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AI-driven projection tomography with
multicore fibre-optic cell rotation

Jiawei Sun 1,2,3 , Bin Yang3, Nektarios Koukourakis2,3, Jochen Guck 4 &
Juergen W. Czarske 2,3,5,6

Optical tomography has emerged as a non-invasive imaging method, provid-
ing three-dimensional insights into subcellular structures and thereby
enabling a deeper understanding of cellular functions, interactions, and pro-
cesses. Conventional optical tomography methods are constrained by a lim-
ited illumination scanning range, leading to anisotropic resolution and
incomplete imaging of cellular structures. To overcome this problem, we
employ a compact multi-core fibre-optic cell rotator system that facilitates
precise optical manipulation of cells within a microfluidic chip, achieving full-
angle projection tomography with isotropic resolution. Moreover, we
demonstrate an AI-driven tomographic reconstructionworkflow,which can be
a paradigm shift fromconventional computationalmethods, often demanding
manual processing, to a fully autonomous process. The performance of the
proposed cell rotation tomography approach is validated through the three-
dimensional reconstruction of cell phantoms and HL60 human cancer cells.
The versatility of this learning-based tomographic reconstruction workflow
paves the way for its broad application across diverse tomographic imaging
modalities, including but not limited to flow cytometry tomography and
acoustic rotation tomography. Therefore, this AI-driven approach can propel
advancements in cell biology, aiding in the inception of pioneering ther-
apeutics, and augmenting early-stage cancer diagnostics.

Optical tomography has ascended as an emerging label-free micro-
scopic technique that captures intricate, three-dimensional (3D) sub-
cellular structures. This paradigm-shiftingmodality has redefined how
researchers decipher cellular processes, unravel disease mechanisms,
and evaluate treatment responses, thereby pushing the frontiers of
biomedical exploration1–4. Conventional optical cell tomography
typically relies on illumination scanning to obtain projections at var-
ious orientations, yielding significant resolution improvement in
microscopy4–6. Furthermore, therapeutic evaluation of targeted drug
treatment at the single-cell level becomes feasible through optical cell

tomography7. Nevertheless, the finite numerical aperture of micro-
scope objectives constrains the illumination scanning angle coverage,
resulting in the axial resolution of the illumination scanning tomo-
graphy being inferior to the lateral resolution. This causes a fairly large
blank area along the optical axis in the spatial domain of the tomo-
graphic reconstruction, known as themissing cone problem8. Iterative
reconstruction algorithms8,9 such as filtered back-projection com-
bined with analytic continuation approach10 and edge-preserving
regularization11 are developed to extrapolate the missing information
in the limited-angle tomography. Recent advances in deep learning-
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based limited-angle tomography further optimize the computation
efficiency of the reconstruction process12–14. Nevertheless, these
reconstruction approaches are mostly based on approximation algo-
rithms or physics-informed models, a full-angle tomographic scan of
the cell remains necessary to provide the prior knowledge for vali-
dating the reconstructed images.

Numerous cell rotation strategies have been advanced to facil-
itate full-angle optical tomography of cells. Straightforward meth-
ods involving the mechanical rotation of cells have been explored
for full-angle optical tomography. However, complex sample pre-
paration, such as fixing the cell position using a micro-tube15 or a
fiber tip16 is required. Contactless sample rotation approaches
empowered by microflow17–20, dielectrophoretic field21,22 or acoustic
microstreaming23–25 simplify sample preparation for full-angle opti-
cal tomography while minimizing cell damage and preserving sam-
ple integrity. Furthermore, optical manipulation uniquely offers
precise and accurate control over cell rotation, enabling targeted
rotation of cells within the 3D space26. This level of control is
essential to ensure the quality and reliability of tomographic
reconstruction27. Fiber-optic manipulation employs optical fibers to
deliver light and generate optical forces, providing remote and non-
invasive control of cell rotation on a microfluid chip28–30. By decou-
pling the manipulation and imaging axes, these fiber-optic manip-
ulation systems can be adapted to different microscopy setups
without interfering with the tomographic imaging process. We
previously reported a multicore fiber (MCF) optical manipulation
system that enables stable and contactless cell rotation around all

