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Differential responses of the gutmicrobiome
and resistome to antibiotic exposures in
infants and adults

Xuanji Li 1, Asker Brejnrod 2, Jonathan Thorsen 3, Trine Zachariasen2,
Urvish Trivedi1, Jakob Russel1, Gisle Alberg Vestergaard 2, Jakob Stokholm 3,4,
Morten Arendt Rasmussen 3,4 & Søren Johannes Sørensen 1

Despite their crucial importance for human health, there is still relatively
limited knowledge on how the gut resistome changes or responds to antibiotic
treatment across ages, especially in the latter case. Here, we use fecal meta-
genomic data from662Danish infants and 217 young adults to fill this gap. The
gut resistomes are characterized by a bimodal distribution driven by E. coli
composition. The typical profile of the gut resistome differs significantly
between adults and infants, with the latter distinguished by higher gene and
plasmid abundances. However, the predominant antibiotic resistance genes
(ARGs) are the same. Antibiotic treatment reduces bacterial diversity and
increased ARG and plasmid abundances in both cohorts, especially core ARGs.
The effects of antibiotic treatments on thegutmicrobiome last longer in adults
than in infants, and different antibiotics are associated with distinct impacts.
Overall, this study broadens our current understanding of gut resistome
dynamics and the impact of antibiotic treatment across age groups.

The rampant use of antibiotics has escalated the spread of antibiotic
resistance among bacteria to the point where multi-drug resistant
infections have become untreatable, posing a major challenge for
modern medicine1,2. The indigenous bacteria residing in the human
gut3 constitute a large reservoir of antibiotic resistance genes (ARGs)
which they exchange among themselves and with pathogens through
horizontal gene transfer4,5. A comprehensive understanding of anti-
biotic resistance profiles and the ARG-carrying bacteria in the human
gut is essential for developing novel intervention strategies to mini-
mize the spread of antibiotic resistance. Metagenomic sequencing has
provided initial characterizations of ARGs in the human gut
microbiome6–8, yet the links between antibiotic use, age, bacterial
hosts, and ARGs remain poorly explored, particularly in large human
cohorts.

Antibiotic resistance emerges in the infant gut through early
colonization by bacteria, mainly acquired from the mother9,10 and

environmental exposures11–13. Previous work by our group described
how the infant gut serves as a reservoir of ARGs, with E. coli being the
largest single contributor14. Through the first years of life, the gut
microbiome gradually comes to resemble that of adults, after which it
is believed to be relatively stable15. Many studies have shown a higher
level of gut ARGs in infants than in adults9,16, but extensive investiga-
tions into ARG profiles between them are relatively rare. However, this
information is necessary to understand the spread and succession of
ARGs and to improve antibiotic stewardship in infants and adults.

More generally, the problem of antibiotic resistance can only
be addressed through an improved understanding of the effects of
antibiotics on the host microbiome, and how these might differ at
different ages and life stages. It is well known that antibiotic treat-
ments can have negative effects on the gut microbiome17–19. Given
the differences in community composition, stability, and resilience
between infant and adult gut assemblages, the manner and extent
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to which the microbiome responds and recovers from antibiotic
treatment may vary with age. For example, an animal study showed
that the recovery of gut microbes from antibiotic treatment was
affected by host diet, bacterial community structure, and host living
environment20. However, with respect to differences between the
infant and adult gut microbiome in humans, the response variance
to conventional antibiotic therapy has not been fully explored,
although such information is critical for understanding how anti-
biotics remodel the gut.

In this cross-sectional sub-study of the COPSAC cohort, we
sequenced fecal metagenomes from COPSAC cohort of 217 young
adults (Table 1), aged 18 years (median age), and usedmetagenomic
bins to associate ARGs with their bacterial hosts, thus gaining
insight into the distribution of ARGs across bacterial species.
Moreover, we comprehensively compared the abundance and
community composition of ARGs (in bacteria as well as plasmids)
and ARG-carrying hosts between these adults and 662 1-year-old
(median age) infants (Table 1), and explored the underlying drivers
for the differences in resistance gene profiles. Finally, we investi-
gated and compared the influence of conventional antibiotic
treatment on the infant and adult gut microbiomes, as assessed by
changes inmicrobial composition, antibiotic resistance, andmobile
genetic elements, including plasmids.

Results
The distribution of ARG profiles in the adult gut is bimodal and
reflects the role of E. coli as an ARG reservoir
First, we characterized ARGs in the gut microbiome of 217 young
adults, aged 18 years, who were members of the COPSAC2000
cohort. A total of 293 ARGs were detected, which conferred resis-
tance to 33 drug classes. In this assemblage, genes associated with
resistance to tetracycline and fluoroquinolone were the most
abundant (Fig. 1a), followed by those targeting penam, cephalos-
porin, macrolide, and rifamycin. The main mechanism of resistance
encoded by ARGs was antibiotic efflux pumps (Fig. S1). Almost half
of all ARGs (42.7%) encoded resistance to at least two different drug
classes, and are referred to hereafter as multiple-drug resistance
genes (MDR ARGs) (Fig. S1). The most common type of MDR ARG
conferred resistance to fluoroquinolone and tetracycline. The
majority of ARGs (53% in abundance) in the adult gut originated
from Proteobacteria (Fig. S1), specifically from E. coli (≈ 40%). The
next-largest contribution came from Bacteroidetes, with 31%.
Within Proteobacteria, ARG richness was high in several taxa, such
as Escherichia species, Pseudomonas aeruginosa, Citrobacter braa-
kii, Klebsiella pneumoniae, and Enterobacter hormaechei (Fig. 1b).
The detailed distribution of ARGs in different bacteria species is
shown in Supplementary Data 1. Different bacterial phyla exhibited

Table 1 | The cohort information in the study

Main Characteristics Levels Statistics

Cohort Adults (N = 217)

Age, median (range)—yr 18 (17–21)

Sex—no. (%) Male | Female 101 (46.5%) | 116 (53.5%)

BMI—kg/m2 (mean ± sd) 22.4 ± 4.2

Living area Rural | Urban 113 (56.2%) | 88 (43.8%)

Antibiotics in the year—no. (%) Yes | No 51 (24%) | 166 (76%)

Pet—no. (%) Cat | Dog | other 56 (25.8%) | 102 (47%) | 31 (14.3%)

Siblings—no. (%) Yes | No 163 (81.9%) | 36 (18.1%)

Smoke—no. (%) Yes | No 93 (43.9%) | 124 (57.1%)

Alcohol Drink—no. (%) Yes | No 202 (93%) | 15 (7%)

Family Income Type—no. (%) Low | Medium1 | Medium2
| High1 | High2

60 (28.7%) | 80 (38.3%) | 52 (24.9%)
| 10 (4.8%) | 7 (3.3%)

Parental Education Level—no. (%) Low | Medium | High 112 (53.6%) | 60 (28.7%) | 37 (17.7%)

