con-
trast, our encodings are trained with metric learning and learn to
suppress visual artifacts without any supervision.

In the preceding, we have emphasized the replacement of tradi-
tional computer vision by our approach. In reality, the approaches are
complementary and can be combined. This is already assumed by the
present paper, as our pipeline is applied only after the images have
been coarsely aligned using traditional computer vision approaches
(Methods). Although our approach does not require a global spring
mesh extending over all sections, an elastic regularizer is used for 2D
patches during SEAMLeSS training and by theOnline Field Finetuner at
runtime. One can easily imagine other hybrid methods. For example,
Block Matching should be more robust to image artifacts if applied to
our SEAMLeSS encodings rather than to raw images or linearly filtered
images. Our ABCD procedure, including Vector Voting, could be
applied to transformations computed by Block Matching rather than
SEAMLeSS. These examples of hybrid methods are hypothetical, and
are left for future work.

Methods
Summary of FAFB v14.1 and v15 pipeline differences
The v15 image pair alignment method described in this paper has the
following major difference with the v14.1 method described in our
preprint16. First, v14.1 does not use the Online Finetuner, and so is less
robust than the v15 version. The training loss used in v14.1 uses raw
image based similarity, while v15 loss uses raw image based similarity
for the first stage and the encodings for the second stage. Conse-
quently, v15 loss is less affected by visual artifacts, providing a cleaner
training signal. Because v14.1 uses the network architecture proposed
by Hui, et al., 2018, the v14.1 does have an encoding component.
However, the no constraints are put on v14.1 encodings during train-
ing, and so the encodings are not incentivized to suppress visual
artifacts or to produce dense features. Consequently, the v14.1
encodings are sparse and do not suppress visual artifacts, and so
cannot be effectively used to guide Online Finetuner. Additionally,
v14.1 performs alignment with a single network where encodings at
lower resolutions depend on the encodings at higher resolutions.With
the v14.1 approach, lower resolution modules cannot be trained
separately from high resolution modules, which limits training time
patch size and inhibits the network’s ability to correct large displace-
ments. v15 breaks this architecture into independent components at
different resolution levels. v15 approach has been used to correct
displacements of up to 20 microns, while the v14.1 approach could
only correct displacements of up to 1 micron.

v14.1 and v15 used identical alignment globalization approaches –
both used ABCD with vector voting. The v14.1 pipeline used Vector
Voting with a voting distance that was manually set for each section.
The voting distance was typically 5, with some small regions set to 7 or
9, allowing additional computation to be spent for specific sections
that needed to contend with long stretches of missing data. v15 pipe-
line used smaller vector voting distance of 3 for two reasons. First, v15
produced a much lower rate of misalignments, and so fewer errors
needed to be fixed. Second, v15 did not consider empty (black) regions
as valid voting targets andwould always performvoting across nearest
3 valid sections. This helped v15 effectively handle large stretches of
missing data without increasing the voting distance.

FAFB v14.1 vs v15 montages
Every section image is composed of multiple image tiles, which are
combined by a process known as montaging, stitching, ormosaicking.
Montages in v14 were generated using SIFT feature matches, geo-
metric consensus filtering and global optimization of per-tile affine
transformations3,8,9. Many montages in v14 have substantial stitching
errors. Many v14.1 problems were the result of errors in v14 that could

Fig. 6 | Encodings suppress artifacts. SEAMLeSS is able to producedense Encodings that suppressmany artifacts present in ssEM images. As a result, Encodings aremore
suitable than images as inputs to the Online Field Finetuner.
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not be undonebyour alignment pipeline. Toeliminate these errors, we
attempted to produce a clean set of montages that would serve as the
starting point for our alignment pipeline.

We enhanced the EM_Aligner montage diagnostic tools (EM
Aligner montage diagnostic tool: https://bit.ly/3gI5Cg0) and found
that 2,871 out of 7,050montages had substantial point-match residuals
(≥1% of all tile pairs having an error ≥ 40 nm, the cellular membrane
thickness ≈ 20 nm). Of the remaining 4,179 montages 4,074 consisted
of disconnected ‘islands’ that were improperly interleaving which
corrupted the montages.

