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Quantitative measurement of antibiotic
resistance in Mycobacterium tuberculosis
reveals genetic determinants of resistance
and susceptibility in a target gene approach

The CRyPTIC Consortium*

The World Health Organization has a goal of universal drug susceptibility
testing for patients with tuberculosis. However, molecular diagnostics to date
have focused largely on first-line drugs and predicting susceptibilities in a
binary manner (classifying strains as either susceptible or resistant). Here, we
used a multivariable linear mixed model alongside whole genome sequencing
and a quantitative microtiter plate assay to relate genomic mutations to
minimum inhibitory concentration (MIC) in 15,211Mycobacterium tuberculosis
clinical isolates from 23 countries across five continents. We identified 492
unique MIC-elevating variants across 13 drugs, as well as 91 mutations likely
linked to hypersensitivity. Our results advance genetics-based diagnostics for
tuberculosis and serve as a curated training/testingdataset for development of
drug resistance prediction algorithms.

Mycobacterium tuberculosis (Mtb) caused an estimated 10 million new
cases of tuberculosis (TB) and 1.4 million deaths in 20191. Of particular
concern are the estimated 465,000 rifampicin resistant (RR) cases,
78% of which were multi-drug resistant (MDR, resistant to both
rifampicin and isoniazid)1. Drug resistance poses twomajor challenges
to the successful treatment of TB, as it is both underdiagnosed (only
38% of RR/MDR cases in 2019)—leading to under-treatment—and has
poor treatment success rates even when identified (57% globally in
2019)1. Despite attempts to move to shorter and all-oral MDR TB
regimens using new drugs, most patients are still receiving toxic
regimens that decrease patient adherence1,2. Collectively, the failure to
identify and successfully treat these cases leads to onward transmis-
sion and amplification of drug resistant strains

The WHO has identified better diagnosis and treatment of drug
resistant tuberculosis as a key part of the global tuberculosis eradica-
tion strategy1. Rapid genetics-based diagnostic tools, such as GeneX-
pert, have been widely adopted as they are faster and cheaper than
traditional culture-based diagnostic susceptibility testing (DST).
However, outbreaks caused by drug-resistant strains with mutations
not detected by such assays reveal the importance of developing
assays that include a wider range of resistance determinants3. Some

approaches incorporate whole-genome sequencing (WGS) or targeted
next generation sequencing to identify all possible resistant variants
and recently these methods have proven to be capable of replacing
culture-based DST for the first line drugs; however, implementation of
this technology is not yet feasible globally due to cost and technical
expertise constraints4–6.

Most current culture and genetics-based DST approaches gen-
erate binary results—”resistant” or “susceptible”—and thus fail to con-
sistently report elevations in minimum inhibitory concentration (MIC)
below or around the critical concentration7. These sub-threshold ele-
vations in MIC may nevertheless be clinically meaningful, as the
combination of significant interpatient pharmacokinetic variability
and elevated MICs predisposes Mtb strains to development of higher-
level resistance, risking treatment failure and worse patient
outcomes8,9. A binary system also hampers the wider implementation
of informed high-dose regimens which have been trialed to extend the
clinical utility of relatively less toxic and more widely available drugs
such as rifampicin and isoniazid10–12. While some previous efforts have
attempted to use quantitative MICs to identify these lower-level
resistance variants, they were limited by smaller sample sizes and
combined heterogenous methods of resistance determination13.

Received: 6 March 2023

Accepted: 8 December 2023

Check for updates

*A list of authors and their affiliations appears at the end of the paper.

Nature Communications |          (2024) 15:488 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44325-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44325-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44325-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44325-5&domain=pdf


Additionally, relatively few studies have had adequate sample sizes to
investigate drugs such as bedaquiline, linezolid, clofazimine and
delamanid that are poised to become the new “front-line”drugs for the
MDR-TB treatment.

To resolve these issues, we performed WGS and determined the
MICs of 13 drugs for 15,211 Mtb isolates selected from patient samples
gathered from 23 countries over five continents using a previously
validatedmicrotiter plate14. This data covers all first-line drugs (except
pyrazinamide), as well as eight drugs from the newMDR-TB treatment
guidelines (all Group A, one Group B, and four Group C)15. Overall, we
identify 492 unique mutations that are associated with elevated MICs
across 13 drugs as well as mutations that are associated with increased
susceptibility to bedaquiline, clofazimine, and the aminoglycosides.
The results serve as guides for pharmacokinetic and dosing studies to
extend the clinical utility of less toxic and more widely available drugs
for the treatment of drug-resistant tuberculosis, as well as help to
improve the design of genetics-based rapid diagnostics for MDR-TB
and the recently published WHO genetic catalog for tuberculosis16.
They also provide a large, quality-controlled dataset for development
of drug resistance prediction algorithms using machine-learning and
other approaches.