Cohort Infants (N = 662)

Age, median (range)—yr 1 (11month - 2)

Sex—no. (%) Male | Female 341 (51.5%) | 321 (48.5%)

Living area Rural | Urban 292 (46.5%) | 336 (53.5%)

Antibiotics in the year—no. (%) Yes | No 311 (47%) | 351 (53%)

Antibiotics during pregnancy—no. (%) Yes | No 271 (40.9%) | 391 (59.1%)

Birth Season—no. (%) Spring | Summer | Autumn
| Winter

177 (26.7%) | 139 (21%) | 141 (21.3%)
| 205 (31%)

Pet—no. (%) Cat | Dog 133 (20.2%) | 123 (18.8%)

Gestational age, median (range)—week 40 (29 - 42)

Fish oil—no. (%) Yes | No 327 (49.5%) | 334 (50.5%)

Siblings—no. (%) Yes | No 382 (72.1%) | 148 (27.9%)

Delivery mode—no. (%) Vaginal | Caesarian 519 (78.4%) | 143 (21.6%)

Breastfeeding—no. (%) Mixed food | Only Solid food 98 (14.8%) | 562 (85.2%)

Housing—no. (%) House | Apartment 229 (42.4%) | 311 (57.6%)

Mother BMI—kg/m2 (mean ± sd) 23.6 ± 4.3

Family Income Type—no. (%) Low | Medium | High 63 (9.5%) | 352 (53.3%) | 246 (37.2%)

Parental Education Level—no. (%) Low | Medium | High 53 (8%) | 423 (63.9%) | 186 (28.1%)

Infant family income classification: Low (<€5w),Medium (€5w ~€11w), High (>€11w); Adult family income classification: Low (< DKK 40w), Medium1 (< DKK 60w), Medium2 (<DKK 80w), High1 (< DKK
100w), High2 (< DKK 200w). Participants with missing information in the “Characteristics” category were excluded from the statistical calculations and relevant analyses.
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distinct patterns both in terms of the number and type of ARGs
present (Fig. S1 and Supplementary Data 2). For example, Proteo-
bacteria contained the highest number of unique ARGs (163), and
these were mainly β-lactam resistance genes.

Based on their abundance patterns, ARGs were divided into four
non-overlapping groups (Fig. 1c, Supplementary Data 3). Notably, the
distribution of ARG richness among samples was bimodal, with one
peak with low richness and another peak with high richness (Fig. 1d).
Likewise, clustering based on ARG abundance revealed two distinct
groups of samples (Fig. 1c): cluster 1 high ARG richness (n = 87) and
cluster 2 low ARG richness (n = 130), which was supported by a “par-
titioning around medoids” (PAM) clustering analysis (Fig. 1e–g).
Compared to cluster 2, ARGs in cluster 1 were not onlymore abundant
but also more diverse (Fig. 1f).

To investigate the factors underlying the bimodal ARG distribu-
tion, we compared the bacterial composition of the two clusters. We
first determined that therewere nodifferences in sequencing coverage
between the samples in the two clusters (Wilcoxon test; P = 0.21,
Fig. S2), ruling out the influence of sequencing depth. We then char-
acterized bacterial composition using MetaPhlAn21. A significant cor-
relation was detected between the composition of bacterial
communities and that of ARGs through Procrustes analysis (permu-
tational test; r = 0.77, P =0.001, Fig. 2b). Furthermore, the two clusters
differed significantly in their bacterial composition (PERMANOVA;
P =0.001). To identify which bacteria were critical to this difference,
we analyzed differentially abundant bacteria between the two clusters
and ranked them according to their importance in shaping the clus-
tering pattern. Among the 542 bacterial species detected, 16 species
were differentially abundant between the two clusters (Fig. 1h), and the
most important of these was clearly E. coli. Indeed, the mean relative
abundance of E. coli in cluster 1 was 66 times higher than that in cluster
2 (mean relative abundance; cluster 1 vs. cluster 2, 4.55% vs. 0.069%). In
addition, random forest analysis demonstrated that E. coli content was
a determining factor in grouping ARGs, and that it was far more
important than any other taxon (Fig. S1).

To investigate this further, we assessed the bacterial origin of
ARGs using metagenome-assembled genomes (MAGs). In total, we
detected E. coliMAGswith ARGs in 112 samples, 86 of whichwere from
cluster 1 and 26 from cluster 2. When we removed these E.
coli–associated ARGs from all samples, we observed an eight-fold
reduction in the proportion of variance explained by the two ARG
clusters, from 16.4% to 2.1% (Fig. 1g). Without E. coli, ARG abundance
and diversity in cluster 1 were significantly lower, to the point that
values in the two clusters became comparable (Fig. 1f). This provided
clear evidence of the abundance of ARGs in E. coli and the effect this
has on the overall gut microbiome. Although the mean relative abun-
dance of E. coli was only around 1.86% in the adult gut, the mean
relative abundance of ARGs in this bacterium accounted for about 32%
of the total, with themajority in cluster 1 (Fig. 1b).We tested the overall
effects of environmental factors (excluding antibiotics) listed inTable 1
on the adult gutmicrobiome/resistome. The results showed that these

environmental factors did not have a significant effect on the adult
microbiome/resistome. However, gender had a significant effect on
microbial composition (PERMANOVA; R2 = 1.2%, adjusted P =0.002).

ARGs aremore abundant in the infant gut than in adults, with E.
coli as the largest single contributor
We performed a comprehensive comparison of the ARGs described
above and those identified, using the sameworkflow, in a cohortof662
1-year-old Danish infants.

Overall, ARG profiles were significantly different between adults
and infants (β-diversity (Bray–Curtis), PERMANOVA; R2 = 8.5%,
P =0.001, Fig. 2a). Procrustes analysis revealed a significant correlation
between the composition ofbacterial communities and that of ARGs in
both the adult and infant gut (permutational test; r_adults = 0.77,
r_infants = 0.78, both P =0.001, Fig. 2b), suggesting that ARG dis-
tribution was strongly tied to overall bacterial composition regardless
of host age. β-diversity analysis also highlighted a significant difference
in gut microbial composition between adults and infants (β-diversity
(Bray–Curtis), PERMANOVA; R2 = 10%, P =0.001, Fig. 2c). Furthermore,
of the 896 bacterial species detected, 482 (54%) were differentially
abundant between the two cohorts (Wilcoxon test; FDR adjusted
P <0.05), indicating that the differences between adults and infants
were influenced by the overall bacterial composition. However, con-
sidering that E. coli contains a large proportion of ARGs in both adults
and infants14 and that the relative abundance of E. colidifferedbetween
adults and infants (mean relative abundance, infants vs. adults, 5.4% vs.
1.86%, Fig. S3), we wanted to determine whether these age-related
differences remained even in the absence of E. coli. We thus removed
all E. coli–associated ARGs from the two groups and re-evaluated the
overall differences in ARG composition (Fig. S3). We found that the
percentage of variance in ARG profiles that was explained by the two
age groups did not decrease in the absence of E. coli, indicating that
this species is not the only factor shaping age-related differences
(Fig. S3). In brief, the dissimilarity in ARG profiles between the two
cohorts arises from the concerted influence of the bacterial commu-
nity, rather than being driven by a solitary bacterium playing a
decisive role.