We improved the quality of point matches for stitching by re-
parameterizing both feature extraction and geometric consensus fil-
ters. We used five separate sets of parameters (Montage SIFT para-
meter sets: https://bit.ly/3sy44Lf) and iterated through them
sequentially until a sufficient number of matches were derived. This
iterative approach allowed us to generate most matches quickly and
spend more compute time only where necessary. Remaining unmat-
ched tile pairs were manually reviewed and we tried different custom
match derivation parameter sets to connect them. Often, the most
difficult to match pairs contained large areas of featureless resin in
their overlapping region.

We further improved the global optimization of per-tile trans-
formations. We used the EM_aligner solver8 that was used for the v14
reconstruction and later the Python implementation BigFeta (BigFEa-
Ture Aligner (BigFeta): https://github.com/AllenInstitute/BigFeta). For
montages where these solvers did not produce satisfying results, we
used the iterative TrakEM2 solver9 (TrakEM2 solver client: https://bit.
ly/3gCuu98) that enables rigid regularization of per-tile affine trans-
formations but is significantly slower. This was primarily necessary for
the 295 sections that contained images from multiple acquisitions.

We separated the disconnected islands in all 7,050 sections
resulting in 48,121 sub-sections. These sub-sections were then rigidly
registered to the corresponding sub-section in the FAFB v14 aligned
data set3. Islands that were not present in the v14 data set, were placed
based on stage coordinates of the microscope. This provided a good
starting location for the cross section alignment process, essentially
using v14 results to roughly align the entire volume.

As in v14, we used the Distributed Multi-Grid library14 to intensity
correct all data and corrected a number of previously undetected
mistakes.

With the updated montaging pipeline, the FAFB montage series
consisting of 14,442,143 tiles can be generated in ≈ 200,000
CPU hours.

FAFB v15 coarse alignment
Before using ABCD,wehad to perform a roundof coarse alignment for
two reasons. First, the rigidly registered sections contained a large
number of section-wide scale changes. As scale changes are non-rigid
transformations, they would be penalized by the elastic regularizer
used in SEAMLeSS and lead to poor image pair alignment quality.
Moreover, because many of FAFB islands were overlapping after the
rigid registration, each section was represented with several images,
one per island, to avoid data loss. This posed an operational challenge
for our implementation of ABCD, as it only supported aligning stacks
of single images, not sets of potentially overlapping images. It was
practically the easiest solution to first remove overlaps by coarsely
aligning each of the islands to the corresponding v14 section, then
combine each islands for each section into a single mage, and then
proceed with fine alignment using our implementation of ABCD. Note
that this is the only way in which v15 used v14 alignment – as a refer-
ence for the initial coarse alignment.

Two different alignment approaches were used for different sec-
tion ranges. Sections in ranges 1–1500 and 5850–7060 frequently
contained scale changes, inspection showed that they didn’t have non-
affine deformations >20 um. All of the islands in this range of sections

were aligned to the corresponding v14 section using affine approach.
The middle range of sections Z 1500–5850 didn’t contain scale chan-
ges, but contained some large scale non-affine deformations. One of
the failure modes was for one portion of the section to rotate while
another portion counter-rotated. Attempting to correct such defor-
mations with conventional template matching approaches required a
large amount ofmanual intervention. Instead, we used SEAMLeSSwith
8192 nm and 512 nm encodings as our main method for island align-
ment. Encodings were trained on 1000 consecutive sections form Z
range 2000–3000, and generalized well to the whole dataset. Aligner
nets were not used for coarse alignment as applying Online Finetuner
to such coarse resolutions was computationally cheap, and also the
8192 nm aligner tended to overfit to the training dataset. This method
was able to correct all of the non-affine deformations in the main
island, but produced bad alignment for small islands that couldn’t be
adequately represented at 8192 nm resolution. In order to handle both
cases, two independent alignment versions were produced for each
island – one using the Online Finetunner approach and the other using
affine alignment. The alignment version that produced higher simi-
larity to v14 was chosen for the final alignment. Similarity was calcu-
lated by applying Multiscale-SSIM34.