Results
Dataset description
Bacterial isolates were collected from patient samples from 23 differ-
ent countries and were over-sampled for drug resistance. Of the 15,211
isolates included in the initial CRyPTIC dataset, 5541 were phenotypi-
cally susceptible to isoniazid, rifampicin, and ethambutol, 5602 were
isoniazid resistant, 5261 were rifampicin resistant, and 4,125 were
multidrug-resistant (MDR, resistant to both rifampicin and isoniazid)
based on previously published epidemiological cutoffs (ECOFF, MIC
that encompasses 99% of wild type) for the microtiter plates used in

this study17. Binary phenotypic resistance to the newer drugs was
observed at a lower prevalence, with 71 bedaquiline resistant isolates,
106 clofazimine-resistant isolates, 76 linezolid resistant isolates, and 85
delamanid resistant isolates (Supplementary Data 1). Isolate lineages
were determined using a published SNP-based protocol from WGS
data and the lineage distribution across countries reflects previously
described phylogeographic distributions18–20. Five out of eight major
lineages of Mtb were represented in the dataset, with most isolates
mapping to L4 (6572 isolates) and L2 (5598 isolates), while L3 (1850), L1
(1150), and L6 (6) comprised the remainder. A complete description of
the CRyPTIC dataset and determination of the ECOFFs have been
previously published (also see Methods)17,21. After the removal of iso-
lates due to errors in phenotyping and sequencing across sites, the
final genotype/phenotype intersection for all drugs was ~12,350 iso-
lates (Fig. 1).

Genetic resistance determinants inMycobacterium tuberculosis
Previous studies have shown that themajority of genetic determinants
of resistance to most anti-tuberculosis drugs are related to a relatively
small number of genes6,22. We thus employed a candidate gene
approach and restricted our investigation of genomic variation to
previously identified genes and the 100 bp directly upstream of each
gene for each drug (Table 1). All unique variation in the target genes
and upstream regions (SNPs, both synonymous and nonsynonymous,
as well as insertions and deletions <50 base pairs in length) that
occurred in isolates with matched high-quality phenotypic data was
included in a separatemultivariable linearmixedmodel controlling for
population structure and technical variation between sites for each
drug, after removing isolates with evidence for mixed allele calls at
sites previously identified as resistant (e.g., rpoB S450X, Methods).
Final sample sizes per drug ranged from 6681 for moxifloxacin to
10,042 for rifabutin (mean sample size 8353, Fig. 1, Methods). Most

Genotype/Phenotype
Intersection

INH
12355

RIF
12354

EMB
12354

AMI
12358

KAN
12357

LEV
12354

MXF
12354

ETH
12354

RFB
12355

LZD
12354

DLM
12356

BDQ
12354

CFZ
12356

Keep only high quality phenotypes

INH
9704

RIF
9116

EMB
7627

AMI
9154

KAN
9467

LEV
7889

MXF
6863

ETH
8958

RFB
10141

LZD
7226

DLM
8400

BDQ
8730

CFZ
7971

Remove if heterozygous/null at 
resistant site in CRyPTIC catalogue

INH
9408
(427)

RIF
8857
(551)

EMB
7427
(606)

AMI
8921
(410)

KAN
9275
(410)

LEV
7652
(256)

MXF
6681
(241)

ETH
8790
(435)

RFB
10042
(567)

LZD
7141
(100)

DLM
8095
(245)

BDQ
8536
(227)

CFZ
7763
(276)

Map to protein structure

23 countries of  origin 5 lineages
15,211 isolates

Mixed effect model of  target genes
controlling for population structure
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isolates had less than five nonsynonymous mutations across all target
genes for each drug (Supplementary Data 2).

Across thirteen drugs, 584 mutations in 40 genes (out of 4,778
mutations and 50 genes tested) were found to have independent
effects on MIC after correction for multiple testing (Benjamini-Hoch-
berg correction, false discovery rate <0.05, Fig. 2, Table 1, Supple-
mentaryData 3). Ethionamide had themost unique variants associated
with reduced susceptibility (163), while linezolid had the least (8).
Effect sizes weremeasured in log2MIC (where an increase in 1 log2MIC
was equivalent to a doubling of the MIC) and positive effects for esti-
mates derived from at least three observations ranged from a 0.22
increase in kanamycin log2(MIC) for rrs c492t to a 10.1 increase in
isoniazid log2(MIC) for katGW477Stop. To facilitate comparison with
previously published ECOFF values, we report mutational effects
relative to the difference between the ECOFFMICand the baselineMIC
calculated by themodel for each drug. Thus, if amutation is associated
with an effect larger than the ECOFF minus baseline, it is associated
with an increase in resistance that would be above what is considered
wildtype on the plate.Multiple promotermutations were implicated in
resistance to isoniazid, ethionamide, amikacin, kanamycin, and
ethambutol (Fig. 2B). The effects of promotermutations variedwidely,
with mutations upstream of eis and embA being almost exclusively
associated with sub-ECOFF elevations in MIC for amikacin and
ethambutol respectively, while most promoter mutations for the iso-
niazid and ethionamide-related fabG1 resulted in MICs above the
ECOFF17. While a prior study found that common promoter mutations
tended to be associated with lower-level resistance than their corre-
sponding common gene-body counterparts (e.g., fabG1 c-15 vs inhA
I21), we found thatmutations affecting coding sequences vsmutations
affecting promoters/intergenic regions were only associated with sig-
nificantly different effects on MIC for isoniazid, ethambutol, and
kanamycin (Supplementary Data 4)13. In fact, we found that the wide-
spread fabG1 c-15t promotermutationwas associatedwith higher-level
and equivalent-level resistance to its gene body counterparts inhA I21V
and I21T respectively (Fig. 2B, Wald test for equality of coefficients
p =0.0006, p =0.24, respectively). Resistance-associated promoter
mutations were enriched in the region around each gene’s respective
−10 element, which is consistent with the essentiality of the −10 hex-
amer and increased variability around the −35 position in myco-
bacterial promoters (Fig. S1, ±5 nucleotides,Mantel-Haenszel common
OR=4.5, p = 0.0007)23,24. Multiple insertion/deletion mutations were
associated with resistance to isoniazid, rifampicin, rifabutin, ethiona-
mide, ethambutol, bedaquiline, clofazimine, and delamanid (Supple-
mentary Data 3, Fig. 2). Homoplastic mutations (multiple
evolutionarily independent occurrences) were more likely to be