ARGs were more abundant in the infant gut than in the adult gut,
as reflected in both the number of ARGs per million genes and the
relative abundance of ARGs (Wilcoxon test; P < 0.001, Fig. 2d, e).When
we removed E. coli–associated ARGs from the analysis, the difference
between adults and infants in the mean number of ARGs per million
genes and themean relative abundance of ARGs decreased by 53% and
51%, respectively (Fig. 2d, e). Thesefindings imply a significant role ofE.
coli in shaping the divergence of gut ARG load between adults and
infants.

Plasmids are important mobile genetic elements that can
transfer ARGs between cells. We, therefore, specifically investigated
mobile ARGs carried on plasmids in the adult and infant gut. As in
the overall analysis, the abundances of plasmids and mobile ARGs
were higher in the infant gut than in the adult gut (Wilcoxon test;

Fig. 1 | ARG characteristics of different bacteria in the adult gut and bimodal
distribution of ARGs in the adult gut, driven by E. coli. a The total abundance of
ARGs resistant to 33 drug classes. b Total ARG abundance in the bacterial species
(left), mean relative abundance of ARGs in bacterial species (middle), and ARG
richness inbacterial species (right). For ease of viewing, only the 63 specieswith the
highestARGabundanceare listed. cHeatmapdepicting the abundanceof 293ARGs
across the samples. Samples and ARGs were individually clustered with complete
linkage hierarchical clustering and PAM clustering based on Euclidean distance.
Cluster 4 (core ARGs,N = 15) contained highly abundant and prevalent ARGs across
all samples. Cluster 3 (differentially abundant (DA) ARGs, N = 55) contained ARGs
with significant abundance differences among samples. Cluster 2 (low-abundance
(LA) ARGs, N = 80) contained ARGs present at a low abundance. Cluster 1 (inter-
mediate-abundance (IA) ARGs, N = 143) contained ARGs with intermediate

abundance, falling between those in cluster 4 and cluster 2. d Density plot of ARG
richness in the cohort. e Average silhouette width of PAM clustering for k = 1 to 10
clusters. f, g Log-transformed total ARG abundance and observed ARG richness (α-
diversity) (f), and NMDS ordination plot of Bray–Curtis dissimilarity matrix of ARG
abundances (g) before (left) and after (right) the removal of E. coli ARGs from the
two ARG PAM clusters (Ncluster 1 = 87, Ncluster 2 = 130). The box plot displays 25th,
50th (median), and 75th percentiles, withwhiskers extending 1.5 * IQR. The percent
of explained variance (R2) generated with the PERMANOVA test is shown in the
figure. h Relative abundances of 16 species (of 542 in total) that differed in abun-
dance between the two clusters. Relative abundance on the x-axis is shown on a
logarithmic scale; black dots indicatemedian value; P-values were generated by the
Wilcoxon rank-sumtest, and FDRadjustments are representedas adjustedP-values.
All P-values were derived from two-sided tests.
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P < 0.001, Fig. 2f). However, the proportion of mobile ARGs on
plasmids relative to total ARGs did not differ between cohorts
(Wilcoxon test; P = 0.19, Fig. 2f).

To gain more insight into the ARGs carried by Escherichia species
in the two cohorts, we plotted phylogenetic trees of EscherichiaMAGs
and clustered MAGs based on their ARG profiles; for the sake of
comparison, we also carried out the same procedure for Bifido-
bacterium MAGs. From a phylogenetic perspective, Escherichia MAGs

differed between the two cohorts (PERMANOVA; P =0.02, Fig. S4). In
addition, EscherichiaMAGs belonging to four main species correlated
withARGprofiles (PERMANOVA;P =0.01, Fig. S4).However, wedid not
find an ARG profile in Escherichia that was exclusive to the adult or
infant gut. Instead, inBifidobacteriumwe foundoneARGprofile almost
exclusively in infants that was also predominantly distributed in one
specificMAG cluster (Fig. S5). In addition, many BifidobacteriumMAGs
did not carry ARGs.
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Infants and adults share dominant ARGs and bacterial species
carrying them in the gut microbiome
Although the overall ARG profiles differed between the infant and
adult gut, we wanted to investigate if certain aspects of these assem-
blages might be shared across age groups. To evaluate this, we
explored commonalities between the infant and adult gut in terms of
six aspects. First, we compared the alpha diversity (observed richness)
of these groups, and found that the number of ARG-carrying bacterial
species and the number ofmobile ARGs on plasmids were significantly
higher in the adult gut than in the infant gut (Wilcoxon test; P <0.001,
Fig. S6). We also compared the number and type of ARGs or MGEs in
those overlapping ARG-carrying or MGE-carrying bacterial species
(Supplementary Data 4), and found the number ofMGEs carried by the
overlapping MGE-carrying bacterial species was significantly higher in
the adult gut than in the infant gut (Wilcoxon test; P = 0.012, Fig. S7).

When we identified the ARGs and ARG-carrying bacteria that were
overlapping by both infants and adults, we found that they included
some of the most abundant representatives in both cohorts. Specifi-
cally, infants and adults overlapped 106 ARG-carrying bacterial spe-
cies, which contributed 68% and 53% of the total ARGs in each group
(relative abundance), respectively, while unique species contributed
only about 6% of ARGs (relative abundance) (Fig. 3a). Likewise, 191
ARGs were overlapping between the two cohorts, accounting for over
98% of the total ARG abundance in each (Fig. 3b). For the other ARG-
related aspects investigated, the results were similar. ARGs and drug-
resistance classes that were unique to only one cohort tended to be
present in lower abundance (Fig. 3c–f). Details on the comparison of
overlapping and unique features with respect to these six ARG-related
groups are listed in Supplementary Data 5.

Next, we investigated the top ten drug classes to which these
ARGs conferred resistance. For most of these drug classes, infants had
a significantly higher abundance of associated ARGs than adults did
(Wilcoxon test; adjusted P <0.05, Fig. 3g, h). In both cohorts, tetra-
cycline and fluoroquinolone ARGs were the most abundant. Tetra-
cycline and aminoglycoside were the drug classes most commonly
targeted by mobile ARGs in the infant gut, while mobile ARGs in the
adult gut more often targeted tetracycline and macrolide.

