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Pervasive epistasis exposes intramolecular
networks in adaptive enzyme evolution

Karol Buda 1, Charlotte M. Miton 1 & Nobuhiko Tokuriki 1

Enzyme evolution is characterized by constant alterations of the intramole-
cular residue networks supporting their functions. The rewiring of these net-
work interactions can give rise to epistasis. As mutations accumulate, the
epistasis observed across diverse genotypes may appear idiosyncratic, that is,
exhibit unique effects in different genetic backgrounds. Here, we unveil a
quantitative picture of the prevalence and patterns of epistasis in enzyme
evolution by analyzing 41 fitness landscapes generated from seven enzymes.
We show that >94% of all mutational and epistatic effects appear highly idio-
syncratic, which greatly distorted the functional prediction of the evolved
enzymes. By examining seemingly idiosyncratic changes in epistasis along
adaptive trajectories, we expose several instances of higher-order, intramo-
lecular rewiring. Using complementary structural data, we outline putative
molecular mechanisms explaining higher-order epistasis along two enzyme
trajectories. Our work emphasizes the prevalence of epistasis and provides an
approach to exploring this phenomenon through a molecular lens.

Enzyme evolution proceeds via the stepwise accumulation of adaptive,
neo-functionalizing mutations. Since enzyme functions are supported
by sophisticated three-dimensional structures, underpinned by highly
connected amino acid networks, functional optimization often
involves the rewiring of these intramolecular networks by adaptive
mutations (Fig. 1a)1. Studying these mutations through the lens of
intramolecular networks has yielded a deepmechanistic and structural
understanding of enzyme evolution1–7. For example, by probing non-
additive interactions between two mutations, i.e., epistasis, one can
unveil key residue interactions that enhance or compromise the
optimization of an enzyme’s function (Fig. 1b,d). However, in strongly
intertwined intramolecular networks, multiple residues concurrently
interact, and the introduction of further mutations is likely to rewire
previously established interactions, giving rise to higher-order
epistasis (interactions between three or more mutations)8 (Fig. 1e).
Consequently, pervasive higher-order epistasis can cause mutational
and epistatic effects to appear highly idiosyncratic, that is, exhibiting
variable effects depending on the background in which they occur9

(Fig. 1b-e). Idiosyncrasy challenges our understanding of the
mechanistic and functional basis of mutations because, when epistasis
is widespread, the characterization of single mutational- and epistatic-
effects in a particular genetic background may not accurately reflect

the contribution of these effects during adaptive evolution. Thus, a
robust description of the extent of idiosyncrasy, stemming from
higher-order epistasis, is required if we wish to understand the
topology of intramolecular networks and enzyme evolution.

While epistasis has been extensively described over the last dec-
ade, the degree to which it creates apparent idiosyncrasy in muta-
tional- and epistatic- effects during adaptive enzyme evolution
remains unknown. Several studies have systematically characterized
epistasis in organisms8,10 and found extensive idiosyncrasy among
genomicmutations9,11. These interactions between genomicmutations
are often rooted in complex phenomena, e.g., arising from a non-linear
relationship between the organismal fitness and the function of a
protein, genetic dominance12, or metabolic network dynamics13. Yet,
global or non-specific epistasis, the non-linear relationship between a
protein biochemical trait and a measurable phenotype, could also
account for the majority of idiosyncrasy, even in single protein
studies14–17. Indeed, models that simply correct for non-linear mapping
account for >90% of the phenotypic variation across proteins16–18.
Notably, these studies were all conducted on random, non-adaptive
mutations – in contrast, recent work on adaptive trajectories at the
single enzyme level has shown that specific epistasis, i.e., epistasis
originating from biophysical interactions between amino acids,
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prevails2,19,20. Therefore, it stands to reason that the patterns and pre-
valence of idiosyncratic epistasis in adaptive enzyme evolution may
substantially differ from large-scale, random mutational sampling
studies. Furthermore, idiosyncratic effects may also arise from amore
tractable phenomenon: theunique alterationofmolecular interactions
embedded in intramolecular networks.

To date, conventional approaches aimed at deconvoluting
epistasis by either (i) capturing non-specific epistasis across the
landscape21, (ii) quantifying mean epistasis using background-
averaging methods22, or (iii) by isolating a few specific mutants for
biophysical characterization of the mutational interactions23. The first
and second approaches typically require a fully annotated, experi-
mentally measured, combinatorial landscape, i.e., a fitness landscape
encompassing allmutational combinations of a small set ofmutations.
Combinatorial landscape data are then (i) transformed onto a linear
scale using non-linear transformation techniques16–18,21 and/or (ii) ana-
lyzed using variations of the Walsh-Hadamard transform8,22. They are
then distilled down to epistatic coefficients that represent the average
mutational- and epistatic- effects of all mutations across every geno-
typic background present in the landscape. While these approaches
excel at recapitulating landscape-wide epistatic trends, they can mask
the contribution of specific interactions in select, evolutionarily

relevant genotypes, therefore complicating the identification of key
amino acid connections within the intramolecular network of an evo-
lutionary intermediate. The third approach examines, in greater detail,
the specific biophysical interactions existing within intramolecular
networks, by measuring epistasis in a reference genotype (usually the
wild-type background) and interpreting these effects with structural
evidence1,6,24–26. However, these studies generally focus on a single, or
only a few, background(s), generally devoid of higher-order epistasis
quantification, and rarely examine whether these interactions are
rewired – or distinctly wired – in different genotypes. Thus, to com-
prehensively explore intramolecular networks in enzymes and their
rewiring during adaptive evolution, it is pertinent to develop a hybrid
approach, wherein apparent idiosyncrasies can be captured across a
combinatorial landscape and changes in epistasis can be tracked to the
molecular level to expose novel, rewired, interactions.