associated with resistance for all drugs except amikacin, kanamycin,
clofazimine, linezolid, and delamanid (Woolf test for homogeneity of
ORs p =0.0004, Supplementary Data 5). The relative lack of homo-
plasy in the newer drugs may reflect the lower prevalence of resistant
isolates observed for these drugs as opposed to lack of convergent
evolution.

One notable advantage of quantitative MIC measurements is that
they also enable investigation of variants associated with MIC
decreases. We identified 63 increased susceptibility-associated muta-
tions (with at least three occurrences) whose effect sizes ranged from
−4.3 rifampicin log2(MIC) for Rv2752c H371Y to −0.23 kanamycin
log2(MIC) for eis V163I (Fig. 2A, Supplementary Data 6). Eight of these
mutations were homoplastic with at least three independent occur-
rences, which raises the intriguing possibility of a selective pressure for
mutations associated with increases in drug susceptibility; however,
this remains to be verified experimentally.

First-line drugs
Rifampicin is a critical first line drug and resistance to it is almost
entirely mediated by mutations within an 81-base pair region of the
rpoB gene (rifampicin resistance determining region, RRDR). Most
molecular assays targetmutations in this region for rapidprediction of
rifampicin resistance, however, mutations outside this region have
been associated with outbreaks25,26. We identified 35mutations in rpoB
occurring at least three times whose effects collectively ranged from
1.0 to 9.0 increases in log2MIC (Fig. 3A). Notably, seven unique
resistance-associated mutations occurred outside the RRDR, at posi-
tions V170, Q172, I491, and L731; however, only V170F was associated
with high-level resistance (8.37 increased log2MIC). Although dis-
parate in primary sequence from the RDRR, positions V170, Q172 and
I491 are all near the drug-binding pocket structurally (Fig. 3B). Inter-
estingly, a homoplastic in-frame deletion 12 bp in size in the RRDRwas
also associated with rifampicin resistance (Fig. 3C, Supplementary
Data 3). Several types of insertion/deletionmutations in theRDRRhave
previously been reported, although they are rare, consistent with their
greater structural consequences for the essential RNA polymerase27.

Prior studies have identified seven “borderline”mutations in rpoB
(L430P, D435Y, H445L, H445N, H445S, L452P, and I491F) for rifampi-
cin; resistant isolates with these mutations are often missed by phe-
notypic methods such as the Mycobacterial Growth Indicator Tube
(MGIT), possibly due to slower growth rates, which has led to a
reduction in the critical concentration for MGIT in the latest WHO
guidelines28–30. These mutations’ MICs range on the plate from 5.1
log2MIC for H445L to 2.3 log2MIC for L430P (rifampicin ECOFFminus
baseline MIC = 3.3, Supplementary Data 3). Here, we identify thirteen
additional rpoB mutations independently associated with elevated
MICs that are less than 5.1 log2MIC (8/13 located in the RDRR, Sup-
plementary Data 3). Sixteen rpoB mutations in total were indepen-
dently associatedwith elevatedMICs ator below the rifampicinECOFF,
including rpoB L430P, a variant that has been successfully treated with
a high dose rifampicin-containing regimen clinically31. Several rpoB
positions (Q432, D435, H445) harbored both high and low-level resis-
tance-associated alleles, while others (L430, L452, I491) were asso-
ciated exclusively with lower-level resistance regardless of the amino
acid substitution (Fig. 3B, C orange and yellow shading respectively).
Mapping these mutations onto the rpoB protein structure revealed
that high-level resistance often involves disruption of the interactions
with the rigid napthol ring while mutations at positions that contact
the ansa bridge hadmore variable effects, potentially due to increased
structural flexibility in this region of the drug (Fig. 3B). Low-level
resistancemutations often co-occurredwith other low-level resistance
mutations, producing high-level resistance additively (Fig. S4).