Compared to infants, antibiotic treatment in adults had a
longer-lasting effect on microbial composition, ARG and MGE
profiles, and plasmid abundance
It iswell known that antibiotic therapy changes the gutmicrobiome17,22,
but the extent to which this effect may differ according to age has not
yet been characterized. Here, we compared the association between
antibiotic treatment and alterations in the gut microbiome in adults
and infants. In particular, we examined differences in microbial com-
position, ARGs, and mobile genetic elements (MGEs), which here
included the genetic elements related to mobility, such as integrases,
transposases, and insertion sequences. In the adult cohort, the effects
of antibiotic treatment persisted up to about 1 year. Instead, for
infants, the effects of antibiotic treatment were detectable for about 1
month. Specifically, ARG profiles and microbial community

composition were significantly different in the gut of adults who had
taken antibiotics within 6 months or between 6 months and 1 year
before sampling compared to those who had not (β-diversity, PER-
MANOVA; <6m, P =0.023, 0.0023, respectively; 6m–1y, P = 0.005,
0.03, respectively; Fig. 4a). Instead, MGE profiles differed only in the
group that had taken antibiotics within 6 months of sampling (<6m,
P =0.03, Fig. 4a). No effects were detectable for any of these three
indicators when the antibiotic use had occurredmore than 1 year prior
to sampling (P >0.05, Fig. 4a). In the infant cohort, ARG and MGE
profiles were different in individuals who had received antibiotic
treatment within 15 days of sampling or between 15 days and 1 month
before sampling compared to those who had not (<15d, P < 0.001;
15d–1m,P =0.035,0.0095, respectively, Fig. 4b). Infantswhohad taken
antibiotics more recently also demonstrated alterations in microbial
community composition (<15d, P <0.001, Fig. 4b). None of these
effects were apparent if the antibiotic use had occurred more than
1 month before sampling (P > 0.05, Fig. 4b).

The duration of the effect of antibiotics in adults and infants was
also reflected inplasmidabundance. Plasmids canhorizontally transfer
resistance and virulence genes between bacterial cells. In the adult gut,
the effect of antibiotics on plasmids lasted up to about 1 year: the total
abundance of plasmids was higher in the gut of adults who had taken
antibiotics within 6 months of sampling or between 6 months and 1
year before sampling than those in the corresponding control groups
(Wilcoxon test; P < 0.001, Fig. 4c). In contrast, there were no differ-
ences in plasmid abundance between adults who had taken antibiotics
more than 1 year before sampling and those who had not (Wilcoxon
test; P >0.05, Fig. 4c). Similarly, plasmid abundance in the gut of
infants who had taken antibiotics more than 1 month before sampling
did notdiffer from thosewhohadnot (Wilcoxon test; P >0.05, Fig. 4d).
However, plasmids were more abundant in the gut of infants who had
received antibiotics between 15 days and 1 month before sampling or
within 15 days of sampling than in individuals in the corresponding
control groups (Wilcoxon test; P =0.03 (0–15d), P = 0.01
(15d–1m), Fig. 4d).

Antibiotic treatment enhances ARG and MGE abundance and
reduces bacterial richness
In addition to the overall alterations, we also observed differences in
total ARG and MGE abundance, and bacterial richness as a result of
antibiotic treatment. Specifically, ARGs were significantly more abun-
dant in the gut of adults who had taken antibiotics within 1 year of
sampling compared with those who had not (Wilcoxon test; P <0.001,
Fig. 5a), and the bacterial richness was lower (Wilcoxon test; P = 0.022,
Fig. 5a). With respect to MGEs, total abundance was higher in adults
who had taken antibiotics within 6 months of sampling than in those
who had not (Wilcoxon test; P =0.036, Fig. 5a). For infants, the same
phenomenon was observed: compared to the corresponding control
groups, total ARG abundance was higher in the gut of infants who had
taken antibiotics within 1 month of sampling, and gut bacterial diver-
sity was lower in infants who had taken antibiotics within 15 days of
sampling (Wilcoxon test; P <0.001, P =0.0048, respectively, Fig. 5b).

Fig. 2 | ARG profiles differed significantly between the infant and adult gut,
with infants containing a higher abundance of ARGs. a Comparison of ARG
profiles in the adult and infant gut based on Bray–Curtis dissimilarity matrices of
ARG abundance ordinated by PCoA plot (values in brackets represent the per-
centage of variance explained by the principal coordinates). P-value and R2 were
generated with a PERMANOVA test. Box plots along each axis show the value of
each point at the respective coordinates. b Procrustes analysis of the association
between the composition of ARGs and that of bacterial communities as char-
acterized byMetaPhlAn in the gut of adults and infants. P-value was generatedwith
a Permutational test. c Comparison of bacterial composition profiles in the adult
and infant gut based on Bray–Curtis dissimilarity matrices of bacterial community
composition ordinated by PCoA plot. P-value and R2 were generated with a

PERMANOVA test. Box plots along each axis show the value of each point at the
respective coordinates.d, e Boxplot with jitter points showing the number of ARGs
permillion genes (d) and the relative abundance of ARGs out of all predicted genes
by Prodigal (e) before and after removing E. coli ARGs in the adult and infant gut. P-
value obtained from the Wilcoxon test and red indicates P <0.05 (significant dif-
ference). f Boxplot with jitter points showing the relative abundance of plasmid
contigs out of all contigs, the log-transformed total abundance ofARGs in plasmids,
and the ratio ofmobile ARGs to total ARGs in the adult and infant gut. ARGs carried
on plasmids are defined as mobile ARGs. P-value obtained from the Wilcoxon test
and red indicates P <0.05 (significant difference). The box plots (a, c–f) display
25th, 50th (median), and 75th percentiles, with whiskers extending 1.5 * IQR. All P-
values were derived from two-sided tests.
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We then explored the effects of antibiotics on the abundance of
different types of ARGs: specifically, the four groups of ARGs in the
adult gut, clustered using the PAM algorithm (core, DA, IA, and LA;
Fig. 1c, Supplementary Data 3) and three clusters in the infant gut,
obtained using the same methodology (Fig. S8). We found that
antibiotic treatment enhanced the total abundance of low-
abundance ARGs in adults and intermediate-abundance ARGs in
infants (Wilcoxon test; adjusted P = 0.044, P < 0.001, respectively,

Fig. 5c, d). Interestingly, the total abundance of core ARGs—resis-
tance genes that are highly abundant and prevalent overall—also
increased in the gut of both adults and infants after antibiotic
treatment (Wilcoxon test; adjusted P < 0.001, 0.015, respectively,
Fig. 5c, d). The mean abundance of most individual core ARGs was
higher in individuals who had taken antibiotics than in thosewho had
not, although this was not statistically significant (Wilcoxon test;
adjusted P > 0.05, Fig. S9).
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Fig. 3 | ARGs overlapping by the adult and infant gut accounted for the vast
majority of ARG abundance in each cohort. Analyses of the unique and over-
lapping (a) ARG-carrying bacterial species, (b) ARGs, (c) drug classes targeted by
ARGs, (d) MDR ARGs, (e) mobile ARGs, (f) and drug classes targeted by mobile
ARGs in both gut, with respect to the number of individual species/genes/drug
classes (top panel) and their relative abundance in the total population of ARGs
(bottom panel). “Unique” represents species/ARGs/drug classes that were only

present in adult or infant gut regardless of prevalence and abundance. “Unclassi-
fied” represents ARGswith unknownbacterial origin, as these ARG-carrying contigs
were not detected within the bins. Mean abundance of the 10 most commonly
targeted drug classes by ARGs (g) and by mobile ARGs (h) in the adult and infant
gut. P-value from the Wilcoxon test with Bonferroni adjustment and red indicates
P <0.05 (significant difference). Seven of the 10 mobile drug classes were shared
between cohorts. All P-values were derived from two-sided tests.
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Fifteen core ARGs, mostly associated with tetracycline and MLS
resistance (Fig. S9), were detected in the adult gut and were found in
between 54% and 100% of samples (mean 76.2%). For several of these
ARGs—specifically, ErmB/H/G, tet(40)/O/Q/W, and vanl—more than