three axes within a fiber-optic trap30. Nevertheless, realizing tomo-
graphy based on fiber-optic manipulation remains a substantial
challenge, primarily due to the absence of a gold-standard method
for accurately measuring the cell rotation angle. The accuracy of the
tomographic reconstruction is intrinsically tied to the correct
determination of the cell’s rotation angle derived from two-
dimensional (2D) projections, which continues to be a significant
challenge in this field. Additionally, the typical reconstruction pro-
cedure for cell-rotation tomography demands complex and com-
putationally intensive methods for pre-processing 2D projections
acquired at different rotation angles in order to generate high-
resolution 3D images of cells18,19. Consequently, online pre-
processing of these projections continues to pose significant diffi-
culties. Recently, the development of artificial intelligence (AI) and
computer vision has revolutionized various aspects of optical
metrology31,32. These advancements have led to paradigm shifts in
microscopy33–35, including super-resolution36,37, cell segmentation38,
and virtual staining39,40. Despite considerable advancements in
computer vision technology, its integration into optical cell-rotation
tomography has yet to be extensively investigated.

In this paper, we introduce an AI-driven optical projection
tomography (OPT) system that utilizes the multi-core fiber-optic cell
rotator (MCF-OCR). This innovation effectively bridges the existing
gap between fiber-optic manipulation and optical tomography. The
core of this system is an AI-driven autonomous tomography recon-
struction workflow powered by emerging computer vision technolo-
gies, enhancing the robustness and efficiency of optical tomography
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Fig. 1 | Principle of the multicore fiber-optic cell rotation (MCF-OCR) powered
optical projection tomography system. a Spatial light modulator displaying
computer-generated holograms for tailored light field generation through the
MCF. b Cross-sectional view of the rotating elliptical beam in the optical manip-
ulation region. cCells are trapped in theMCF-OCR as the scattering forces from the
two laser beams counterbalanceeachother. The trapped cells follow the rotation of
the elliptical beam driven by the gradient forces generated by the heterogeneous
internal refractive index distribution. d The MCF-OCR system comprises an MCF

and an opposing single-mode fiber to enable effective cell rotation and manipula-
tion. e Cell delivery to the optical manipulation region through microflow.
f Simplified experimental setup of the optical projection tomography system. LED
light-emitting diode, CL condenser lens, SMF single-mode fiber, MO microscope
objective, Mmirror, TL tube lens, L1, L2 achromatic lens, SPF short-pass filter, Cam
camera. g Microscopic video recording optically controlled cell rotation for sub-
sequent tomographic reconstruction.
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systems. The workflow involves object detection convolutional neural
network (CNN) for real-time pre-processing of the projections, while
deep learning is employed for cell segmentation from the background,
significantly improving the quality of 3D reconstruction and enabling
potential implementation for cell position alignment across frames.
The Harris corner detector is utilized to extract features for rotation
tracking, and the precise rotation angle of the cell is determined using
the optical flow method. With the accurate rotation angle and pro-
jections, the 3D intensity distribution of the cell can be reconstructed
using the inverse Radon transform. To validate the performance of our
proposed autonomous tomographic reconstruction workflow, a cell
phantom is implemented to characterize the accuracy compared to
conventional optical tomography approaches. Moreover, we experi-
mentally validate the proposed workflow by reconstructing HL60
human leukemia cancer cells, rotated using the MCF-OCR device. Our
results indicate that this autonomous computational workflow can
potentially serve as a generalized OPT workflow, thereby facilitating
greater accessibility to full-angle tomography approaches for a wide
range of biomedical research focusing on single-cell analyses.

Results
Projection tomography using a multi-core fiber-optic cell rota-
tor (MCF-OCR)
The stability of cell rotation is a crucial element for achieving optimum
cell tomographic reconstruction. To this end, as depicted in Fig. 1, we
introduce the MCF-OCR-powered tomography system, consisting of
an MCF and an opposing single-mode fiber. This innovative system
employs a dynamically controlled rotating elliptical beam profile
generated at the distal far field of the MCF to facilitate cell rotation. As
demonstrated in Fig. 1a, the rotating elliptical beam profiles (Fig. 1b)
are achieved through dynamic phase modulation employing the
phase-only spatial light modulator (SLM) on the proximal side of the
fiber. The computer-generated holograms are calculated by the pre-
viously proposed physics-informed deep neural network in a quasi-
video rate, ensuring high-fidelity beam control in the MCF-OCR41. The
cell rotationmechanismwithin theMCF-OCR is primarily driven by the
unique characteristics of cells and the tailored elliptical beam profile.