What are the patterns and prevalence of epistasis in adaptive
enzyme evolution? How can higher-order epistasis and seemingly
idiosyncratic effects be used to explore the rewiring of intramolecular
networks underlying enzyme adaptation? In this study, we address
these questions by comprehensively quantifying and extracting
epistasis and higher-order epistasis from 41 combinatorial landscapes,
spanning seven different enzymes. We found that, in adaptive

Fig. 1 | Intramolecular network rewiring underpins apparent idiosyncrasy in
mutational effects. a A ligand (yellow star) cannot bind in the active site of a wild-
type (wt) putative enzyme until a mutation (orange node) at position X (pos. X)
rewires the entire network, unlocking activity toward the ligand. The change in
function uponmutation at pos. X canbeplotted as the singlemutation effect (SME)
in the wt background. bMutation at pos. X does not enhance ligand stabilization if
pos. Y (black node) has been previously mutated, due to an alternative intramo-
lecular network pre-existing in this background. When the SME is plotted in this

background, the discrepancy between SMEs represents epistasis. cWhen pos. X is
mutated in a variety of backgrounds, epistasis will cause this mutation to appear
highly idiosyncratic. d Epistasis between pos. X and Y can be plotted as an epistatic
effect in the wt background. e The epistatic effect between pos. X and Y (orange
node and halo) differs when pos. Z (black node) is mutated, a product of higher-
order epistasis, and appears idiosyncratic across various other backgrounds.
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trajectories, over 94% ofmutational and epistatic effects appear highly
idiosyncratic, rendering them highly context-dependent. Further-
more, we showed that such underlying idiosyncrasy heavily impaired
functional predictions of evolutionary intermediates and endpoints.
By exploring evolutionarily connected genotypes, we demonstrate
that changes in epistasis expose network rewiring events. Finally, we
feature two examples of higher-order intramolecular network rewiring
and analyze epistatic effects in the light of existing structural data,
proposing putative molecular mechanisms that may drive network
rearrangements. Our work serves as a barometer for estimating the
extent of apparent idiosyncrasy in single mutational- and epistatic-
effects in enzyme evolution and constitutes an approach for exploring
the rewiring of biophysical interactions within the intramolecular
networks that support enzyme functions.

Results
Statistical characterization of 41 combinatorial landscapes
We first conducted a literature search of combinatorially complete
fitness landscapes of enzymes. We limited our search to studies
probing only single mutations per position. They were then filtered to
ensure that the landscapes explored four ormore positions (n ≥ 4) and
functionally characterized all possible combinations of these muta-
tions (2n variants). From these, we only retained studies reporting
enzyme function as a continuous variable. Using these cut-offs, we
obtained a working set of ten studies, exploring seven different
enzymes (Table 1). Some of thesemutations were accumulated during
directed evolution or enzyme engineering toward a novel function
(phosphotriesterase, PTE; β-lactamase, OXA-48; nitroreductase,
NfsA)27–29. Others were identified from naturally occurring evolu-
tionary trajectories, either through a retrospectively identified path
using ancestral sequence reconstruction (methyl-parathion hydrolase,
MPH)19,20, the presence of clinically relevant mutations (dihydrofolate
reductase, DHFR, andβ-lactamase, TEM-1)30–34, or in the caseof alkaline
phosphatase (AP), by using previously characterized active site
mutations24. The final dataset consisted of 56 unique mutations; we
ensured that the majority (54) was located within the protein open
reading frame, but retained two mutations in the promoter region (in
DHFR and TEM-1)30,33. We also removed three TEM-1 landscapes
probing growth rates for AMP, AMC, CAZ, and TZP as these data
yielded binary fold-change values after performing the non-linear
transformation (see Methods for details). These data were analyzed as
41 separate combinatorial landscapes, totaling 1,440 genotype-
phenotype data points. Note that some studies explored the same
set of positions in a unique enzyme, albeit with a different substrate,
inhibitor, or metal cofactor (Table 1 and Supplementary Data 1).

Next, themutational datawereprocessed to allow for a streamlined
analysis using our computational pipeline (see Code Availability). Tra-
jectories that explored different mutational combinations for the same

enzyme were treated as separate combinatorial landscapes, as were the
combinatorial landscapes characterizing the function of the same sub-
set ofmutants across different substrates, ligands, ormetals. Due to the
variety of measured functions, ranging from direct physicochemical
properties of enzymes to indirect effects on the cellular phenotype, all
enzyme functions were normalized relative to their wild-type (wt)
background, providing a fold-change in enzyme function (F), which was
then log-transformed (see Methods). Replicate measurements were
transformed to a single mean value, before normalization and log10
transformation. Not accounting for thewt genotypeswhere log10(F) = 0,
we obtained 1,399 F values for further analysis (Supplementary Data 2).
We then applied a four-parameter non-linear transformation to our
dataset to remove the influence of non-specific epistasis (Methods and
Supplementary Data 3). Finally, we also carried out all analyses on a
reduced dataset to monitor statistical artefacts originating from
potential cross-landscape correlation (see Methods).

Heterogeneity in single mutational effects
To paint a comprehensive picture of the prevalence of epistasis in the
selected enzymes, we first extracted the functional effect of every single
mutation at a given position, across all available genetic backgrounds.
The data were processed to provide the single mutational effect (SME)
of a given mutation across every genotype (see Methods). In a combi-
natorially complete fitness landscape of n mutations, a particular
mutation occurs in 2n-1 distinct genetic backgrounds, hence, each com-
binatorial landscape contains n × 2n-1 SMEs. Using this approach, we
collected the 3,936 SMEs (Fig. 2a) and faceted them by the 198 unique
mutation- substrate/inhibitor/metal pairs, simply referred to as posi-
tions – e.g., the effect of a mutation at the same amino acid residue for
two different substrates is treated as a different position (Supplemen-
tary Data 4). We chose to use a significance threshold of 1.5-fold for all
analyses; this was the median error rate (calculated as two standard
deviations) for all replicatemeasurements available inourdataset. Using
this threshold,we found that the sign of the SMEswas 18%negative, 30%
neutral, and 52% positive across all genotypes. This constitutes a rela-
tively even split, despite a slight bias toward a positive effect, consistent
with the fact thatmostmutationswere adaptive andoriginally identified
due to their beneficial effect on function (Fig. 2a).