Rifabutin (a structural analog to rifampicin) is associated with a
lower ECOFF (2.2 vs 3.3 log2MIC after subtraction of baseline) and
mutations in rpoB were associated with lower elevations in rifabutin

Table 1 | Candidate genes used in this study

Drug Abbrev. Candidate genes

Isoniazid INH katG, fabG1, inhA, ahpC, ndh, kasA, Rv1258c, Rv2752c

Ethionamide ETH ethA, ethR, fabG1, inhA, mshA, Rv3083, Rv0565c

Rifampicin RIF rpoA, rpoB, rpoC, rpoZ, Rv2752c

Rifabutin RFB rpoA, rpoB, rpoC, rpoZ, Rv2752c

Ethambutol EMB embA, embB, embC, embR, rmlD, iniA, iniC,
manB, ubiA

Amikacin AMI rrs, eis, ccsA, whiB6, whiB7, aftB, fprA

Kanamycin KAN rrs, eis, ccsA, whiB6, whiB7, aftB, fprA

Levofloxacin LEV gyrA, gyrB

Moxifloxacin MXF gyrA, gyrB

Bedaquiline BDQ atpE, Rv0678, mmpL5, mmpS5, pepQ, Rv3249c

Clofazimine CFZ Rv1979c, pepQ, Rv0678, mmpL5, mmpS5, Rv3249c

Linezolid LZD rplC, rrl, Rv3249c

Delamanid DLM ddn, fgd1, fbiA, fbiB, fbiC, fbiD, Rv3249c
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MIC compared to rifampicin MIC (paired Wilcoxon p = 3.7e-9, Fig. 3A,
Supplementary Data 3). Interestingly however, all structural features
contacted by these mutations were shared between rifampicin and
rifabutin (Fig. 3B). A single mutation, rpoB Q409R (n = 24, p = 5.0e-3
after Benjamini-Hochberg (BH) correction), was associated with
decreased rifampicin and rifabutin MICs; interestingly, this mutation
has been proposed as a compensatorymutation thatmay alter the rate
of transcription initiation and resulting transcription efficiency for
isolates that harbor other RDRR mutations32.

Resistance to isoniazid is mediated primarily through loss-of-
function mutations in the prodrug-converting enzyme katG, with
canonical high-level resistance caused by the S315T mutation, which
was associatedwith a 6.2 log2 increase inMIC (Fig. 4A, compared to 2.1
log2MIC ECOFF minus baseline). Not all katG mutations were asso-
ciated with high-level resistance, nearly half (15/31) being associated
with increases in MIC at or below the ECOFF. No mutations likely to
result in severe loss of function were associated with sub-ECOFF
resistance, supporting the consensus of treating presumptive loss-of-
function mutants in katG as resistant. The other canonical isoniazid-

related genes, inhA and fabG1, tended tobe associatedwith lower-level
resistance, with 4/6 and 5/6 mutations associated with sub-ECOFF
increases in MIC, respectively (Fig. 4A, Supplementary Data 3). While
fabG1 L203L was previously the only synonymous mutation known to
be associated with resistance to isoniazid, here we identify a synon-
ymous mutation in the first codon of katG that confers high-level
resistance to isoniazid, potentially by reducing the rate of translation
initiation and subsequent production of katG enzyme required for
activation of isoniazid, although this is a mechanistic hypothesis that
requires biochemical confirmation (4.5 log2MIC, n = 3, p = 1.4e-8 after
Benjamini-Hochberg (BH) correction, Supplementary Data 3).

Most isoniazid resistance-associated mutations in katG occurred
in the N-terminal lobe responsible for heme-binding and pro-drug
conversion (Fig. 4B). Most isolates harbored variation at position S315,
located in the primary isoniazid-binding pocket on the δ edge of the
heme; interestingly however, another cluster of resistance-associated
mutations occurred in the helix made up of residues 138–155. Some
structural evidence exists for promiscuous isoniazid binding at this
site and mutations of this region in Escherichia coli cause reduced
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catalase/peroxidase activity and heme binding; however the precise
mechanism of effect of these mutations in Mtb is unknown33,34. Intri-
guingly, one mutation in this region, katG S140N, was associated with
decreased isoniazid MIC (n = 9, p = 5.4e-4 after BH correction, Fig. 4B).

Non-canonical isoniazid resistance-associated variants were
identified in ahpC, ndh, and Rv1258c (tap) (Fig. 4A). Mutations in ahpC
were associatedwith increasedMICs; however, thesemutations almost
always co-occurred with mutations in canonical isoniazid genes and
investigation of the interaction between these co-occurring mutation
pairs revealed that ahpC mutations did not result in additive resis-
tance, consistent with their proposed compensatory role (Fig. 4A).
Further investigation of these apparent discrepant isolates using an
improved version of the Clockwork variant calling pipeline that
detected deletions larger than 50 bp identified nine isolates with
apparent resistance-associated ahpC mutations that harbored large
deletions in katG not reported in the original variant set used for the
model. Thus, the apparent effect of these mutations is likely due to
isolates with undetected mutations in the canonical resistance genes
as opposed to a bona fide individual effect on isoniazid MIC by
mutations in ahpC. Several recent genome-wide association studies
(GWAS) have implicatedmutations in the ribonuclease/beta-lactamase
Rv2752c in resistance and tolerance to both rifampicin and isoniazid;
however, they also identified convergent mutations in drug-

susceptible strains13,35. While we identified nine nonsynonymous
mutations with significant effects on log2MIC, only one, V218L, was
shared between isoniazid and rifampicin, causing a 3.2 elevation in
log2MIC for both drugs (Supplementary Data 3). Only one other
Rv2752c variant was associated with elevated rifampicin MICs, while
four variants in this gene were associated with elevated isoniazid
MICs (Fig. 4A).