As shown in Fig. 1c, cells typically have heterogeneous internal
refractive index distribution. The asymmetric shape of the elliptical
beam profile induces the optical gradient force on the cell. These
forces exert a differential impact on the various regions of the cell due
to its heterogeneous internal refractive index distribution. Thus, the
cell is driven to align itself with the rotation of the elliptical beam
profile. As the elliptical beam rotates, the cell trapped within the MCF-
OCR follows its motion by the gradient force. Meanwhile, the cell
remains stably trapped during the rotation due to the counter-
balancing of the scattering forces exerted by the two laser beams,
shown in Fig. 1d. The system cleverly employs an MCF and a strategi-
cally placed opposing single-mode fiber (SMF). The design of the
rotating elliptical beam, with its near-Gaussian distribution, ensures
the scattering forces from the two laser beams balance each other,
minimizing the unwanted vibration during the cell rotation. The inte-
gration of the MCF-OCR into a lab-on-a-chip system is depicted in
Fig. 1e. This system features a microcapillary, which is positioned
between the two fibers and serves as a conduit for cell delivery to the
optical manipulation region, facilitated by a controlled microflow.
Once the cell is trapped, themicroflow is terminated to ensure stability
during the imaging process. The compact design of the lab-on-a-chip
system enables smooth integration into a brightfield microscope,
ultimately forming a comprehensive and efficient OPT system
demonstrated in Fig. 1f. As depicted in Fig. 1g, the cameramounted on
the microscope records 2D projections of the cell throughout its
optically controlled rotation. These projections are then utilized for
full-angle tomographic reconstruction.

Autonomous tomographic reconstruction powered by
computer vision
Reconstructing the 3D intensity distribution of cells from 2D projec-
tions typically requires laborious pre-processing, and the precise
determination of the rotation angles remains challenging. To over-
come these difficulties, we have developed an autonomous tomo-
graphic reconstruction workflow, as depicted in Fig. 2. This innovative
approach streamlines the process and enables rapid and robust
reconstruction for full-angle tomography based on sample rotation.
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Fig. 2 | Autonomous tomographic reconstruction workflow. a Full-field optical
microscope images show cell rotation facilitated by the MCF-OCR within a micro-
fluidic channel. b An object detection convolutional neural network (CNN) auton-
omously identifies cells within the microscope images, cropping the detected
region for stabilization via a dedicated algorithm. c The cell is separated from the

background using an image segmentation deep neural network (DNN), after which
the images are meticulously aligned. d Optical flow facilitates tracking and quan-
tifying the rotation angle. e Sinograms are generated from the pre-processed
projections and the corresponding rotation angle, enabling 3D intensity distribu-
tion reconstruction.
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The initial phase of our workflow employs the neural network
YOLOv542, an object detection algorithm, to autonomously identify
cells within raw microscopic images (Fig. 2a). Conventional training
datasets for suchCNNs do not encompassmicroscopic images of cells.
However, the great generalization capability of YOLOv5 permits its
application for cell detection within microscopic images employing
transfer learning43. Here, we fine-tune the pre-trained YOLOv5 using a
set of manually labeled microscopic cell images, optimizing the net-
work specifically for this task. The efficiency of the tailored CNN is
notable, achieving an average cell detection precision of 99.88%within
ourmicroscopic images. As demonstrated inFig. 2b, subsequent to cell
detection, the region of interest is extracted from the full-field images
and cropped into smaller images of consistent dimensions. Utilizing
theOpenCV video stabilization package44, the cell’s positionwithin the
cropped video frames is aligned, establishing a firm basis for the
subsequent stages of our workflow. In order to achieve accurate image
registration and 3D reconstruction with high contrast, it is crucial to
accurately segment cells from images45. Deep learning has proven to
be highly effective in achieving this, with a cell segmentation classifier
used to differentiate cells from the background46,47. Similar to the
method used for optimizing the object detection CNN, transfer
learning is also employed for cell segmentation. Manually labeled
images are implemented to fine-tune the trained classifier for precise
cell segmentation in the proposed OPT system. To achieve optimal
tomographic reconstruction, it is essential to precisely align the cell
position in the cell rotation video18. Due to the high contrast of the
images after cell segmentation, we extract the exact position of the cell
in each frame. This is accomplished by determining the minimal
enclosing circle of the cell’s contour, a technique that has proven
effective in various image analysis contexts48. As demonstrated in
Fig. 2c, subsequent to the segmentation, we corrected the lateral
movement of the cell by aligning it to the center of the frame, thus
ensuring accurate image registration. Furthermore, accurate detection
of the rotation angle is crucial for maintaining the fidelity of tomo-
graphic reconstructions49. Harris corner detector50 is used to enable
the extraction of dynamical features in the cell rotation videos. As
shown in Fig. 2d, the motion of the extracted features is tracked and
quantified by the optical flow51–53. The detected motion is then pro-
cessed further to ascertain the rotation angle of the spherical cell.
Leveraging the geometrical properties of the cell, the movement of
these tracked features on the cell surface is translated into a quantifi-
able rotational angle. This conversion is pivotal in establishing the