Next, we characterized the heterogeneity – the spread in effects
across different backgrounds – in SMEs for a given positionby plotting
and analyzing the variance in the distribution of SMEs at each position
(Supplementary Data 5). The spread in SMEs across different genetic
backgrounds demonstrates the presence of significant context-
dependence; accordingly, the degree of SMEs scatter for a position
across various genotypes reflects the existence of epistasis in pairwise,
and possibly higher-order, interactions, and provides a metric for the
apparent idiosyncrasy that a position exhibits. To capture the spread,
we computed two standard deviations (2 SD) for the SMEs at each

Table 1 | Combinatorial landscapes analyzed in this study

Enzyme No. of mutations Conditions No. of total measurements Measured trait Reference

OXA-48a 4, 6, 6 2, 2, 2 288 IC50 26

TEM-1b 5, 4 1, 11 208 MIC, Growth rate 31,32

AP 5 1 32 kcat/KM 22

NfsAc 7, 7 1, 1 256 EC50 27

DHFRd 4, 6, 5, 5 5, 1, 2, 2 272 IC50, IC75, kcat/KM, Ki 28–30

MPHe 5 8 256 Lysate activity 19

PTEf 6 2 128 Lysate activity 25
aThree independent trajectories each probed using two inhibitors
bRef. 32 explored 15 inhibitors for the same set of four mutations; 4 landscapes were removed leaving 11 conditions
cTwo separate mutational trajectories for the same enzyme and substrate
dRef. 29 explored four mutations using five different substrates; ref. 30 explored both kcat/KM and Ki for two mutational trajectories
eRef. 19 explored the same five mutations under eight different metal environments
fSix mutations were explored using two substrates, one in ref. 25 and one outlined in this study (see Methods)
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position, which should encompass ~95% of the functional variability
and inform on the extent to which epistasis distorts SMEs across each
background relative to the mutation’s average effect. We deemed
positions to be highly heterogeneous when their 2 SD > 1.5-fold (our
threshold metric). We found that idiosyncrasy prevails in our dataset:
96% (189/198) of positions exhibit significant spread (Fig. 2b and
Supplementary Table 1). Many positions exhibit much stronger het-
erogeneity than the threshold: 71% (141/198) show a 2 SD> 5-fold, and
56% (110/198) show a 2 SD> 10-fold (Fig. 2b and Supplementary Table 1).
The reduced dataset exhibited similar, albeit slightly lower, values
(Supplementary Table 2). We also characterized how the magnitude of
the spread in SMEs affects their sign-changing behavior, i.e., whether the
sign of the SME varies between positive, negative, and/or neutral in
different genotypic backgrounds. Only 14% of the positions retained the
same sign across all genotypes while 17% of positions showed neutral
and negative SMEs and 22% of positions displayed both neutral and
positive SMEs. Interestingly, 47% of positions showed background-
dependent variability between positive and negative effects (Fig. 2c and
Supplementary Table 3). The proportion of positive versus negative
SMEs for each position within this category varied, indicating that the
sign contribution was indeed heterogeneous across different back-
grounds (Supplementary Fig. 2). However, we found that the reduced
dataset showed a significantly lower proportion of negative-positive
positions (Supplementary Table 4), contrasting that of the larger

dataset, which we elaborate on in the discussion. Finally, we sought out
the proportion of SMEs that are well represented by the average SME at
a given position across the entire landscape. We began with the wt
background SME (SMEwt) and computed the absolute difference
between the SMEwt and the mean SME (SMEavg) for every mutation
across all representative genotypes (Fig. 2d). This approach captures the
apparent idiosyncrasy of each position by measuring the extent to
which the SME at a particular genotype reflects themean effect. For 67%
of positions, the SMEwt deviates from SMEavg by >1.5-fold (Fig. 2d and
Supplementary Table 5), while the sign of the SMEwt remains similar to
that of SMEavg (only 1%of positions showa significant difference in sign).
This proportion did not only apply to SMEwt but also to the SME in every
other genotype – 58% (2283/3936) of positions showed a deviation >1.5-
fold between the SMEs across every genotypic background and their
SMEavg (Supplementary Table 7). These statistics remained largely
similar in the reduced datasets (Supplementary Tables 6 and 8). Toge-
ther, these observations suggest that, in any given adaptive landscape,
mutations appear highly idiosyncratic: there is a 90–96% chance that a
givenmutation will exhibit epistasis with other adaptive mutations, and
in 23–47% of cases the effect of a mutation will vary between beneficial
and detrimental, depending on the presence of other adaptive muta-
tions, while in 66–70% of cases the SME observed in the wt background
(or 55–58% for anygivenbackground)will bepoorly representativeof its
effect in other backgrounds.
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Heterogeneity in epistatic effects
The extensive epistasis that creates heterogeneity in SMEs stems, at
the very least, from strong and pervasive pairwise epistasis – but
does it end here?We expanded our survey of idiosyncrasy fromSMEs
to mutational interactions. To this end, we calculated the epistatic
effects (EEs) for every genotype at any given order by computing the
deviation between the observed function and the predicted function
using the sum of all constituent SMEs and lower-order EEs (see
Methods). By taking these data and utilizing the same metrics of
spread as with the SME analysis, we can detect the presence of
higher-order epistasis and its ability to create apparent idiosyncrasy
across epistatic effects.