Modifying the elastic regularizer used during SEAMLeSS image
pair alignment would allow us to avoid using affine approach for sec-
tions in 1–1500 and 5850–7060 ranges. This development is left for
future work. Inability to align tissue islands whose size is small (<10x)
relative to the magnitude of the displacement is an inherent limitation
of SEAMLeSS. It becomes too difficult for the nets to produce infor-
mative encodings at coarse resolutions that make the whole island
only a few pixels wide. For such cases, SEAMLeSS has to rely on con-
ventional methods that perform initial coarse alignment.

FAFB v15 fine alignment
After coarse alignment, combined islands for each section into a single
image and corrected scale changes and deformations beyond 20 um,
we fine aligned it using ABCD, vector voting and Encoder/Aligner pair
described in this paper. Image pair alignment was performed using 4
Aligner/Encoder pairs at 512 nm, 128 nm, 64 nm and 32 nm. The
training set for 512 nm was composed out of 1000 consecutive sec-
tions taken fromZ 2000–3000. The training set for the 128 nm, 64 nm
and 32 nm were manually selected. A trained operator selected 435
locations within the image that contained visual artifacts patterns. At
each of these locations, cutouts of the same spatial region were made
for image pairs between z & z-1, z-4 & z-5, z-9 & z-10, & z-14 & z-15, so
that there were 1740 image pairs included in the training set. Each
Aligner/Encoder pair was trained for 600 epochs (100 epochs first
stage + 500 epochs second stage), which took 72 h on a single Ampere
class NVIDIA GPU.

Alignment globalization was performed using ABCD with blocks
of 25 sections. Starter sections were selected manually using the fol-
lowing process. A human annotator inspected every 25th section,
flagging ones that had large discontinuous defects or other significant
corruption. It took about 1 h to inspect 282 sections, 15%of whichwere
determined to be unsuitable as a starter section. The neighborhood of
each flagged section was inspected to find a substitute for the block
start. The final set of suitable starter sections was independently
reviewed by another inspector to avoid potential human error. We
opted to perform this process manually rather than automate it
because it only took around 6 human hours to complete. There were
3 sections of overlap between blocks that were used to produce the
stitch fields. A decay distance of 100 sections was used to compose the
blocks into a globally consistent alignment. Within each block, 3-way
vector voting was used. Parameters were selected that did not distort
the tissue on a large-scale (Supplementary Fig. 6). Missing data regions
were not considered to be a valid vector voting target, so voting was
performed only on regions that contained tissue. Alignment for the

Article https://doi.org/10.1038/s41467-023-44354-0

Nature Communications |          (2024) 15:289 9

https://bit.ly/3gI5Cg0
https://bit.ly/3sy44Lf
https://github.com/AllenInstitute/BigFeta
https://bit.ly/3gCuu98
https://bit.ly/3gCuu98


whole FAFB (7052 sections) performed on a cluster with 128 Ampere
class NVIDIA GPUs and and the final displacement fields were pro-
duced in 240 h.

FAFB misalignment proofreading rubric
Classification of locations with CPC under 0.25 was performed by
expert human annotators. The cause of low correlation at each loca-
tion was assigned one of three classes – Visual Artifact, Natural Varia-
tion, and Misalignment. For each alignment version, we randomly
sampled 300 locations out of the set of all chunkswithCPCunder0.25.
Classification was performed according to the following criteria:
1. Location where one of the two neighboring images included

artifacts or tissue corruption that prevents clear tracing of bio-
logical objects are classified as Visual Artifact.

2. Locations with relative motion sufficient to break biological
objects, which is consistent with motion of the same objects in
preceding and following sections, and where the motion corre-
sponds to small areas or naturally fast moving structures, such as
axon bundles and tissue boundary, are classified as Natural
Variation.

3. Locations with relative motion sufficient to break biological
objects which is not consistent withmotion of the same objects in
the preceding and following sections are classified as
Misalignment.