Canonical ethambutol resistance is mediated by mutations in
embA or embB. We identified 45 variants, 12 in the embC-embA inter-
genic region, five in embA, and 28 in embB, that were independently
associated with elevated ethambutol MICs (Fig. 4C). Mutations in the
embC-embA intergenic region have been proposed to upregulate
production of embA and embB by altered promoter structure. Most
embC-embA intergenic variants were in the upstream region from −16
to −8, however three were located upstream around the −35 element
(Fig. S1). All embC-embA intergenic and embA gene body mutations
were associated with MIC increases below the ECOFF (EMB ECOFF = 2
log2MICminus baseline, Fig. 4C, Supplementary Data 3). Interestingly,
22/28 mutations in embB were also associated with sub-ECOFF
increases in MIC, including the canonical embB M306I. Low-level
resistancemutations often co-occurred, resulting in high-level additive
resistance, consistent with previous studies (Supplementary Data 6)36.
Mutations associated with resistance in embB were clustered around
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the drug-binding pocket (Fig. 4D)37. We also identified resistance-
associated variants in embC and ubiA, although these occur less fre-
quently and require further validation.

Group A and B MDR drugs
The principal mechanism of resistance to fluoroquinolones is muta-
tions in either subunit of DNA gyrase (gyrA or gyrB). We identified 22
mutations (12 gyrA, 10 gyrB) and 19 mutations (10 gyrA, 9 gyrB) that
were independently associated with increased levofloxacin and moxi-
floxacin MICs respectively (Fig. 5A). Resistance-associated mutations
in gyrB occurred without an accompanying gyrAmutation ~65% of the
time (29/44 isolates LEV, 35/54 isolates MXF) but were associated with
lower overall—and in some cases sub-ECOFF—changes in MIC (LEV
ECOFF = 1.6 log2MIC, MXF ECOFF= 2.3 log2MIC, minus baseline,
Fig. 5A, Supplementary Data 3, 6). Most mutations associated with
increased fluoroquinolone MICs were within 10Å of the drug binding
pocket (Fig. 5B). Intriguingly, two positions—gyrB R446 and gyrB
S447—each harbored two unique resistance-associated missense
mutations despite being over 25 Å from the bound fluoroquinolone.
Both residues make contacts with the gyrB protein backbone at posi-
tions 473–475, suggesting they may exert an allosteric effect by either
influencing protein folding and/or the position of residues (notably
D461 and R482) that make up part of the fluoroquinolone binding
pocket (Fig. 5B). Interestingly, while gyrB E501D was associated with
resistance 1 log2MIC above the moxifloxacin ECOFF, it did not cause a
similar elevation for levofloxacin (only 0.1 log2MIC above ECOFF),
consistent with previous studies7,38,39. We speculate this could be due
to alteration in the coordination of gyrB R482—which must shift to
accommodate the bulkier side group of moxifloxacin—although this
remains to be shown experimentally (Fig. 5B).

While initial studies on bedaquiline and clofazimine resistance
highlighted atpE (bedaquiline), pepQ, Rv0678, and Rv1979c as med-
iating resistance, surveillance of clinical samples has revealed the
importance of the efflux mechanism mediated by the mmpL5 mem-
brane transporter, which is controlled by the transcriptional regulator
Rv0678. Consistent with this, we identified sixteen and four mutations
in Rv0678 that were associated with elevated bedaquiline and clofa-
zimine MICs, respectively, of which four were shared (Fig. S2, Sup-
plementaryData 3).We also identified twommpL5mutations thatwere
associated with increased MICs for each drug which were not shared
between the twodrugs. Finally, we identified both the atpE E61D (n = 3)
drug binding site mutation associated with bedaquiline resistance and
two mutations in Rv1979c associated with clofazimine resistance. No
mutations in pepQ were associated with resistance to either drug.
Importantly, five unique nonsense and frameshift mutations inmmpL5
increased susceptibility to bedaquiline by −1.9 to −4.0 log2MIC, of
which one, mmpL5 Y300Stop, was also shared with clofazimine
(Fig. 2A). Inactivating mutations in mmpL5 abrogated resistance
mediated by co-occurring Rv0678 mutations, consistent with a
hypothesis proposed by a prior study40.

Resistance to linezolid is mediated by mutations in rplC and rrl,
which tend to cause higher- and lower-level resistance, respectively.
We identified the classical rplC C154R (n = 43) mutation and five var-
iants in rrl associated with elevated linezolid MICs (Fig. S2, Supple-
mentary Data 3).