precise orientation of the cell at each step, which is a prerequisite for
high-quality, full-angle tomographic reconstruction. Once the precise
orientations of the projections are determined, these data enable the
construction of a sinogram, a 2D representation of the cross-sections
of the cell captured at various angles. Each line of the sinogram cor-
responds to a specific projection angle, thus encapsulating the angular
perspective of the subcellular structure. Ultimately, the tomographic
reconstruction algorithm54 is employed for the reconstruction of the
3D intensity distribution of the cell, allowing us to obtain a detailed 3D
intensity distribution reconstruction of the cell, thereby contributing
to a more in-depth understanding of its internal structures and prop-
erties shown in Fig. 2e.

3D isotropic reconstruction of cell phantoms
We have introduced the AI-driven autonomous workflow for accurate
and rapid cell tomographic reconstruction. Accurate detection of the
rotation angle is crucial for maintaining the fidelity of tomographic
reconstructions49. Although the automatic tracking of cell orientation
in microscopic images is highly desired, it remains a challenging task.
Firstly, the complex and heterogeneous internal structure of the cel-
lular structures might be indistinct or even invisible due to limitations
in the resolution of opticalmicroscopy and the natural transparencyof
cells. Also, during the rotation, different parts of the cell come into and
go out of the field of view, making consistent tracking difficult. Fur-
thermore, a gold standard method for precisely measuring the cell
rotation angle is yet to be established. To address this challenge and
validate the performance of the optical flow in tracking cell rotation,
we have simulated a cell phantom, demonstrated in Supplementary
Movie 2, which serves as a reliable reference for evaluating the accu-
racy and effectiveness of our proposed method.

In our simulation of full-angle OPT predicated on cell rotation, we
smoothly rotate the 3D cell phantom through 180∘, generating corre-
sponding 180 projections, which are recorded as frames in the cell
phantomrotationvideo. As exhibited inFig. 3a, three dynamic features
which are specifically corners with notable intensity changes on the
cell surface, are extracted. These selected features undergo tracking
for their lateral displacement using the optical flow technique. The
rotation angle of the cell is subsequently computed from the tracked
lateral movements of these features, as demonstrated in Fig. 3b. It can
be noticed that the tracked rotation angle enters a phase of stagnation
when the tracked featuremoves from the front side to the back side of
the projection. This phenomenon is attributable to the pixelation
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Fig. 3 | Optical projection tomographic reconstruction of a cell phantom
employing the proposed method. a Tracking of the cell phantom rotation using
optical flow. b The tracked rotation angle of the cell phantom. cCorrected rotation

angles and the ground truth. d 3D intensity distribution reconstruction of the cell
phantom. Scale cube 2 × 2 × 2μm3. Source data are provided as a Source Data file.
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effect of the images. When a feature on the cell moves across these
pixels, even a small lateral shift of a few pixels can represent a sig-
nificant change in the physical position on the cell surface. This
becomes particularly noticeable at the edges of the cell, where the
curvature of the cell body means that a small lateral shift in pixels
corresponds to a large change in the orientation of the cell, in this case,
approximately a 20° rotation. To circumvent this tracking error, we
employ a multi-feature tracking approach and switch the tracked
feature to the most optimal one when the rotation angle experiences
stagnation. Figure 3c shows the corrected tracking result of the rota-
tion. The mean measurement error of the tracked rotation angle is
1.49°, reflecting the high precision of the cell rotation tracking based
on the multi-feature optical flow tracking approach. Once the precise
rotation angle of each projection is obtained, the sinogram of the cell
phantom can be generated. Utilizing the inverse Radon transform,
cross-sections of the cell phantom at different depths are recon-
structed from the angle-specific projections. The 3D intensity dis-
tribution of the cell phantom can then be reconstructed by stacking
these cross-sections with spatial filtering. Figure 3d presents the 3D
isotropic intensity distribution reconstruction of the cell phantom
viewed from multiple perspectives. This demonstrates the capability
of the approach to capture the full 3D structure of the cell phantom,
providing a detailed and comprehensive representation that would be
impossible to achieve with traditional 2D imaging techniques.