Compared to the 198 surveyed positions, we extracted 395 pair-
wise-, 422 three-way-, and 293 four-way- combinations. Since 18 of
the 41 landscapes only probed 4 mutations, 18/263 four-way combi-
nations could not be examined as they only occurred in one genetic
background, leaving 245 four-way combinations viable for analysis.
Overall, we collected 8,658 values for EEs from the 2nd to the 4th order
(Supplementary Data 6). Surprisingly, we found that nearly all pairwise
combinations (95% or 376/395) show significant idiosyncrasy in EEs
(Fig. 3a). Although this proportion decreased at less stringent thresh-
olds, even with a 10-fold significance cut-off, 44% of pairwise combi-
nations retain a significant spread (Supplementary Table 1).
Interestingly, this trend remains consistent at higher orders: 94% (397/
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422) of three-way combinations, and 99% (244/245) of the four-way
combinations exhibit significant heterogeneity (Fig. 3a). The impact of
spread in EEs was also apparent in their sign variability – 66% (259/395)
of combinations show pairwise EEs that can be either positive or
negative, depending on the background (Fig. 3b). Proportions of
positive-negative combinations appear similar to that of the SMEs
(Supplementary Fig. 4). Only a handful of combinations (6%) exhibit
single sign EEs, and the remaining combinations were either neutral-
negative (11%) or neutral-positive (17%). For higher-order combina-
tions, positive-negative sign variability remains high: 60% for three-
way, and 55% for four-way (Fig. 3b and Supplementary Table 3). Like
SMEs, the wt background EE (EEwt) showed a high deviation from the
mean (EEavg) for each combination. More than half of pairwise (60% or
235/395), 52% (or 218/422) of triplet, and 60% (or 148/245) of quad-
ruplet EEwt deviated from EEavg by more than 1.5-fold (Fig. 3c and
Supplementary Table 5). This high deviation was also representative of
other non-wt backgrounds (Supplementary Table 7). Interestingly,
more combinations showed significant sign discrepancy in EEwt versus
EEavg than in SMEs. Although still in the minority, 9% (37/395) of pair-
wise-, 6% (26/422) of three-way-, and 7% (17/245) of four-way- interac-
tions had a significantly different sign effect in the EEwt than the EEavg.
Again, all results remained comparable upon removal of potentially

correlated landscapes (Supplementary Tables 2, 4, 6, 8), including the
trends in sign heterogeneity, unlike the SMEs. These high levels of
apparent idiosyncrasy in EEs, similar to the ones observed for SMEs,
imply that higher-order epistasis is equally prevalent and influential
compared to lower-order epistasis and that epistatic effects continue
to appear idiosyncratic even at higher orders.

Apparent idiosyncrasy confounds prediction
The strong prevalence of heterogeneity in SMEs and EEs raises the
question of the extent to which seemingly idiosyncratic effects can be
used for functional prediction across the landscape. We computed the
predicted functions (Fpred), by using the biochemical model (utilizing
SMEwt and EEwt)

22. The biochemicalmodel examines predictability given
a limited amount of mutational data, i.e., mutational effects in the wt
background, thereby directly utilizing each context-dependent effect as
a model coefficient. We gradually increased the accessibility to higher
mutational orders used for prediction, up to the 4th order (Fig. 4a). To
assess the functional prediction accuracy, we measured the absolute
error (AE) of the predicted versusobserved function for the endpoint, or
most derived, genotype in each landscape (Fig. 4a). We found that the
biochemical model showed high AEs with a marginal improvement in
median AE, but not mean AE, even upon introducing 4th order epistatic
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information (Fig. 4a and Supplementary Table 9). This poor perfor-
mance of the biochemical model demonstrates how apparent idiosyn-
crasy can distort functional predictions in enzyme fitness landscapes.
Prediction errors were also similar in the reduced dataset (Supplemen-
tary Table 10). We also ensured that the epistasis could be effectively
captured using an alternative model, namely the background-averaged
model via linear regression (utilizing SMEavg and EEavg; see Methods)8,10,
and indeed found that prediction accuracy of the background-averaged
model increased with each incorporated order, with the 3rd order being
sufficient for predicting functions within the significance threshold
(Supplementary Fig. 5 and Supplementary Table 9).

To further illustrate the extent to which apparent idiosyncrasy can
confound predictions, we filtered our dataset down to 11 adaptive
landscapes, i.e., landscapes where the substrate or ligand is assumed to
be the primary selection pressure that led to the accumulation of the
probed mutations. For each landscape, we retained a single most
accessible path, in which the most functionally advantageous mutation
is fixed at each step. We then computed a predicted function for each
intermediate genotype along the most accessible path using ascending
orders of the biochemical model (Fig. 4b and Supplementary Table 11).
Similar to the endpoint prediction, we found that the biochemical
model failed to accurately predict the function of most genotypes at
every order. Interestingly, some highly mutated genotypes along the
trajectory were, in fact, better predicted by lower-order information, a
phenomenon on which we will elaborate in the discussion (Fig. 4b and
Supplementary Table 11). This reinforces the propensity for apparent
idiosyncrasy to confound functional predictions, as well as its ability to
distort inferences made on evolutionary trajectories from limited
mutational data.

Apparent idiosyncrasies reveal intramolecular network rewiring
Given the strong prevalence of apparent idiosyncrasy in these com-
binatorial landscapes, we sought to explore how a context-dependent
effect may reflect unique interactions within intramolecular networks.
We decided to only retain combinatorial landscapes based on kcat/KM,
Ki, and lysate activity, that is, functional readouts that aremore likely to
reflect biophysical interactions between amino acids that directly

relate to the enzymes’ mechanisms. Thus, we focused our analysis on
the following models: AP, DHFR, MPH, and PTE, representing 544
genotype-phenotype measurements.