Group C MDR drugs
Aminoglycoside resistance is canonicallymediated bymutations in the
16s rRNAencodedby rrs.We identifiedfive and sixmutations in rrs that
were independently associated with elevated MICs for amikacin and
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kanamycin respectively (Fig. 5C). Multiple promoter mutations in eis
were associated with elevatedMICs to kanamycin (7) and amikacin (3).
Interestingly, eis promoter mutations were associated with sub-ECOFF
elevations in MIC for amikacin, while being associated with elevations
in MIC comparable to rrs mutations for kanamycin (AMI ECOFF = 2.3
log2MIC minus baseline). A deletion in eis leading to loss of function
was also associated with increased susceptibility to kanamycin, con-
sistent with an epistatic interaction abrogating the resistance gained
from eis overproduction. Variants in aftB, ccsA, whiB6 and whiB7 were
also associated with elevated MICs for at least one aminoglycoside,
however they were infrequent and require further investigation
(Fig. 5C and Supplementary Data 3).

Ethionamide is a prodrug that is activated by the mono-
oxygenases ethA, mymA (Rv3083), and Rv0565c41. More variants (135)
were associated with increased ethionamide resistance than any other
drug, with themajority (103) occurring in ethA. Notably however,most
(97/103)MIC-elevating ethA variants didnot raise the ethionamideMIC
above the ECOFF (ETH ECOFF = 2 log2MICminus baseline). Variants in
fabG1 and inhA were common and strongly associated with elevated
ethionamide MICs (Fig. S2). Seven resistance-associated variants were
identified in the alternative activating enzymes for ethionamide,
Rv3083 (5) and Rv0565c (2), and three resistance-associated variants
were found in the non-canonical ethionamide genemshA. The relative
lack of mutations with significant effects identified in the alternate
monooxygenases may reflect their decreased relative abundance as a
proportion of the totalmonooxygenase pools of the strains sampled in
this study, as found in a previous study, although this was not bio-
chemically verified here41. Twomutations in ethR were associated with
decreased ethionamide MICs, consistent with its role as a regulator of
the prodrug-activating enzyme ethA.

Resistance to delamanid is mediated by inactivating mutations in
ddn or bymutations that affect the cofactor F420 biosynthesis pathway
(namely fgd1 and fbiA-D). We identified elevenmutations in ddn, seven
in fbiA, and one in fbiC that were associated with increases in dela-
manid MIC (Fig. S2, Supplementary Data 3). Over half (6/11) of the
mutations in ddn were nonsense or frameshift mutations.

Effect of genetic background on MIC
Several studies have noted that the strain genetic background can
influenceMICs in addition toprimary resistancemutations36,42,43. In this
study, we found that the effects of lineage on isolate MIC tended to be
small compared to primary resistance allele effects for most drugs
(mean lineage effect 0.41 log2MIC, mean lineage effect to median
primary resistance allele effect ratio 0.15), yet still statistically sig-
nificant (Fig. S3). Notably however, lineage three was associated with a
1.5 lower moxifloxacin log2MIC compared to lineage four after con-
trolling for primary resistance alleles in gyrA and gyrB.

Interactions beyond additivity
We also sought to identify whether there were any effects beyond
additivity for co-occurring mutation pairs. Out of 96 pairs tested
across 13 drugs, we identified three mutation pairs with greater than
additive effects on ethambutol resistance and two pairs with greater
than additive rifampicin resistance (Fig. S4, Supplementary Data 10).
The interaction of these mutations resulted in log2MICs increased
beyond additivity by 1.4–2.4 log2MIC, which resulted in MICs well
beyond that of the strongest individual mutations for ethambutol and
rpoB S450L for rifampicin. Interestingly, we also identified a mutation
pair in rifabutin (rpoB L430P with rpoB D435G) where, in our interac-
tion model, the individual mutations were no longer associated with
resistance to rifabutin when occurring individually but are associated
with resistance when co-occurring (Supplementary Data 10). These
mutations are in sites previously associatedwith low-level resistance to
rifampicin, so it is possible that the combined disturbance to the drug
binding site is required to mediate their resistance-causing potential

for rifabutin, although this remains to be experimentally verified. The
remaining significant mutation-pairs either consisted of a known
resistance mutation with a putative compensatory mutation (such as
rpoB with rpoC) or had additive MICs that were in the tails of the
distribution, suggesting that interaction effects were reflecting assay
thresholds, at least in part, as opposed to true effects.

Extension beyond the 2021 WHO catalog
To assess how measurement of MICs improves our ability to detect
meaningful genetic associations with resistance/susceptibility, we
compared our MIC-based catalog with the recently published 2021
WHO catalog for tuberculosis (Supplementary Data 7)16. 179 unique
mutation-phenotype associations were found in both catalogs, with
nearly a third (59/179) classified as “resistant – interim”. Our model
finds that 61% (36/59) of these mutations are associated with sig-
nificant elevations in MIC in our data, of which 14 were sub-ECOFF and
therefore unlikely to be confidently identified by binary methods. The
inability of binary methods to detect these smaller but significant
elevations inMIC is also shownby the lackof associations inRv0678 for
bedaquiline and clofazimine in the WHO catalog, although this is
mentioned as a limitation. Notably, we have shown in a separate work
that the heritability of resistance for bedaquiline and clofazimine
improves dramatically when we detect MICs as opposed to binary
phenotypes, consistent with our findings here that many of Rv0678
mutations result in sub-ECOFF elevations in MIC44.