In order to quantitatively assess the fidelity of the proposed
autonomous tomographic reconstruction workflow, we compare it
with both the original cell phantom (Fig. 4a) and the conventional
illumination scanning tomographic reconstruction (Fig. 4c) that only
utilizes limitedprojection angles. Due to the physical constraints of the
numerical aperture in microscope objectives, state-of-the-art illumi-
nation scanning tomography approaches cannot exceed an equivalent
scanning angle range of 160° 4,6. The optimal tomographic recon-
struction of the cell phantom, achieved using this conventional
method with limited angle coverage, is depicted in Fig. 4d, presenting
cross sections at different planes. The proposed tomographic recon-
struction method demonstrates significant improvement in axial
resolution (along the z-axis), as illustrated in Fig. 4f, presenting
reconstructed cross-sections at the same planes. To further validate
the proposed tomographic reconstruction method, we conducted
quantitative comparisons of the intensity distribution along the iden-
tified dashed lines in the cross-sectional tomographic reconstructions,
as shown in Fig. 4g, h. The intensity distribution of the conventional
illumination scanning tomography reconstruction, represented by the
red curves, aligns with the red dashed line in Fig. 4d. Although this
distribution generally correlates with the ground truth intensity dis-
tribution of the cell phantom, it deviates significantly at the cell
phantom interfaces, indicating imprecise density values. On the other
hand, the intensity distribution from the proposed cell rotation
tomography reconstruction (represented by the blue curve in
Fig. 4g, h) corresponds accurately with the ground truth intensity
distribution of the cell phantom. The consistency of these distribu-
tions, which align along the blue dashed line in the cross sections
(Fig. 4f), demonstrates the improved accuracy and superior recon-
struction capability of our proposed methodology.

Moreover, to quantify the measurement error of the 3D recon-
struction using both tomographic reconstruction approaches, we
applied statistical error metrics: mean squared error (MSE), mean
absolute error (MAE), and root mean square error (RMSE)55. We com-
pared the tomographically reconstructed 3D volume with the original
cell phantom. As shown in Table 1, the 3D reconstruction error sig-
nificantly decreases when using our proposed tomographic recon-
struction approach compared to the limited-angle illumination
scanning tomography. Specifically, the MSE decreases by 66.7%, MAE
by 58.0%, and RMSE by 43.8%. To provide a comprehensive evaluation
of the accuracy of the 3D reconstruction, we incorporated the use of

multiscale structural similarity (MM-SSIM) and peak signal-to-noise
ratio (PSNR) as assessment metrics. The MM-SSIM, a typical method
used for quantifying image similarities56, and the PSNR, a common
benchmark for measuring the quality of reconstruction or
compression57, were calculated for the 3D reconstructions. The results,
as detailed in Table 1, demonstrate a significant enhancement in the
accuracy of 3D reconstruction when our cell-rotation-based tomo-
graphy approach is utilized. Furthermore, there was a 7.1% increase in
the MM-SSIM, indicating a closer alignment to the structure of the
original cell phantom. Additionally, the PSNR, a measure of the fidelity
of the reconstructed volume to theoriginal, exhibited an improvement
of 18.2% compared to the conventional tomography approach.
Therefore, the proposed optical cell rotation tomography offers
superior performance in terms of accurate tomographic reconstruc-
tion. Its efficacy surpasses the optimal results achievable through
conventional illumination scanning tomography. By employing a
rotational mechanism for cell imaging and incorporating advanced
computational techniques, our approach is able to capture and
reconstruct the 3Dsubcellular structurewith remarkable precisionand
fidelity.