We then sought to identify potential patterns of epistasis across
mutational steps in these enzymes. By focusing on how EEs change
upon the introduction of a new mutation, we attempted to uncover
key connections within the intramolecular network between the
adaptive mutations. Using the wt background as a reference, we col-
lected the EEwt for every nth-order genotype (where n > 2) and extrac-
ted every possible transition from an (n – 1)th genotype to the nth

genotype – a total of 1027 transitions (Fig. 5). Mathematically, the EEwt
for an nth-order interaction describes the change in effect that a new
mutation confers to any constituent (n – 1)th-order interaction (Eq. 5
and Eq. 2 in Methods). For example, a negative EEwt for a three-way
interaction in a 3rd order mutant versus a pairwise interaction with a
positive EEwt in the 2nd ordermutant suggests that the positivepairwise
EE is disrupted by the presence of the new mutation (Fig. 5). In our
data, we found that 23.6% (242/1027) of transitions showed no sig-
nificant (n – 1)th and nth-order epistasis, 14.3% (147/1027) showed
no change in pre-existing epistasis, and 24.4% (251/1027) of transitions
show higher-order epistasis, where none existed previously (Fig. 5).
Interestingly, the remaining 37.7% (387/1027) of transitions show a
change in epistasis, where the epistatic effect of a pre-existing
interaction changed due to new, higher-order epistasis. These
changes were further categorized: nth-order interactions of the same
sign were deemed constructive, while those of the opposite sign
were marked disruptive. The minority of changes (24.0%; 93/387)
were enhancing while 81.7% (371/454) were diminishing (Fig. 5). We
observed similar trends for the reduced dataset (Supplementary
Table 12). Expanded upon in the discussion, these data provide three
key insights: (i) new mutations are often uncoupled from other pre-
existing mutations or interactions that arose during adaptive evolu-
tion (in 37.9% of cases), (ii) mutations can give rise to new epistasis
stemming from higher-order order connections (Fig. 5), (iii) the
prevalence of changes in epistasis across evolutionarily connected
genotypes may account for the low predictive power of the bio-
chemical model (Fig. 4).

Constructive

Disruptive

Extract transitions

(n - 1) mutations n mutations

(n - 1)th order 
constituent 
interaction

nth order 
interaction

23.6%

37.6%

24.0%

76.0%

14.3%

24.4%

No change in epistasis

No epistasis

Monitor change in
epistatic effect (EEwt)

1027 
transitions

(n - 1)th EEwt nth EEwt

New epistasis

Change in epistasis

Fig. 5 | Change in EEwt reveals functional patterns of network rewiring. For
every genotype with n mutations (circular nodes) a node with n – 1 constituent
mutations was identified. The (n – 1)th interaction is used as a reference point (blue
line between square nodes), and a mutation that affects this interaction at the nth-

order (red flat-headed arrow) marks a change in epistatic effect (EEwt; triangles).
Percent frequencies of each transition category are shown, with a further break-
down of a change in epistasis to ‘constructive’ and ‘disruptive’. Blue, red, and grey
represent positive, negative, and no epistasis, respectively.
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Molecular basis for higher-order intramolecular networks
To further demonstrate the insights gained from intramolecular net-
work analysis, we present two examples of how changes in higher-order
epistasis can be supported by structural data to provide putative
molecular mechanisms for network rewiring. For instance, in PTE, the
laboratory evolution of arylester hydrolysis required the initial fixation
of mutations Asp233Glu and His254Arg3. When introduced into the wt
PTE, His254Arg adopts two side-chain rotamers, one of which sterically
hampers substrate binding (PTE-R1, Fig. 6a)2,3. The Asp233Glumutation

preferentially stabilizes the productive Arg254 rotamer, in turn posi-
tioning the substrate in a productive conformation, resulting in a
47.4–fold positive pairwise interaction (PTE-R2, Fig. 6a). The apparent
idiosyncrasy of this pairwise interaction is revealed, however, upon the
introduction of Phe306Ile, which drastically diminishes the synergy of
the Glu233-Arg254 interaction (Fig. 6a). While Phe306Ile does not lead
to strong pairwise interactions with either Asp233Glu (EEwt ~1.7–fold;
Supplementary Data 6) or His254Arg (EEwt ~2.1–fold; Supplementary
Data 6), it gives rise to diminishing, -43.7–fold negative three-way
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Fig. 6 | Changes in epistasis expose intramolecular networks in enzymes. a In
PTE-R1 (PDB ID: 4xaf), H254R adopts two conformations (H254R*), one of which
prevents the 2NH substrate from binding as in the most evolved variant, PTE-R18
(PDB ID:4e3t). A favorable pairwise epistatic interaction betweenH254R and D233E
(in PTE-R2, PDB ID: 4xd5) is explained by the stabilizationof the ‘bent’ conformer of
Arg254, which enables substrate binding. Across the active site, F306I relieves a
steric clash between the hexyl moiety of the substrate, but concomitantly, likely
weakens hydrophobic interactions with this substituent (PTE-R8, PDB ID: 4xay).
L271F strengthens the stabilization of Arg254 and Loop7, forming a robust intra-
molecular network with Glu233 in PTE-R18. This cancels the negative three-way
epistasis between 306-233-254 by repositioning the substrate such that Ile306 can
form stronger hydrophobic interactions with the hexyl moiety, enhancing catalysis
in PTE-R18. A 2NH analogue bound in PTE-R18 (PDB ID:4e3t) is overlayed in each

structure to illustrate the most optimal binding orientation b In the MPH ancestor
(MPH-anc, PDB ID: 6c2c), methyl-parathion (m-pthion) cannot bind in the optimal
orientation obtained by molecular docking in the extant MPH* enzyme (PDB ID:
1p9e)18, due tomultiple steric clashes at the entrance of the active site, particularly
with Phe273.While F273L relieves this hindrance, and L72R enhances leaving group
stabilization, their pairwise interaction is negative. This may stem from the high
conformational freedom of the substrate due to weaken hydrophobic interactions
on theopposite side of the active site. TheΔ193S insertionmay compensate for this
detrimental effect by tightening the active site via altered loop dynamics, thus
enhancing enzyme-substrate complementarity. Note that there is no structure of
the F273L/L72R mutant (middle panel), this view is an overlay between MPH-anc
and MPH*.
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epistasis. The mechanism for this apparent higher-order antagonism is
likely rooted in substrate positioning. Indeed, Phe306Ile eliminates a
steric clash exerted by Phe306, elongating the cavity to facilitate the
binding of the hexyl moiety (PTE-R8, Fig. 6a). Since these three muta-
tions relieve different bottlenecks, we hypothesize that their respective
positive effects may vanish when combined. This may be the result of
mutational incompatibility leading to increased conformational free-
dom of the substrate in the cavity, which decreases stabilizing interac-
tions and potentially favors non-productive binding modes. Indeed, at
higher orders, the detrimental epistatic contribution of Phe306Ile is
alleviated, as the network continues its rewiring: Leu271Phe aids in
repositioning Phe306Ile and Arg254, further enhancing interactions
with the substrate and the active site loop 7 (PTE-R18, Fig. 6a), whose
stabilization is essential for high arylesterase activity35. Hence, evolution
overcomes this unique context-dependent, three-way incompatibility
by acquiring additional stabilizing mutations, restoring the positive
contribution of the Glu233-Arg254 interaction.