4. Locations with relative motion sufficient to break of biological
objects which is consistentf which with motion of the same
objects in preceding and following sections, and where the
motion corresponds to a large area of not naturally fast moving
structures are classified as Misalignments.

5. Locations that do not qualify for criteria 1–4 and contain visual
artifacts such as contrast and brightness variation are classified as
Visual Artifact.

6. Locations that do not qualify for criteria 1–5 are classified as
Natural Variation.

Proofreading annotations for each location along with the CPC
maps and random seeds used during sampling are included with this
submission.

Petascale mouse cortex
Serial section EM images of a cubicmillimeter volume ofmouse cortex
were acquired at the Allen Institute4,5. The images were aligned using a
preliminary version of our pipeline.

Mouse coarse alignment
The connectomics team at the Allen Institute for Brain Sciences stit-
ched and aligned the image stack to displacements within 20 μmusing
their ASAP framework35,36.

The coarse alignment was further refined using an Encoder
trained to optimize patchmatching correlograms for 1024 nm data as
described in Buniatyan, et al., 2020. The Aligner was a blockmatching
method that correlated 256 px patches of the source image to 358 px
patches of the target image on a Cartesian grid of 96 px. The dataset
was divided into blocks of 100 sections, sequentially aligned with
5-way Vector Voting, and stitched using a decay distance of 300.

Mouse fine alignment
This preliminary version of the pipeline did not include an Encoder,
but it did make use of the Online Field Finetuner. The blockmatched
dataset was further aligned using an Aligner trained on 1024 nm data,
and that output was again aligned by an Aligner trained on 64 nmdata.
This approach of aligning the entire dataset at a lower resolution
before proceeding to higher resolutions has been replaced in the
current pipeline with multi-resolution Image Pair Alignment.

The input to the 1024 nm Aligner was the output of the Encoder
used during coarse alignment. The input to the 64 nm Aligner was raw
images, with no Encoder. The 64 nm Aligner was trained on a curri-
culumof example images containingmanually curated image artifacts.

v15 pipeline technical details
The current pipeline was used to produce the v15 alignment of the
FAFB dataset, as well as the alignment of a small sample of the petas-
cale mouse cortex dataset that was previously aligned using a pre-
liminary version of this pipeline5 (Supplementary Fig. 7).

Semantic segmentatio
Samples of manually annotated cracks and folds in cutouts of 1024 x
1024 px at 64 nm resolution, were collected from the original data and
were used to supervise training of separate UNets as described in
Macrina, et al., 2021. A tissue segmentation model was trained in
similar fashion. Segmentations were downsampled with min pooling,
to overestimate non-tissue regions at lower resolutions.

Image preprocessing
Prior to alignment training and inference, the ssEM image stack is
downsampled, masked, and normalized. First, the original images are
downsampled through average pooling to produce a hierarchy of
resolutions ranging up to 4096 nm. Next, discontinuous image defect
masks and resin masks are produced by specialized convolutional
networks. Salient visual features of cracks, folds, and resin make
detection a relatively simple task. Masks are typically detected at 96
nmresolution. Note that both falsepositives and false negatives during
defect detection will negatively affect the final alignment quality.
However, such mistakes are typically rare as both cracks and folds are
marked by salient visual features. After the masks are produced,
they’re downsampled to lower resolutions through max pooling. At
each resolution, ssEM image pixels marked by the masks are zeroed-
out, thus removing them from the image. Finally, the images are nor-
malized at each resolution. Zero valued pixels, meaning pixels corre-
sponding to empty space or the masked regions, are ignored during
normalization. This means that mean and variance values used during
normalization are computed based on values of non-zero pixels only,
and zero valued pixels remain zero valued after the normalization. The
final normalized stack of multi-resolution images with zeroed-out
defect and resin regions is used during all of the alignment steps.

Transforming images with displacement fields
Due to the large anisotropy in serial sectioning data, we consider the
data as a series of 2D images, M : R2 ! R. We define a displacement
field, F : R2 ! R2, in the transformed space, r!, with a displacement,
uð r!Þ, that indicates a position in the initial space, Fð r!Þ, such that

Fð r!Þ= r!+uð r!Þ: ð1Þ

An image M is transformed by a displacement field by sampling,

ðM � FÞð r!Þ=Mð r!+uð r!ÞÞ: ð2Þ

The aim of alignment is to find a displacement field that will transform
each section to remove distortion.