Discussion
In this study, we used WGS combined with high throughput MIC
measurements to develop a quantitative catalog of resistance to thir-
teen anti-tuberculosis drugs. Linking mutations to MICs allows for a
rapid and reliable alternative to phenotypic DST for individual isolates
that does not rely on critical concentrations thatmaybe revised. These
results can help to improve diagnostics and guide future study designs
trialing high dose therapies of less toxic andmore effective drugs (e.g.,
rifampicin, isoniazid and moxifloxacin)10,11,25.

Notably, we identified 321 mutations whose effects on MIC are
entirely or partially below their respective ECOFF. Further work is
needed to understand whether these mutations lead to increased
treatment failure and/or relapse rates as is the case for the “borderline”
mutations in rpoB for rifampicin28. If so, rapid molecular assays should
be employed to detect these variants.

We also found mutations associated with increased susceptibility
to bedaquiline, clofazimine, and aminoglycosides, which raises the
intriguing possibility of optimizing regimens based on hypersensitivity
as opposed to resistance. Given the relatively common rate of inacti-
vatingmutations inmmpL5, rapidmolecular tests should bedeveloped
to ensure that these isolates are not falsely identified as resistant.
Deletion of other transcriptional regulators has also been shown to
increase bedaquiline susceptibility, suggesting other sensitizing
mutations may also occur45. Further work to understand the distribu-
tion and frequency of thesemutationsmay help elucidate their clinical
relevance globally.

Our new catalog was unable to explain most binary resistance to
ethionamide, bedaquiline, clofazimine, linezolid and delamanid,
implying that many new variants and loci remain to be discovered
(Fig. S5)46. More widespread use of these drugs clinically will facilitate
collection of resistant strains for use in GWAS to identify other genetic
loci involved in resistance; however, high levels of inactivating varia-
tion were observed in ethA (ethionamide), ddn (delamanid) and
Rv0678 (bedaquiline/clofazimine), suggesting that many isolates will
need to be sampled to achieve saturation for these drugs, similar to
pyrazinamide. Alternative approaches relying on random mutagen-
esis, directed evolution, andmachine learning have been employed to
generate predictions formutations that have never been observed in a
patient, however these may not always identify mutations that are
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competitive in vivo47–54. The database generated by CRyPTIC can be
used as a resource for these approaches by highlighting which muta-
tions actually occur in patients and acting as a training set for machine
learning algorithms.

Limitations to this study include the lower number of isolates
resistant to newer drugs, the lack of isolates from lineages 5 and 6,
which are responsible for a significant proportion of cases in sub-
Saharan Africa, potential misattribution of mutational effects outside
our target genes or due to exclusion of insertions/deletions >50bp in
size from our model, and the use of ECOFFs that have not yet been
extensively validated against other methods, although we have shown
good concordance with MGIT and MODS results17. In addition, it has
been shown that minor alleles at sites associated with resistance can
influence MIC55. While we have tried to limit this effect by removing
isolates for which we could not confidently call a variant at a site
previously associated with resistance, it is possible that novel
resistance-associated sites with minor alleles could affect our model.
We have attempted to limit erroneous associations through control-
ling for lineage and population structure in our modeling approach as
well asby validatingmutations through structuralmapping anddegree
of homoplasy where possible. Finally, changes in transcription or
translation may also mediate antibiotic tolerance and persistence
states to impact the efficacy of antibiotics in vivo56.

Methods
Ethics statement
Approval for CRyPTIC study was obtained by Taiwan Centers for Dis-
ease Control IRB No. 106209, University of KwaZulu Natal Biomedical
Research Ethics Committee (UKZN BREC) (reference BE022/13) and
University of Liverpool Central University Research Ethics Committees
(reference 2286), Institutional Research Ethics Committee (IREC) of
The Foundation for Medical Research, Mumbai (Ref nos. FMR/IEC/TB/
01a/2015 and FMR/IEC/TB/01b/2015), Institutional Review Board of
P.D. Hinduja Hospital and Medical Research Centre, Mumbai (Ref no.
915-15-CR [MRC]), scientific committee of the Adolfo Lutz Institute
(CTC-IAL 47-J / 2017) and in the Ethics Committee (CAAE:
81452517.1.0000.0059) and Ethics Committee review by Universidad
Peruana Cayetano Heredia (Lima, Peru) and LSHTM (London, UK).