20% of these genes were retrieved from plasmids. Two core ARGs
(adeF and tetQ) were detected in 97.7% and 85.8% of the infant gut
samples, respectively, and 36% of the latter appeared on plas-
mids (Fig. S9).
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The influence of different antibiotics on the gut microbiome of
adults and infants
In the group of adults who had received antibiotic treatment in the
year before sampling, we examined whether the type of antibiotic
taken had a detectable influence on characteristics of the gut micro-
biome compared to control groups. Except for β-lactam plus sulfo-
namide, each type of antibiotic was associated with an increase in the
mean abundance of ARGs, with tetracycline and β-lactam plus

macrolide having a statistically significant effect (Wilcoxon test;
adjusted P =0.036, 0.029, respectively, Fig. 6a). Each antibiotic type
was also associated with an increase in mean plasmid abundance, with
β-lactam, tetracycline, and β-lactam plus macrolide having statistically
significant effects (Wilcoxon test; adjusted P =0.049, 0.038, 0.00051,
respectively, Fig. 6b). Four of the five antibiotic types were also asso-
ciated with a reduction in mean bacterial richness (exception was
β-lactam plus sulfonamide, Fig. S10), and all five antibiotics were

Fig. 4 | Antibiotic treatment had longer-lasting effects on the adult gut
microbiome than on the infant gut microbiome, as reflected in microbial
composition, ARG and MGE profiles, and plasmid abundance. Duration of the
effect of antibiotic administration on the β-diversity (Bray–Curtis distance) of
microbiome, ARG and MGE compositions in the adult gut (a) and in the infant gut
(b). Adult subjects were divided into four groups depending on when they had
taken antibiotics: within 6 months of sampling, 6 to 12 months prior, 1 to 2 years
prior, or 2 to 6 years prior to sampling; the corresponding control groups had not
received antibiotics in those periods. Infant subjects were divided into four groups
depending on when they had taken antibiotics: within 15 days of sampling, 15 to

30 days prior, 1 to 3 months prior, and 3 to 6 months prior; the corresponding
control groups hadnot received antibiotics in those periods. P-value obtained from
the PERMANOVA test and red indicates P <0.05 (significant difference). Durationof
the effect of antibiotic administration on total plasmid abundance in the adult gut
(c) and in the infant gut (d). The four studied periods are the same as in aor inb. “+”
represents antibiotics administered in a given period, and “−” represents antibiotics
not administered in a given period. P-value from the Wilcoxon test and red indi-
cates P <0.05 (significant difference). The box plots (c, d) display 25th, 50th
(median), and 75th percentiles, with whiskers extending 1.5 * IQR. All P-values were
derived from two-sided tests.
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Fig. 5 | Antibiotic treatment resulted in an elevated abundance of ARGs and
MGEs, and a decrease in observed bacterial richness. a Changes in ARG abun-
dance and bacterial diversity in the gut of adults who had taken antibiotics within 1
year of sampling and changes inMGE abundance in the gut of adults who had taken
antibiotics within 6 months of sampling. Individuals who had not taken antibiotics
during those periods were used as controls. P-value obtained from the Wilcoxon
test and red indicates P <0.05 (significantdifference).bChanges inARGabundance
in the gut of infants who had taken antibiotics within 1 month of sampling and
changes in bacterial diversity in the gut of infants who had taken antibiotics within
15 days of sampling. Individuals who had not taken antibiotics during those periods
were used as controls. P-value obtained from the Wilcoxon test and red indicates
P <0.05 (significant difference). Changes in the abundance of ARG clusters in the
gut of adults (c) who had taken antibiotics within 1 year of sampling and in the gut

of infants (d) whohad taken antibioticswithin 1monthof sampling. Individualswho
had not taken antibiotics during those periods were used as controls. For adults,
the definitions of these four groups and themethodological basis for clustering are
described in the legend of Fig. 1c. For infants, ARGs were clustered into three
categories by PAM clustering based on Euclidean distance (Fig. S8); Cluster 3 (core
ARGs, N = 2) contains highly abundant and prevalent ARGs. Cluster 2 (differentially
abundant (DA) ARGs, N = 55) contains ARGs with significant differences in abun-
dance between samples. Cluster 1 (intermediate-abundance (IA) ARGs, N = 309)
contains ARGs whose abundance in the samples falls between the ARGs in cluster 3
and those in cluster 2. P-value obtained from the Wilcoxon test with FDR adjust-
ment and red indicates P <0.05 (significant difference). The box plots (a–d) display
25th, 50th (median), and 75th percentiles, with whiskers extending 1.5 * IQR. All P-
values were derived from two-sided tests.
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associated with increases in mean MGE abundance (Fig. S10). Finally,
treatment with tetracycline or macrolide resulted in a significant
reduction in the relative abundance of Bifidobacterium adolescentis
and Bifidobacterium longum, two of the 20 most abundant species
(Wilcoxon test; adjusted P < 0.05, Fig. 6e).

In the infant cohort, we evaluated whether treatment with one of
three major antibiotics—macrolide, penicillin, and ampicillin—in the 15

days before sampling had distinguishable effects on the infant gut
microbiome. All antibiotics were associated with an increase in mean
ARG abundance, with macrolide and penicillin having a statistically
significant relationship (Wilcoxon test; adjusted P = 0.028, 0.028,
respectively, Fig. 6c). Furthermore, all antibiotics were associated with
non-significant increases in mean plasmid abundance (Wilcoxon
test; adjusted P > 0.05, Fig. 6d) and reductions in mean bacterial
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richness (Fig. S10). Macrolide and penicillin were linked with increases
in meanMGE abundance (Fig. S10). None of the three antibiotics had a
statistically significant influence on the abundance of the 20 most
abundant bacterial species. When we investigated the mixed effect of
antibiotics on the broader bacterial community, we found that anti-
biotics were associated with a significant decrease in the relative
abundance of Faecalibacterium prausnitzii and Haemophilus parain-
fluenzae (Wilcoxon test; adjusted P < 0.05, Fig. 6e). Additionally, we
observed an increase in the abundanceof E. coli, although the adjusted
P value was not significant.