3D isotropic reconstruction of live HL60 human cancer cells
The accurate tomographic reconstruction of the cell phantom con-
firms the effectiveness of the proposed autonomous workflow for
MCF-OCR-based OPT reconstruction. As a result, this approach can be
extended and applied to reconstruct experimentally measured cell
rotations, offering a powerful tool for analyzing cellular structures in
detail. In order to perform full-angle OPT on live HL60 human leuke-
mia cells, the cell is precisely rotated within the MCF-OCR system,
generating 251 projections at orientations from 0° to 180° using the
brightfield microscope. The subsequent phase involves processing
these projections through the AI-driven autonomous tomographic
reconstruction workflow that we have proposed. This stage begins
with a pre-processing step that makes use of a pre-trained object
detection CNN and a specific cell segmentation deep neural network.
This technique enhances the data by refining and focusing on perti-
nent cell details. Following this initial refinement, the data undergoes a
calibration process. This involves registering the minimal enclosing
circle of the cell contour that has been detected, providing a more
accurate dataset for further steps.With the refined and calibrateddata,
we move on to tracking multiple features on the cell simultaneously.
For this, we employ the optical flow technique. This critical step allows
us to compute the cell’s rotation angle. We prioritize accuracy in this
phase by ensuring the automatic selection of the optimal tracking
feature. In the next step, the sinogramof the cell is generated and then
translated into 2D cross-sections of the HL60 cell using the inverse
Radon transform. The isotropically-resolved 3D intensity distribution
of the live HL60 cell is demonstrated in Fig. 5 and Supplementary
Movie 1. This reconstruction is made possible by stacking the pro-
cessed 2D cross-sections and employing spatial filtering techniques.

The quality of the final 3D volumetric reconstruction is heavily
influenced by the image pre-processing steps in the autonomous
tomographic reconstruction workflow. As depicted in Fig. 6a, effective
cell segmentation is crucial to eliminate background noise and
enhance the clarity of the 3D volumetric reconstruction. However, as
illustrated in Fig. 6b, even when the contrast of the 3D volumetric
reconstruction is improved through cell segmentation, misalignment
in the frames can still adversely affect the accuracy of the 3D recon-
struction. The proposed AI-driven autonomous tomographic recon-
struction workflow significantly improves the quality of the 3D
intensity reconstruction of the human cancer cell, resulting in a robust
and accurate tomographic reconstruction shown in Fig. 6c. Supple-
mentary Movie 3 offers a rotational view of the 3D reconstruction of
the HL60 cancer cell using different methods, providing a more in-
depth comparison of the reconstruction results, and demonstrating
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the isotropically-resolved 3D reconstruction using the AI-driven
tomographic reconstruction workflow. This enables a precise and
accurate representation of the subcellular structures, enhancing our
understanding of their intricate morphology.

Discussion
We have demonstrated an AI-driven fiber-optic cell rotation tomo-
graphy system that offers powerful 3D single-cell imaging, providing
unique advantages not collectively realized with existing methodolo-
gies. This system allows for the efficient and robust reconstruction of
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Fig. 4 | Comparison of the optical projection tomographic reconstruction of
the cell phantomusingdifferentmethods. a 3Dvisualization of the cell phantom.
Scale cube 3 × 3 × 3μm3. b Cross sections of the cell phantom at XZ, XY, and YZ
planes. Scale bar 3μm. c Illustration of the conventional illumination scanning
tomography principle applied to the cell phantom. d Cross sections of the recon-
structed cell phantom using conventional illumination scanning tomography.
e Illustration of the optical cell-rotation tomography. f Cross sections of the

reconstructed cell phantom using the proposed autonomous cell-rotation tomo-
graphy approach. g, h Quantitative comparison of the intensity profile along the
color-marked dash lines in the reconstructed g XZ plane cross-section and h YZ
plane cross-section. The red line is conventional illumination scanning tomography
reconstruction; the blue line is optical cell-rotation tomographic reconstruction;
the purple line is the ground truth intensity of the cell phantom. Source data are
provided as a Source Data file.