Displacement fields, Að r!Þ= r!+að r!Þ and Bð r!Þ= r!+bð r!Þ can
similarly be transformed or “composed”, such that

ðA � BÞð r!Þ= r!+bð r!Þ+að r!+bð r!ÞÞ: ð3Þ

We used bilinear interpolation kernels to implement composition and
sampling discretely37. We may leave off the indexing with r! for
readability and write these transformations as M ∘ F or A ∘ B.
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Loss masking
As described in Image Preprocessing section, locations in the image
that are non-tissue are set to zero. It is desirable to ignore both the
similarity and the deformation loss components at such locations in
the image. Given an imageM, we define a non-zero coordinate set T as

TðMÞ= f p! j p!2 R2,Mð p!Þ≠0g: ð4Þ

Wewill refer to T(M) as a set of tissue coordinates ofM. This is accurate
because the zeroed-out regions of the image do not correspond to
tissue measurement anymore. As a shorthand, we will denote T(Ms ∘
F)∩ T(Mt) as Ts+t.

We also define a masked average operator ψ to average all values
of an image K over a given set of locations P,

ψðK,PÞ= 1
jPj

X

p!2P

Kð p!Þ: ð5Þ

Elastic regularizer
For each pixel coordinate~p, we define a set of neighbors Nð~pÞ as

Nð~pÞ= f~p+ ~ða,bÞ ja,b 2 f0,1g,ða,bÞ≠ ð0,0Þg: ð6Þ

We define elastic energy of a vertex at coordinate~p as the sum of
elastic energies connected to that vertex. The elastic energymapΩ for
a field F is a mapping between pixel coordinates and the elastic energy
of the vertex associated with that coordinate,

ΩðFÞð~pÞ=
X

~h2Nð~pÞ
k Fð~pÞ � Fð~p+~hÞ k � k ~h k

� �2
: ð7Þ

We define elastic regularizer Ler as the masked average of elastic
energies for tissue vertices in the source image,

Ler =ψðΩðFÞ,TðMs � FÞÞ: ð8Þ

Image pair alignment
For a given resolution, the inputs to an image pair aligner are a source
and target image,Ms, Mt, and the output is a displacement field F and
image encodings Qs and Qt. The aligner is trained in two stages with
two loss functions. During the first training stage, the loss is for-
mulated as combination of similarity between images and elastic reg-
ularizer. We define a pixel-wise square error map between images M1

and M2 as E(M1,M2),

EðM1,M2Þð~pÞ= ðM1ð~pÞ �M2ð~pÞÞ2: ð9Þ

The training loss during the first training stage, L1, is defined as a
combination of mean squared error between Mt and Ms ∘ F masked
over Ts+t and the elastic regularizer,

L1 =ψðEðMs � F ,MtÞ,Ts + tÞ+ γLer , ð10Þ

where γ is a hyperparameter that balances similarity and deformation
loss. In our experiments γ varied from 5 to 25, typically with a higher
value for lower resolution aligners. The first stage of training proceeds
for 100 epochs.

After the first stage of training, the Encoder/Aligner pair is able to
produce an initial displacement field, but the image encodingsmay still
contain visual noise. The second stage of training removes visual noise
from the image encodings, increases density of the encoding features,
and improves the initial displacement field produced by the Aligner.

In the second training stage, the loss is computed as a combina-
tion of three components: post-alignment similarity, pre-alignment
similarity, and elastic regularizer. On a high level, post-alignment
similarity minimizes the difference between encoding after alignment,
thus encouraging producing accurate alignment field F as well as
suppressing noise in the encodings.

The post-alignment loss component Lpost as mean squared error
between Qs ∘ F and Qt masked over Ts+t,

Lpost =ψðEðQs � F ,QtÞ,Ts + t Þ: ð11Þ

The pre-alignment similarity loss incentives generation of non-trivial
encodings by maximizing the encoding difference before the align-
ment transformation.