In the natural evolution of an organophosphatase, MPH, five cri-
tical mutations were identified as essential for organophosphate
hydrolysis19. Note that, while the combinatorial landscapes of these
mutations were evaluated in eight different metal environments20, here
we focus our analysis on the 3rd-order mutant with the highest function
in the zinc environment (MPH + Leu72Arg/Phe273Leu/Δ193Ser), the
putative adaptive environment. The high catalytic activity of this
mutant is characterized by strong positive epistasis between Leu72Arg,
Phe273Leu, and Δ193Ser. However, this three-way network stands out,
due to a pairwise incompatibility between Leu72Arg and Phe273Leu,
compensated for by Δ193Ser. Initially, the ancestral MPH cannot
accommodate the methyl-parathion substrate in its narrow active site
(Fig. 6b). The Leu72Arg mutation likely stabilizes the negative charge
developing on the leaving group oxygen at the transition state, whilst
the Phe273Leu seems to eliminate a steric clashwith the substrate, both
independently enhancing the organophosphatase activity (+8.5– and
+4.6–fold, respectively). The pairwise interaction is negatively epistatic
(-7.7–fold), however. The enzyme-substrate conformation observed in
the MPH* crystal structure (MPH + Leu72Arg/Phe273Leu/Δ193Ser + 2
mutations) suggests a redundancy in mechanistic contribution: while
Arg72 seems to promote leaving group stabilization in the productive
substrate conformation, the concomitant relief of a steric clash by
Phe273Leu may reposition the substrate away from Arg72, causing a
loss of interactions, thus decreasing catalysis (Fig. 6b). Thismechanistic
bottleneck and the resultingnegativepairwise epistasis are alleviatedby
Δ193Ser, however. This nearly neutral mutation (+1.9–fold) elicits a
strong positive SME in the double mutant background (+31–fold; Sup-
plementary Data 6), primarily stemming from the positive three-way
interaction (+16.8–fold). While the precise mechanism remains
unknown, the serine insertion appears to significantly increase the
backbone dynamics of a loop flanking the active site (Supplementary
Fig. 6). This could help reposition the substrate in a more optimal
orientation with respect to Arg72 and Phe273 by enhancing enzyme-
substrate complementarity (Fig. 6b). Thus, the three-way interaction
enables efficient hydrolysis of the organophosphate substrate and
constitutes a key intramolecular network that underpins the organo-
phosphatase activity in MPH.

Discussion
In this study, we used 41 combinatorial landscapes, across seven dif-
ferent enzymes, to quantify apparent idiosyncrasy in adaptive muta-
tions. If one typically expects new mutations, selected over the course
of evolution, to be highly context-dependent, we tend to forget that the
intramolecular interactions that they createordisruptwithin anenzyme
may show the same context-dependence. This has strong evolutionary
ramifications: Sailer & Harms showed that higher-order epistasis pro-
foundly affects the accessibility of evolutionary trajectories8. Therefore,
the high prevalence of apparent idiosyncrasy uncovered in our study

builds on previous work by providing the probability (in the form of
spread, sign heterogeneity, and deviation from mean effect) of a
mutation eliciting an apparently idiosyncratic effect in any given gen-
otype. Furthermore, by specifically focusing our exploration on adap-
tive landscapes, we paint a very different picture of the prevalence of
epistasis in enzymes than previous studies, which found limited specific
epistasis among random, non-adaptive mutations16–18.

The reduced dataset, intended to eliminate cross-landscape cor-
relations, showed a different distribution of sign heterogeneity in
SMEs. Our strategy for generating the reduced dataset consisted
of retaining landscapes that were more reflective of the adaptive
conditions, i.e., probing substrates andmetals that were present in the
original selection conditions. This resulted in the apparent enrichment
of positive and neutral-positive SMEs, and in turn reduced the abun-
dance of positive-negative SMEs (Supplementary Tables 3 and 4).
Interestingly, because the SMEs in the reduced dataset were still highly
heterogenous (Supplementary Tables 1 and 2), this dataset can be
characterized by a stronger presence of magnitude, as opposed to
sign, epistasis. Although several studies have explored the differences
in patterns of epistasis within singular enzymes across different
selection conditions20,31,34, further research is encouraged to provide
a rationale for these differences and to better capture global trends
across multiple enzymes.