Discussion
Metagenomic sequencing offers the possibility to gain deeper insight
into the distribution and function of ARGs in gut microbes at the
species or strain level. Using this approach, we examined the dis-
tribution of ARGs in the gut bacteria of 217 young Danish adults, aged
18 years. By combining this information with similar data from 662 1-
year-old Danish infants, we were able to describe age-related patterns
in the abundance and distribution of ARGs in the gut, as well as asso-
ciations between antibiotic use and alterations in the gut microbiome,
ARGs, and MGEs, including plasmids, across age groups.

In the adult cohort, we obtained evidence that ARGs follow a
bimodal distribution that is drivenby the abundanceofE. coli. A similar
bimodal distribution had been found for ARGs in the infant gut14,
which suggests that this phenomenon is independent of age. Numer-
ous genomic/molecular studies and in vitro resistance assays have
shown that members of family Enterobacteriaceae possess an extre-
mely broad array of antibiotic resistance23–25, particularly to beta-lac-
tams, which has largely been attributed to gene flow under sustained
selective pressure resulting from the increase in antibiotic use in
recent decades26,27. In both the adult and infant gut, theARGprofiles on
EscherichiaMAGswere quite similar, providing additional evidence for
the frequent influx of genes into the Escherichia genome. Moreover,
many studies have shown that this gene transfer is not unidirectional:
the rich pool of resistance elements in Enterobacteriaceae genomes
also flows to other bacteria28,29, thereby exacerbating the spread of
resistance genes.

Although our study is not longitudinal, it does provide a cross-
sectional view of the differences in gut ARGs between early life and
adulthood in the Danish population. We discovered that the dominant
ARGs, and the bacterial species on which they were found, were the
same in both infants and young adults, which could indicate a pro-
longed selective advantage or a shared community reservoir. Such a
selective advantage, i.e., the persistence of certain genes or gene-
carrying bacteria throughout childhood,would likely bedue toongoing
selection from external factors such as repeated antibiotic therapy30,31

and/or a competitive advantage over their bacterial neighbors.
Compared to infants, the proportion, number, and abundance of

ARGs was lower in the adult gut, and this was associated with
decreased levels of clinically relevant bacteria that contain abundant
resistance genes, such as E. coli and Shigella flexneri. Shigella flexneri
are pathogenic bacteria that can cause bacillary dysentery or shigella
dysentery32. This mirrors previous findings that infants have a higher

load of resistance genes in their gut compared to their mothers33.
Similar results have even been reported from cattle and pigs, in which
the abundances of ARGs and resistance-carrying Enterobacteriaceae in
the gut are also high early in life and decline with age34. Importantly,
this early-life peak in Enterobacteriaceae does not seem to be driven by
any external factors such as antibiotic use; instead, its trajectory in the
gut may be related to favorable environmental conditions and host
regulation. Facultative anaerobes such as E. coli can consume oxygen
and produce an anaerobic environment, thus favoring subsequent
colonization by and growth of strictly anaerobic bacteria35. Previous
studies have highlighted various mechanisms by which a host can
manage the development of the gut microbiome, such as the immune
system response36, the production of nitrogen-rich mucins, and the
creation of a more suitable habitat37,38. Abundance of ARG-carrying
bacteria may cause a delayed maturation of gut microbiome and
increase the risk of asthma later in life14. Obviously, such enrichment
poses a threat to infant health by reducing the effectiveness of anti-
biotic therapy for bacterial infections39. Our observation that plasmids
were abundant in the infant gut also implies a high frequency of
HGT40,41 which can provide an advantage for the dissemination and
persistence of ARGs even in the absence of antibiotics42.

Compared to adults, though, the gut microbiome in infants
recovered more quickly from antibiotic therapy. The infant gut
microbiome is very dynamic43 and less diverse than that of adults,
which may indicate that the ecological processes at play are simpler
and canmore easily recover fromperturbations. However, this effect is
also mediated by the types and doses of antibiotics used44–46. In Den-
mark, the type and dose of common antibiotics vary according to
age47. Moreover, the length of the recovery period after antibiotic
treatment has also been found to depend on the disease targeted. The
present study examined the effects of routine antibiotic treatment on
common infections. Instead, in neonates with sepsis or extremely
preterm infantswhowere treatedwith broad-spectrumantibiotics, the
overall gut microbiome took a long time to return to normal18,48. In
examining potential confounders of antibiotic use in infants, we found
that infants whose mothers had taken antibiotics during pregnancy
were much more likely to take antibiotics during their first year of life
(Fisher’s test; odds ratio = 1.41, P =0.03). It is important to note that
our analysis examined the mixed effect of all antibiotics taken, where
the effects of additional antibiotics may confound the results. Fur-
thermore, although our results indicated that the infant gut micro-
biome typically returned to baseline levels after about 30 days, we
cannot rule out some potential long-term effects that were not
addressed in our analysis, such as alterations in specific resistance
genes and bacteria49, immune maturation50, or metabolic changes51.
This requires further research using longitudinal samples. In addition,
we cannot rule out confounding by indication—that the antibiotic-
treated vs. non-treated infants and adults differed due to factors that
contributed to the condition their treatment was prescribed for.

The total abundance of core ARGs was significantly elevated in
both the infant and adult gut following antibiotic exposure, implying
that they are the primary weapons of bacteria against antibiotics and
thus possess the potential for widespread dissemination. This was also

Fig. 6 | The effects of different antibiotics onARG and plasmid abundance, and
on the relative abundance of bacterial species. Changes in ARG abundance (a)
and plasmid abundance (b) in the gut of adults who had taken one of five major
antibiotics or antibiotic combinations in the year before sampling (N = 5, 6, 7, 7, 20,
respectively). Individuals who had not taken antibiotics in that period were used as
controls (N = 166). P-value obtained from the Wilcoxon test with FDR adjustment
and red indicates P <0.05 (significant difference). The black diamond indicates the
mean value. Changes inARGabundance (c) andplasmid abundance (d) in the gut of
infants who had taken one of threemajor antibiotics in the 15 days before sampling
(N = 16, 17, 11, respectively). Infants who had not taken antibiotics within 15 days of
sampling were used as controls (N = 605). P-value obtained from theWilcoxon test