In order to increase feature density, we introduce best sample
similarity error. We first divide the encodings into a set of non-
overlapping chunks, U. In our experiments, we used square chunks
with width and height of 32 pixels. For each chunk,Ui, we compute the
masked similarity error,

ψðEðQs � F ,QtÞ,Ts + t \ UiÞ: ð12Þ

We rank the chunks by their similarity error, and select the bottom k-th
percentile of chunks, V. We define best sample similarity as the average
masked similarity error across the set of chunks V. The intuition is to
select regions of the images that do not contain sufficient feature
density to significantly contribute to the pre-alignment similarity loss.
In our experiments, we set k to be the 50th percentile. Pre-alignment
similarity can be formulated as

Lpre = � 1
jV j

X
Vi2V

ψðEðQs,QtÞ,Ts + t \ ViÞ: ð13Þ

Finally, the stage 2 loss can be formulated as

L2 =αLpre + Lpost + γLer , ð14Þ

where α is a hyperparameter that balances pre-transformation and
post-transformation similarity during training. In our experiments
α was set to 0.7, and the second training stage lasted for 500
epochs.

After the end of the second training stage, the field is computed
for the whole training dataset, and training proceeds to the next scale
Aligner/Encoder pair.

Vector voting produces median displacements
We introduce vector voting, a function that smoothly computes the
median displacement field from a set of fields,

F = νðfF1, . . . ,FngÞ: ð15Þ

To start, we organize the n input fields into all combinations of subsets
that constitute a minimum simple majority, such that

W =
½1, . . . ,n�

m

� �
, m=

n
2
+ 1

j k
: ð16Þ

For example, if n = 3, then W = f1,2g,f1,3g,f2,3gf g. We compute the
average similarity between all pairs of fields for each subset,Wk∈W. In
our experiments we used Euclidean distance,

Dk =
1
m

2

� �
X

i,j2Wk ,i≠j

k F i � F j k : ð17Þ
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We use a softmin function to map these average similarities to a nor-
malized set of coefficients, such that

wk =
e�

Dk
T

P
j
e�

Dj
T

, ð18Þ

where T is the temperature. A lower softmin temperature, T, will
give outlier vectors less weight in the output, but at a trade-off of
potentially including undesirable discontinuities in the field as
neighboring positions in the outputmay be averages fromdifferent
subsets. For our experiments, we used T = 5.7 with n = 3. As an
added insurance against introducing undesirable discontinuities,
the fields may be spatially smoothed when computing their
similarity in eq. (17).

For each subset, we distribute its coefficient evenly across its
member fields, and the ultimate weight for each field in the input set is
the sum of these distributed coefficients. The final field is then

F =
X
k

X
i2Wk

wk

m
F i: ð19Þ

Vector voting corrects aligner errors
Given two images Ms and Mt as input, an aligner ϕ computes a dis-
placement field

ϕðMs ,MtÞ= ~Fs!t , ð20Þ

that transforms Ms to be similar to Mt. The subscripts s and t indicate
section indices. The tilde sign indicates a field directly produced by an
aligner, as opposed to a field that has undergone additional
operations.

Aligners can use a previously computed field to transitively align a
source to a previous target,

ϕðMs,Mt � F t!kÞ= ~Fs!t!k , ð21Þ

as well as align a transformed source to a target,

ϕðMs � Fs!k ,MtÞ= ~Fs!k!t : ð22Þ

The field, ~Fs!t , can contain errors if the target image contains
missing or corrupted information. If we have a set of images,
{M1,…, Mn}, we can make multiple measurements of the same dis-
placement field using transitive alignment. Now we can use vector
voting as an error correction procedure with the set of displace-
ment fields,

F s!t = νð~Fs!1!t , . . . ,~Fs!n!tÞ: ð23Þ

This assumes the Anna Karenina principle: correct transitive fields are
relatively similar with other correct fields, while incorrect fields will be
different in different ways. The smooth consensus of vector voting
preserves desired smooth and non-smooth features of the set of
displacement fields.