In agreement with previous studies highlighting the poor pre-
dictive power of the biochemical model at the organismal level8,10, we
demonstrate that wt-derived EEs are also poor coefficients for func-
tional predictions along adaptive enzyme trajectories. We acknowl-
edge that there are several advanced prediction models for epistatic
analysis utilizing gaussian process regressions36, classifiers37, and
autoregressive generative models38. Indeed, the relative success of
thesemodelsposes an apparent conundrum: howcan theuseof sparse
epistatic terms achieve successful predictions if pervasive epistasis is
at play in adaptive trajectories? We believe that these observations
may be reconciled by outlining the key differences between epistatic
terms generated by the biochemical model compared to the pre-
dictive- or generative- models. The specific interactions derived from
genotypes in thebiochemicalmodel are highly context-dependent due
to pervasive higher-order epistasis, as demonstrated here. The
strength underlying predictive and generative models lies in amalga-
mating each of these specific interactions into a sparser subset of
coefficients,which captures global trendswithin the dataset. However,
the terms from these models are ultimately latent variables which,
although suitable for prediction and generation of highly-active
enzyme variants, are ill-suited for inferring molecular mechanisms,
unravelling the topology of intramolecular residue networks, and
revealing the extent of apparent idiosyncrasy in adaptive fitness
landscapes. We found that employing the biochemical model remains
necessary, if wewish to unveil the presence of complex intramolecular
networks and evaluate their relevance to understanding the biophy-
sical features that underlie epistasis.

We demonstrated that a large proportion ofmutational steps was
classified by changes in EEs. These changes were predominantly dis-
ruptive, suggesting that throughout evolution, epistatic networks are
highly sensitive to the introduction of subsequent adaptivemutations,
and canbe readily impacted. In fact, diminishing changes inEEsmaybe
connected to another observation in this study, where the use of
lower-order idiosyncratic EEs yielded better functional prediction for
high-order mutants (Fig. 4b), relative to higher-order EEs. In other
words, the existence of alternating fluctuations between positive and
negative epistasis in adjacent genotypes, a characteristic of disruptive
changes in EEs, will cause over- or under-predictions of function in
models operating under the assumption that previously characterized
epistasis remains constant at higher orders. Furthermore, the abun-
dance of disruptive changes may provide a molecular justification for
the theoretical considerations of idiosyncratic epistasis discussed by
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Lyons et al. and Reddy & Desai, where idiosyncratic epistasis resulted
in diminishing returns epistasis, as well as increasing costs epistasis9,39.

We have shown how, in evolutionarily connected genotypes,
patterns of epistasis can reveal cryptic functional determinants hidden
within intramolecular networks. Our approach aligns with several
structural and computational techniques that have been developed
over the years to probe amino acid networks40. Indeed, our epistasis
analysis could be complemented by evolutionary covariation data,
which identifies residues that are energetically coupled and likely to
co-evolve. Originally supported by statistical coupling analysis (SCA),
and later expanded upon by direct coupling analysis (DCA), these
statistical frameworks have been instrumental in identifying func-
tionally significant networks, or sectors, in proteins41–43. Sectors can be
construed as local, intramolecular, subnetworks of residues that sup-
port complex communication pathways within a protein structure44.
These pathways are cardinal to achieve: (i) allostery, via the trans-
duction of a signal fromaneffector site to a ligand binding site, leading
to a reversible functional change45, or (ii) conformational dynamics
that are essential to a protein function46,47. Since sectors reflect evo-
lutionarily conserved wiring mechanisms, mutations that alter the
regulation and function of these intramolecular networks can rapidly
give rise to epistasis. Interestingly, our analysis revealed a high degree
of rewiring (Fig. 5) and, for PTE and MPH, evidence of mutational
interaction networks that connect through the substrate (Fig. 6).
In these unique cases, the ligand constitutes an integral part of the
intramolecular network, akin to an amino acid residue, which can
facilitate the emergent epistasis. Given limited structural information,
with only a handful of mutants’ structures being solved, the molecular
mechanisms described here remain speculative and must be further
probed empirically to ensure their validity. Nevertheless, our
mechanistic analysis strongly emphasizes the relevance of exploring
network rewiring, evidenced by changes in epistasis, to decipher the
molecular mechanisms giving rise to new functions.

Finally, our analysis can be implemented to (i) determine which
interactions should be further examined, using downstream structural
and mechanistic experiments and (ii) highlight critical interactions
that may be incorporated as ‘weights’ into sequence-based computa-
tional models that are typically devoid of structural information.
Indeed, phenotypic prediction and intramolecular network analysis
have much to benefit from various empirical techniques that can
explore, in greater detail, the molecular and structural bases of these
networks40,48. For instance, molecular dynamics (MD)46,47 and nuclear
magnetic resonance (NMR)49 could be of great interest to study
potential interactions mediated through ligands and co-factors1. Like-
wise, an intramolecular network perspective may help pinpoint the
critical elements of a successful active site architecture and highlight
the importance of the newly evolved interactions between mutations
in 3D space. This contrasts modern sequence-based prediction meth-
ods that rely on the specific identity of the mutated residues, as it may
allow for the extrapolation of mutations at previously unexplored
sites. By combining structural and epistatic information, we may be
able to account for network rewiring before engineering campaigns,
and to create predictive models rooted in mechanistic information.

Methods
PTE combinatorial landscape
During the directed evolution of PTE toward arylesterase activity, we
previously identified a cluster of six function-altering mutations3,35,50.
Here, we constructed one of the combinatorial landscapes analyzed in
this study.Weexplored these sixpositionson thegenetic backgroundof
WT PTE (64 variants) and tested all their combinations for activity
against 2-naphthyl hexanoate (2NH)27. The 64 variants were constructed
by site-directed mutagenesis and subcloned into a pET-27-STREP
vector27. The variants were then transformed into E. coli BL21(DE3) car-
rying the pGro7 plasmid (Takara, Shiga, Japan) for GroEL/ES chaperones

co-expression50. Variants were individually inoculated in 96-deep well
plates containing lysogeny broth (LB) media, 100μg/mL ampicillin, and
34μg/mL chloramphenicol, then grown overnight at 30 °C. Overnight
cultures were transferred to a new deep well plate containing LB, sup-
plemented with 100μg/mL ampicillin, 34μg/mL chloramphenicol,
200μM ZnCl2, and 0.2% (w/v) arabinose for chaperone co-expression,
then induced with 1mM IPTG. Pellets were lysed with lysis buffer
(50mM Tris-HCl buffer, 100mM NaCl, pH 7.5, 0.1% (w/v) Triton-X100,
200μM ZnCl2, 100μg/mL lysozyme and 1μL benzonase (25 U/μL) per
100mLof lysis buffer). Lysateswere incubatedwith200μM2NH+ 1mM
Fast Red and the initial rate of hydrolysis was monitored at 500nm.