with FDR adjustment and red indicates P <0.05 (significant difference). The black
diamond indicates themeanvalue. Theboxplots (a–d) display 25th, 50th (median),
and 75th percentiles, with whiskers extending 1.5 * IQR. eMembers of the 20 most
abundant bacterial species whose abundance in the gut differed significantly
between (top) adults who had taken tetracycline or macrolide in the year before
sampling and those who had not received antibiotic treatment, and (bottom)
infantswhohad taken antibiotics (mixedeffects) in the 15 days before sampling and
those who had not within the first year. Relative abundance on the x-axis is shown
on a logarithmic scale; black dots indicate median value; P-values were generated
by the Wilcoxon rank-sum test and adjusted using FDR. All P-values were derived
from two-sided tests.
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supported by the patterns we identified in high ARG prevalence and
abundance, aswell as plasmid presence. However, different antibiotics
had different effects on the abundance of both ARGs and plasmids. Of
the five major antibiotics used in adults, tetracycline and beta-lactam
plus macrolide had the strongest impact on ARG and plasmid abun-
dance. The effect of the former may be related to the extreme abun-
dance of tetracycline resistance genes in bacteria and plasmids in the
adult gut. Although the medical use of tetracycline has declined over
the past 20 years and it is no longer recommended to treat pregnant
women and children under 8 years of age52, it remains one of the most
widely used classes of antibiotics worldwide53. With respect to the
latter, there may be a synergistic effect of taking separate courses of
beta-lactam and macrolide within a year which simultaneously calls
into action resistance genes against both beta-lactam andmacrolide as
well as plasmids carrying relevant genes in the gut. In infants, the
administration of penicillin or macrolide in the 15 days prior to sam-
pling was significantly associated with high ARG abundance. In pre-
vious work, we found that the influence of macrolide treatment on
macrolide resistance genes in the infant gut could last for approxi-
mately 2months, whereas the effect of penicillin wasmuch shorter14. A
study on Finnish children (2–7 years, median age 5 years) also con-
firmed that macrolide treatment had a stronger impact on the gut
microbiome than penicillin did45. In the adult gut, both tetracycline
andmacrolide were associated with dramatically reduced levels of the
beneficial bacteria Bifidobacterium adolescentis and Bifidobacterium
longum, which are the most prevalent Bifidobacterium species in the
adult gut54,55 and are effective degraders of plant-derived
fructooligosaccharides56. Similarly, antibiotic administration in
infants was found to reduce gut levels of Haemophilus parainfluenzae,
a conditionally pathogenic bacterium that can cause multiple
infections57,58, but simultaneously reduced levels of Faecalibacterium
prausnitzii, which is widely considered to be beneficial to host
health59,60. This reflects the double-edged nature of antibiotic treat-
ment, which kills pathogenic bacteria to cure disease but can also kill
sensitive beneficial bacteria. Therefore, the type of antibiotic used, and
its potential double-edged effects, should be fully considered in the
choice of antibiotic treatment.

Methods
Human samples
The COPSAC2000 cohort is a mother-child cohort assembled for the
primary purpose of studying asthma61. The 217 fecal samples used for
this study were collected as part of the 18-year follow-up visit at the
research clinic following detailed instructions. The 662 fecal samples
were obtained from 1-year-old infants in the COPSAC2010 cohort62.
Upon arrival at the laboratory, every infant sample was blended with
1mL of glycerol broth at a concentration of 10% vol/vol and subse-
quently stored at −80 °C prior to DNA extraction.

Ethics
The study was designed with the guiding principles of the Declaration
ofHelsinki inmind andwas approvedby the Local EthicsCommittee of
theDanishCapital Region (COPSAC2000: KF01-289/96, COPSAC2010:
(H-B-2008-093)) and the Danish Data Protection Authority (both
cohorts: 2015-41-3696). Both parents gave written informed consent
for the use of samples and data for this study before enrollment.

Covariates
During scheduled visits to COPSAC clinics, information was collected
from participants on the use of antibiotics (including any treatment
prior to sampling), the use and duration of other medications, pet
ownership, siblings, living area, income, alcohol consumption, smok-
ing, and experiences with disease. This information was verified
against registration records.

Metagenomic sequencing of fecal samples and data processing
Genomic DNA was extracted from fecal samples (~200–250 mg)
using the NucleoSpin® 96 Soil DNA Isolation Kit optimized for
epMotion® (Macherey-Nagel, Düren, DE) using the epMotion®
robotic platform model (Eppendorf) following the manufacturer’s
protocol. The feces were weighed within a clean bench in order to
control potential contamination from the environment. DNA library
preparation and data processing were carried out for adult samples
following the same protocol used for infant samples14. In brief, the
DNA library was prepared for Illumina sequencing with the Kapa
HyperPrep kit (KAPA Biosystems, Wilmington, MA, USA). Paired-end
(150 bp) sequencing of the samples in theDNA librarywas performed
with the Illumina NovaSeq platform by Novogene (China). Bioinfor-
matics analyses were executed in parallel using GUN parallel
v2018072263. Adapters were removed using BBDuk of BBTools v38.19
(sourceforge.net/projects/bbmap/). Sickle v1.3364 was used to trim
quality reads with Sanger quality values, with a default quality
threshold of 20, and the minimal length threshold of 100bp for the
resulting reads after trimming. Human DNA was filtered out using
BBMap of BBTools v38.19. In total, 217 gut samples were successfully
sequenced, generating between 52.9 and 103 million clean reads per
sample (mean ± SD: 58.9 ± 4.5 million reads). The average metage-
nomic coverage and sequence diversity for each sample were esti-
mated using Nonpareil v3.30 in kmer mode65. The mean coverage of
adult and infant metagenomic data was 96.42% and 98.23%, respec-
tively (Fig. S11), which represented “almost complete coverage”
(≥95% ofmean coverage). The species-level composition ofmicrobial
communities was described using MetaPhlAn v2.7.521. Sequence
assembly was performed with SPAdes v3.12.0 using default metage-
nomic settings66. Bins were created using Variational Autoencoders
for Metagenomics Binning (VAMB)67, a method that uses deep
learning to bin microbial genomes. All metagenome-assembled
genomes (MAGs) at least 200 kbp in length were submitted for
taxonomic assignment with the GTDB-Tk v1.7.0 toolkit, based on the
GTDB database (release 202)68. Among them, the taxonomy of 84.4%
big MAGs in 1250 clusters was assigned, which can cover 70% of
contigs in MAGs. Genes were predicted with Prodigal v2.6.3 in META
mode69. The reads assigned to E. coli by MetaPhlAn were subdivided
into twomain MAGs, one for E. coli and the other for Shigella flexneri
(aka E. flexneri in GTDB). For consistency, the analyses in Figs. 1 and 2
involving E. coli MAGs were a merger of the two.

ARG and MGE prediction and gene abundance calculation
Resistance gene identifiers (RGI) were used to annotate ARGs based on
the Comprehensive Antibiotic Resistance Database (CARD v3.0.7)70.
ARGs with the strict and perfect thresholds of the RGIs were kept for
further analysis. MGE homologs were characterized by HMM search in
HMMER3 v3.1b271 in combination with the PFAM72 and TnpPred73

databases, with “cut_ga” as a threshold criterion74,75. If multiple MGE
alignments were detected for one gene, only the one with the lowest E
value was kept.