Sequential alignment
With an error correction procedure in place, we can now define
sequential alignment. It starts by fixing the first section of the
block, so that its field is the identity (section indices relative to
the first section),

F0 = I : ð24Þ

To provide multiple targets for voting on the next few sections
in the sequence, we align a few previous sections to the
first section,

F�k!0 =ϕ M�k ,M0

� �
, ð25Þ

where k∈ {1, …, n − 1}. From multiple measurements of the displace-
ment field,

~F i!i�k!0 =ϕ Mi,Mi�k � F i�k!0

� � ð26Þ

we use voting to produce the final consensus field that aligns a given
section to the start of the block,

F i!0 = ν f~F i!i�k!0gk2f1, ...,ng
� �

: ð27Þ

Block Alignment
Starter sections, B, were manually selected by reviewing every tenth
section at 1024 nm resolution, and identifying the nearest section that
was deemed free of large defects. Block sizes were adjusted accord-
ingly. Section indices are relative to the first section of the entire
dataset.

The displacement between a neighboring pair of blocks, or
stitching field, was computedby registering the overlapping n sections
of the two blocks, S = {Bi + k : k∈ {0,…, n − 1}}, then voting over the set
of n fields that were produced.

~F j!Bi!j!Bi�1
=ϕ Mj � F j!Bi

,Mj � F j!Bi�1

� �
ð28Þ

FBi!Bi�1
= ν f~F j!Bi!j!Bi�1

g
j2S

� �
ð29Þ

Blocks were stitched together by composing the displacement field of
a section computed during block alignment with preceding stitching
fields, such that

Fz = Fz!Bi
� α FBi!Bk�1

,z � Bi

� �
� � � � � α FB1!B0

,z � B1

� �
: ð30Þ

The stitching fields are adjusted, or “decayed”, based on their distance
from z. For a distance n, a stitching field is decayed such that

αðFð~rÞ,nÞ=~r +βðnÞ
X
~x

GσðnÞð~xÞuð~r �~xÞ, ð31Þ

where Gσ(n) is a blurring kernel with varying standard deviation
that reduces the high-frequency components of the field with
distance, and β(n) is a function that returns a coefficient to
dampen the effect of the field with distance. In our experiments,
we used

σðnÞ= cn andβðnÞ= maxð1� n
d
,0Þ, ð32Þ

with c = 0.2 (measured in pixels) and d = 200 (measured in sec-
tions). The effect of applying a varying blurring kernel on each
stitching field was generated by trilinearly interpolating a MIP
hierarchy of the field generated using an iterative 2 × 2 box
filter38.

Composition with decay preserves pair alignment
Block alignment should preserve pair alignment, such that,

Fz � F�1
z�1≈Fz!z�1: ð33Þ
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For example, let’s use fields that are in the first block, so that

Fz!B1
� α FB1!B0

,z � B1

� �
� Fz�1!B1

� α FB1!B0
,z � 1� B1

� �h i�1
:

ð34Þ

The inverse of a composition is the composition of the inverses
reversed, and an inverted aligner field aligns a target to its source,

Fz!B1
� α FB1!B0

,z � B1

� �
� α FB1!B0

,z � 1� B1

� ��1
� FB1!z�1: ð35Þ

Wewant to show that the second and third fields are roughly inverses,

α FB1!B0
,z � B1

� �
� α FB1!B0

,z � 1� B1

� ��1
≈I : ð36Þ

To simplify, let’s set n = z −B1. Starting with the vector equation for
field decay, eq. (31), let’s define a separate variable for the adjusted
displacement,

Unð~rÞ= βðnÞ
X
~x

GσðnÞð~xÞuð~r �~xÞ: ð37Þ

This lets us write the inverse of the adjusted displacements as,

Vnð~rÞ= � Unð~r +Vnð~rÞÞ: ð38Þ

Now we can rewrite eq. (36) as a vector equation,

α FB1!B0
,n

� �
� α FB1!B0

,n� 1
� ��1 ð39Þ

=α FB1!B0
ðr +Vn�1ð~rÞÞ,n

� �
ð40Þ

=~r +Vn�1ð~rÞ+Un ~r +Vn�1ð~rÞ
� � ð41Þ

=~r � Un�1 ~r +Vn�1ð~rÞ
� �

+Un ~r +Vn�1ð~rÞ
� � ð42Þ

Let ~s =~r +Vn�1ð~rÞ, and substitute the definition of the adjusted dis-
placements,