Data processing
The values of reported functions were divided by the wt background
function, or, in the presence of replicates, by the mean of the wt
background functions, then log10 transformed. However, we raised 10
to the power of all the TEM-1 growth rate values fromMira et al. before
using them in our standard pipeline34, as the growth rates from this
study are assumed to be additive and not multiplicative. All processed
files are provided (Supplementary Data 1). The non-linear transfor-
mation was performed using a four-parameter fit:

F =U � U � L
1 + eðm�Fadd Þs

ð1Þ

Where F is the observed function, Fadd is the predicted function based
on a first-order background averaged model (see below), U is
the upper bound, L is the lower bound, m is the mid-point, and s is
the slope (Supplementary Data 3). Non-linear transformations were
applied to datasets wherein the four-parameter model was more
parsimonious than linearmodel, as deemed by the Akaike Information
Criterion (AIC).We found that the non-linear transformation corrected
fold-change values for the AMC, AMP, CAZ, and TZP trajectories of
TEM-1 to binary values, i.e., equal to U or L, thus, we removed these
landscapes from further analysis. We also removed potentially
correlated landscapes, i.e., those probing different measurements,
environments, or substrates for the samemutations within an enzyme,
producing a reduced data, aimed at eliminating statistical artefacts. To
this end, we retained: AP, DHFR c57 trajectory from Lozovsky et al.,
DHFR Arg trajectory from Tamer et al., MPH in zinc environment, NfsA
trajectory 20_39, OXA-48 trajectories 1–3 for ceftazidime, PTE for 2NH,
TEM-1 with AM from Mira et al., and TEM-1 from Weinreich et al.

SME and EE calculation
Genotypes were represented by a string of amino acids that underwent
mutation, then encoded using ‘0’ for ancestral states, and ‘1’ for derived
states at the given amino acid positions. The single mutational effect
(SME) of a mutation at position i was calculated for each genetic back-
groundby computing the difference between log-transformed Fi =0 and
Fi= 1. The mutational transition for the SME is denoted with ‘x’ which
represents a transition from0 to 1– e.g., the log10SMEx001 represents the
SME of mutating position 1 in the position 4 mutant background and is
equal to log10 F1001 � log10 F0001. Epistatic effects (EEs) between two
positions i and j were calculated for each genetic background by com-
puting the difference between log10 SMEi= x,j =0 and log10 SMEi = x,j = 1.
For example, the log10 EExx00 represents the epistatic effect stemming
from the interaction between the first and second positionmutations in
the wt background and is equal to log10 SMEx100 � log10 SMEx000.
Importantly, this is equivalent to log10 SME1x00 � log10 SME0x00, as the
equation can be broken down:

log10 EExx00 = log10 SMEx100 � log10 SMEx000
= log10F1100 � log10F1000

� �� log10F0100 � log10F0000

� �

ð2Þ
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As with pairwise interactions, higher-order IEs were calculated by
taking the difference between EEs of the previous order, e.g.,
EExxx0 = EExx10 � EExx00. This can alsobebrokendown toSMEoreven F :

log10EExxx0 = log10EExx10 � log10EExx00
= ðlog10SMEx110 � log10SMEx010Þ � ðlog10 SMEx100 � log10SMEx000Þ
= log10F1110 � log10F0110

� �� log10F1010 � log10F0010

� �� �

� log10 F1100 � log10F0100

� �� log10 F1000 � log10F0000

� �� �

= log10F1110 � log10F1100 � log10F1010 � log10F0110 + log10F0100

+ log10F1000 + log10F0010

ð3Þ

Biochemical model
The functionof a genotypewaspredictedusing thebiochemicalmodel
as a sum of all mutational (SME) and epistatic (EE) effects in the wild-
type background:

log10 F =
Xn

i= 1

log10SMEixi +
Xn

i<j

log10EEijxixj + . . . ð4Þ

Where i and j represent the index of the residue’s position, xi is either
‘0’ or ‘1’ depending on the mutational state of the residue in the given
genotype, and F is the function. This is analogous to the biochemical
view of epistasis from Poelwijk et al. 22, however, our model uses F
values that do not represent ΔG of the protein or enzymatic reaction.

Background-averaged model
Mutations at n residue positions were annotated with variables ‘-1’ for
the ancestral state or ‘1’ for the derived state. These were used as x
variables in the linear model, F is the log-transformed and wild-type
normalized function of the variant. The linear model was constructed
such that:

log10 F = β0 +
Xn

i= 1

βixi +
Xn

i<j

βijxixj + . . . + ϵ ð5Þ

Where i and j represent the index of residue’s position, xi is either
‘-1’ or ‘1’ depending on the mutational state of the residue in the given
genotype, β are the linear coefficients that represent SMEavg and EEavg,
and ϵ is the error.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data can be found in the corresponding references outlined in
Table 1. Data for all combinatorial landscapes are provided in log10-
transformed wt-normalized format (Supplementary Data 2). Pro-
cessed data for functional contributions (Supplementary Data 4) and
epistasis (Supplementary Data 6) are also available. The structural
data for PTE-R1, PTE-R2, PTE-R8, PTE-R18, MPH-Anc, and MPH* are
available under PDB accession numbers 4XAF, 4XD5, 4XAY, 4E3T,
6C2C, and 1P9E, respectively. These data are sufficient for the
reproduction of all results presented in our work. Data presented in
all figures can be found in the Source Data file. Source data are pro-
vided with this paper.

Code availability
Scripts for individual combinatorial landscape analysis and the global
statistical analysis are publicly available on GitHub (https://doi.org/10.
5281/zenodo.10202238)51. The scripts utilize the R language version
4.1.2 (https://www.R-project.org/), along with R packages outlined on
GitHub.
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