Reference genes were indexed using bowtie2-build of Bowtie2
v2.3.5 before aligning reads76. Clean reads were aligned against the
predicted genes with Bowtie2 aligner. The number ofmapped reads in
bam files was calculated with Samtools idxstats of Samtools v1.1277.
Values of gene coverage per million (GCPM)14, which normalize
sequencing depth and gene length, were used to quantify gene
abundance. The sum of the GCPM values for all predicted genes in
each sample was one million, making it comparable across samples.
The formula for calculating GCPM for each gene is
ðcounts =gene lengthÞ× 106

Pn
1
counts =gene length

, where counts are the number of mapped

reads, gene length is the length of the gene, and n is the total number
of the predicted gene in each sample.
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Plasmid prediction and calculation of contig abundance
Plasmid contigs were identified and characterized with Platon v5.3
using the default settings78. Reference contigs were indexed using
bowtie2-build before aligning reads. Clean reads were aligned against
the contigs with Bowtie2 aligner. The number of mapped reads in bam
files was calculated with Samtools idxstats. GCPM values were used to
quantify contig abundance as described above. The sum of the GCPM
values for all contigs in each sample was one million, and the formula

for calculating GCPM for each contig is ðcounts =contig lengthÞ× 106

Pn
1
counts =contig length

,

where counts is the number of mapped reads, contig length is the
length of the contig, and n is the total number of the contigs in each
sample.

Relative importance of bacterial species as evaluated by
Random Forest
The relative importance of bacterial species in shaping ARG clusters
was evaluated by Random Forest analysis79 using the R-package “ran-
domForest” v4.7.1.180. The number of trees (ntree) and the number of
variables per split (mtry) in the random forest model were set to 500
and 50, respectively, resulting in a stable classifier and a low error rate
of 5.99%. The mean decrease in Gini value associated with a predictor
was used to estimate the importance of a bacterial species; a higher
value indicates a higher importance for that variable.

Comparing ARG and bacterial distributions using Procrustes
analysis
Procrustes analysis was used to evaluate the association between the
distribution of microbial species and the distribution of ARGs in each
sample81. A Hellinger transformation was first performed on the ARG
matrix and the species abundance matrix, respectively. Bray–Curtis
dissimilarity values were calculated between all samples in the two
matrices using the R function “vegdist” in the “vegan” package, v2.6.2.
PCoA (“phyloseq” package v1.38.0) was used to ordinate each dissim-
ilarity matrix. The two ordinated dissimilarity matrics were rotated
with the R function “procrustes” in the “vegan” package. The R func-
tion “protest” in the “vegan” package was used to calculate the sym-
metric Procrustes correlation coefficient r, the sum of squared
distance, and a P-value with 9999 permutations. The association
between the distribution of microbial species and ARGs was visualized
with ggplot2.

Construction of phylogenetic tree of metagenome-assembled
genomes (MAGs)
The nucleotide-level similarity between MAGs assigned to Escherichia
or Bifidobacteriumwas assessedwith average nucleotide identity (ANI)
values using FastANI v1.3382. We then used the neighbor-joining
method to construct phylogenetic trees83. Based on the presence or
absence of ARGs in the contigs, the PAM clustering method was used
to group Escherichia and Bifidobacterium MAGs into four categories
each, represented by different colored branches. MAGs assigned to
Escherichia and Bifidobacterium belonged to a total of seven and eight
metagenomic species, respectively. The dissimilarity between MAGs
was quantified using the cophenetic distance. Permutational multi-
variate analysis of variance (PERMANOVA) was used to investigate
differences in cophenetic distances between MAG clusters based on
ARG profiles or between MAGs (R-package “vegan” v2.6.2)84. With
respect to genus Escherichia, MAGs from the fourmain species—E. coli,
E. coli_D, E. flexneri, and E. dysenteriae—were included in the statistical
analysis.

α-diversity and β-diversity
All data processing and statistical analyses were carried out using the
open-source statistical program R. The observed richness of ARGs and

bacterial species was used to assess within-individual diversity (α-
diversity), while the Bray–Curtis index served as ameasureof between-
individual diversity (β-diversity). The ordination ofβ-diversitymatrices
was performed with NMDS or PCoA (R-package “phyloseq” v1.38.0)85.
The Wilcoxon rank-sum test was used to test for differences in α-
diversity among groups (R package “stats” v4.1.2). PERMANOVA was
used to investigate differences in β-diversity (the percent of variance
explained can be obtained from outcomes). Adjustments were made
for multiple comparisons using the Benjamini–Hochberg correction.

Partitioning Clustering for samples or ARGs based on ARG
composition
Cluster analyses of samples or ARGs based on ARG composition were
performedwith Partitioning AroundMedoids (PAM) clustering86 using
the R function “pam” in package “cluster” v2.1.387. The average sil-
houette width, which serves as an estimate of the average distance
between clusters, was used to assess the quality of PAM clustering; a
larger valuemeans better clustering. Euclideandistancewas applied to
the PAM clustering analysis. The R function “fviz_nbclust” in package
“factoextra” v1.0.788 was used to determine and visualize the optimal
number of PAM clusters.

Differential abundance analysis
Wilcoxon rank-sum tests were used to identify the bacterial taxa that
were differentially abundant between two groups, with multiple tests
corrected by FDR. Likewise, ARG, MGE, and plasmid abundances were
compared between two groups using theWilcoxon rank-sum test with
FDR correction. Information on the two groups used for comparison
has been noted in the context or the figure legends.

Linear regression analysis
A linear model (R function “lm”) was fitted to investigate the extent to
which the abundance of E. coli explained the variance in the number of
ARGspermillion genes and the relative ARGabundance. The normality
assumption of residuals was checked using the QQ plot.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The
experimentswere not randomized due to inapplicability. Sampleswith
DNA concentration below 1 ng/ul which is a minimum concentration
for sequencing library preparation were excluded as their DNA was
deemed unreliable and defined as failed. Researcherswere not blinded
during data acquisition and analysis due to inapplicability. All statis-
tical analyses were conducted in R version 4.1.2. The figures or figure
legends specify the number of samples used in each statistical analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The COPSAC2010 metagenomics datasets are available in the
Sequence Read Archive (SRA) under the accession number
PRJNA715601. The COPSAC2000 metagenomics data have been
deposited in the SRA under the accession number PRJNA916259. The
MAGs generated fromboth cohorts havebeendeposited atDDBJ/ENA/
GenBank under the accession number PRJNA1026956. According to
the Danish Data Protection Act and European Regulation 2016/679 of
the European Parliament and the Council (GDPR), data involving the
personal privacy of project participants cannot be publicly available.
Research collaborations are open, and data can be accessed via joint
research collaborations by contacting the COPSAC Data Protection
Officer, Dr. Ulrik Ralfkiaer, at administration@dbac.dk. All other data
that support the results of this study has been uploaded to http://mibi.
galaxy.bio.ku.dk/R_script and Source_data/.
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Code availability
The R code for data analysis and source data can be found at http://
mibi.galaxy.bio.ku.dk/R_script and Source_data/.
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