Dataset collection
The CRyPTIC dataset collection and processing has been previously
described in detail17. Briefly, clinical isolates were sub-cultured before
inoculation of a single biological replicate into CRyPTIC-designed 96-
wellmicrotiter platesmanufacturedbyThermoFisher. Plates contained
doubling-dilution ranges for 14 different antibiotics (para-aminosa-
licylic acid was excluded from the study due to poor-quality results on
the plate). IsolateMICs were read after 14 days by a laboratory scientist
using a Thermo Fisher Sensititre Vizion digital MIC viewing system and
an image of the plate was also uploaded to a bespoke web server,
allowing for additional MICmeasurements by an automated computer
vision system (AMYGDA) and by citizen science volunteers (Bash the
Bug Zooniverse project) as previously described57,58. MIC measure-
ments were classified as high (all three methods agree), medium (only
two methods agree), or low (no methods agree). Previous work has
shown that using multiple methods catches cases where either the
laboratory scientist or software havemade an error in calling theMIC17.
While sequencing processes differed slightly between CRyPTIC
laboratories, all sequencing was performed using Illumina. The Clock-
work sequence processing pipeline took in paired FASTQ files before
filtering, mapping, and providing variant calls for each isolate (Clock-
work available from: https://github.com/iqbal-lab-org/clockwork,
more detailed description of pipeline available in16). Isolates that had
both phenotypic and whole-genome sequencing data were used as a
starting dataset for this study17. ECOFFs were defined in Cryptic Con-
sortium et al 2022 and are provided in Supplementary Data 117.

Target gene selection
Target genes were selected based on the results of a prior study and
through a literature search for each drug59. Mutations occurring in
genes and the 100 bp directly upstream of each gene were considered
as candidates for inclusion in this study. Genomic positions for each
gene considered (not including 100 bp upstream) are provided from
the H37Rv v3 genbank file in Supplementary Data 9.

Statistical modeling
All genetic variations smaller than 50 bp occurring in the target genes
for each drug (Supplementary Data 1) were included as candidates for
effects in this study. Large insertions, deletions, and other structural
changes larger than 50bp were not included in this study, due to
limitations with the re-genotyping approach employed across all iso-
lates. Both in-frame and frameshifting insertion/deletion (indel)
mutations occurred in the dataset; however, only two positions har-
bored indels of both types (the in-frame deletions being 3 bp and 12 bp
in rpoB). As the phenotypes of these isolates carrying in-frame dele-
tions were similar to the frameshifting indels occurring at the same
site, these indels were pooled as one candidate effect. Other indel
mutations that occurred at the same position (either all in-frame or all
frameshifting) were also pooled as one candidate effect to boost sta-
tistical power given their likely shared mechanism and size of effect.
Mutations that always co-occurred in the dataset were combined into
one candidate effect with all mutations named. Isolates were excluded
from analysis if they contained evidence for mixed alleles at positions
previously associated with resistance to that drug (i.e., a mixed allele
call for position S450 in rpoB for rifampicin) to reduce potential
instances of hetero-resistant isolates22. Interval regression was per-
formed in Stata version 16.1 with a genomic cluster variable as a ran-
dom effect to control for population structure. Cluster ID was
determined by performing agglomerative clustering with complete
linkage criterion using Scikit-learn in Python on a whole-genome SNP
distance array of all isolates in the dataset60. A sensitivity analysis was
performed to compare the effects of clustering at 12, 25, 50, and
100 single nucleotide polymorphism (SNP) distances (100 used for all
results shown). Lineage and laboratory performing the MICs (SITEID
variable) were included as fixed effect, factor variables to control for
genetic and technical variation in each individual drug model. MICs
were encoded as the interval with upper bound log2(MIC) and lower
bound log2(MICminus 1 doubling dilution). The bottom and topwells
were extended by three doubling dilutions to account for censoring.
The generalized formof the equation for the interval regressionmodel
is below:

Censored log2ðMICÞ=XiB+Ziui ð1Þ

WhereXi denotes the variable list, with lineage and technical site being
fixed, factor variables and all othermutations tested being fixed binary
variables. Zi is the random effects groupings, which were defined by
cluster ID. B and ui denote the calculated fixed and random effects,
respectively.

The Benjamini-Hochberg correction was used to adjust raw
p-values and the false discovery rate was set at 5% for each drug based
on the number of variants considered, including all variants in one
mutually adjusted multivariable model. Mutations that have statisti-
cally significant effects on log2MIC >0 are defined as resistance-
associated for the purposes of this study. Mutation effect size relative
to the ECOFF is notedwhere relevant. Pairs ofmutations that occurred
in at least five isolates with each individual mutation occurring at least
five times were subsequently tested for interactions in a mixed effect
interval regression model containing all other variants for that drug
reaching the significance threshold (Benjamini-Hochberg adjusted
p value < 0.05).
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Data preparation, analysis, and figure-making
Data was prepared for analysis using Python, statistical outputs were
analyzed using R, and figures were made using ggPlot2 in R61. Homo-
plasy was calculated using HomoplasyFinder, with a mutation con-
sidered homoplastic if it had evolved in at least two independent
occurences62. A R file that recapitulates all the post-model analysis and
figures is available61 in the Supplemental material (Supplemental
Code). Structural modeling was done using UCSF Chimera63.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ENA IDs, variant call files, andMICs are all available at a permanent
ftp site at EMBL-EBI (http://ftp.ebi.ac.uk/pub/databases/cryptic/
release_june2022/). This site also includes processed tables with
unique IDs that match genotype and phenotype information for
facile use.

Code availability
TheClockwork variant calling pipeline is available from: https://github.
com/iqbal-lab-org/clockwork. Scripts used for statistical analysis in
Stata and analysis of results in R are available from: https://github.com/
carterjosh/cryptic-mic. DOI for Github repository: https://zenodo.org/
doi/10.5281/zenodo.1006515064.
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