~r � βðn� 1Þ
X
~x

Gσðn�1Þð~xÞuð~s �~xÞ+βðnÞ
X
~x

GσðnÞð~xÞuð~s �~xÞ ð43Þ

~r +
X
~x

βðnÞGσðnÞð~xÞ � βðn� 1ÞGσðn�1Þð~xÞ
h i

uð~s �~xÞ ð44Þ

If we use a very large decay distance so that β(n) ≈ 1, then the filter
convolving the displacements, uð~xÞ, is the difference between two
blurring kernels with slightly different standard deviations. The slower
that σ increases, the more similar the two blurring kernels, and the
closer toproducing the identity. Consider using a normalizedGaussian
blurring kernel for G with a σ that increases at a rate of 0.02 px
per section. This will see that the kernels do not differ to start,
increasing to a peak difference of around 5% at about 22 sections, then
decreasing to within 1% after 40 sections.

Large scale inference
In order to efficiently apply the proposed approach to large scale
datasets, we designed an open source inference framework corgie
(COnnectomics Registration Generalizable Inference Engine). The

main functionalities of corgie are handling the dependencies between
various steps in the pipeline and handling arbitrarily large images,
while maintaining high utilization of distributed workers. Ability to
gracefully handle dependencies is a major difference between corgie
and other large scale 3D stack processing frameworks39. corgie is able
to process arbitrarily large images by breaking them into smaller
chunks, processing the chunks independently, and assembling the
final result from the processed chunk outputs. As quality of convolu-
tional network predictions tends to deteriorate near image bound-
aries, corgie allows the input chunks to overlap, combining their
results either through cropping or soft blending. Processing of an
individual chunk constitutes an atomic task, which will be assigned to
one of the distributed workers. Instead of creating a static computa-
tion graph which encodes all of the dependencies between tasks,
which may introduce overhead when the number of tasks is large,
corgie uses dynamic task dispatch. More specifically, each processing
step is defined as a Job.Uponbeing called, a jobwill yield either a set of
tasks or a Barrier dependency, indicating that all of the taskspreviously
yielded by this job must be completed before the job can proceed.

As an example, alignment of each block will be executed as an
independent block-align job. Block-align job is implemented as a
combination of other jobs, such as compute-field job, render-job,
vector-vote-job, etc.

corgie’s task scheduler will distribute tasks from all of the simul-
taneously running jobs to the same pool of workers, track Barriers and
task completion statuses, and schedule new tasks only when the job is
ready to proceed. The corgie abstraction allows combining these jobs
in straightforward, imperative way, while keeping cluster utilization
high. corgie supports all of the processing steps described in this
paper, including image pre-processing (normalization, defect mask
computation and burn-in).

Training code
The metroem package implements the training code necessary for all
of themodels presented in thiswork, and is basedon thePyTorchdeep
learning framework. The package is easy to install and operate,
allowing users to train new models and finetune existing models on
new data without extensive expertise in deep learning. Models trained
through metroem can be used in corgie without any additional con-
version, although corgie is not limited to using only metroemmodels.
Additionally, metroem lets the users train aligners for multiple reso-
lution with a single command.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
FAFB v15 data is publicly available from https://seung-lab.github.io/
fafbv15/. The FAFB v14.1 dataset is hosted by BossDB40 at https://
bossdb.org/project/flywire. The two mouse cortex volumes are also
hosted by BossDB at https://bossdb.org/project/microns-minnieand
https://bossdb.org/project/microns-interneuron.

Code availability
Code is available under the Apache License 2.0 from https://github.
com/seung-lab/corgieand https://github.com/seung-lab/metroem.
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