Table 1 | Quantitative comparison of the cell phantom
reconstruction using conventional illumination scanning
tomography and the proposed autonomous cell rotation
tomography

MSE MAE RMSE MS-SSIM PSNR

Conventional tomography 0.0018 0.0262 0.0420 0.8888 27.5299

Proposed tomography 0.0006 0.0110 0.0236 0.9519 32.5294
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3D intensity distributions with diffraction-limited isotropic resolution.
Notably, this 3D cell imaging performance can be attained using
commercially availablemicroscopes due to the compact design of our
MCF-OCR lab-on-a-chip system. Furthermore, the autonomous tomo-
graphic reconstruction workflow substantially simplifies the full-angle
tomography process, thereby increasing its accessibility for broader
applications. Through the implementation of the autonomous tomo-
graphic reconstruction workflow on a cell phantom, we have affirmed
the effectiveness of our tomographic reconstruction methodology.
High-fidelity 3D intensity distribution reconstructions were realized
for both the cell phantom and live human cancer cells, underscoring
the precision of cell orientation in each projection and the overall

accuracy of our system. We have additionally integrated machine
learning-empowered cell segmentation and frame calibration algo-
rithms into our workflow, resulting in an optimal adjustment of
experimentally captured images of optically rotated cells. This
advancement considerably enhanced the robustness of our tomo-
graphic reconstruction process, reinforcing the transformative
potential of our approach in the field of tomographic imaging.

Conventional cell tomography methods are often constrained by
the range of scanning angle, which consequently leads to the missing
cone problem8. In contrast, our system can solve this problem by
enabling full-angle tomography, providing isotropic resolution in 3D.
This is achieved by utilizing the MCF-OCR to execute precisely

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

y = 3.90 μm

a b c d

e f g h

0

1

1μm y = 5.49 μm y = 6.51 μm y = 7.52 μm

y = 8.53 μm y = 9.54 μm y = 10.41 μm y = 11.98 μm

Fig. 5 | Isotropically-resolved 3D intensity distribution reconstruction of a live
HL60 human leukemia cancer cell. The 3D reconstruction is sectioned along the
y-axis with a depth of a 3.90μm b 5.49μm c 6.51μm d 7.52μm e 8.53μm f 9.54μm

g 10.41μmh 11.98μm. Scale cube 1 × 1 × 1μm3. Source data are provided as a Source
Data file.

y

z

x

z

y

z

x

y

x

0

1

1μm

a

y

z

xy

x

z

y

z

x

1μm

0

1

b

x

z

y

y

z

x

z

x

0

1

1μm

c

y

Without segmentation Without calibration AI-driven reconstruction

Fig. 6 | Comparison of 3D intensity distribution reconstruction for a live HL60
human leukemia cancer cell rotated in theMCF-OCR. a 3D reconstruction in the
absence of cell segmentation. b Reconstruction with cell segmentation but lacking

frame calibration. c Isotropic 3D reconstruction using the proposed AI-driven
autonomous tomographic reconstructionworkflow. Scale cube 1 × 1 × 1μm3.Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44280-1

Nature Communications |          (2024) 15:147 7



controlled cell rotation. Although iterative reconstruction
algorithms8,9 and deep learning methodologies12,13 have made
remarkable advancements in enhancing the resolution of illumination
scanning tomography, our proposed tomography approach can pro-
vide the much-needed ground truth measurement data for evaluating
these algorithm-estimated tomographic reconstructions. Although the
optical control of cell rotation is improved with the MCF-OCR when
compared to few-mode fiber-optic cell rotation28, rotation around a
slightly tilted axis could potentially impact the fidelity of the tomo-
graphic reconstruction. By further implementing the adaptive tomo-
graphic control of the light field26 through the MCF, we anticipate
enhancing the robustness of the tomographic reconstruction for
optimal optical manipulation.

The proposed tomography method introduces a general recon-
struction workflow for tomography techniques based on cell rotation,
offering more accurate 3D volumetric reconstruction compared to
conventional limited-angle tomography. This autonomous tomo-
graphy reconstruction workflow can be readily extended to various
cell rotation tomography methods, including microflow cell
rotation17–19, dielectrophoretic cell rotation21,22, acoustic microstream-
ing cell rotation23,24, or combined acoustic and optical manipulation25.
Moreover, we envision that the computer vision technologies pre-
sented here could have broad applicability across various tomography
modalities. This could include their potential use in refractive index
tomography58,59, fluorescence tomography18, or X-ray tomography60.
Therefore, our work could not only advance the field of cell-rotation-
based tomography but also open up new possibilities for the integra-
tion of computer vision technologies in diverse tomographic
modalities.

Methods
Experimental setup
The comprehensive experimental setup of the proposed tomography
system is demonstrated in Supplementary Fig. 2. This system employs
an MCF (FIGH-350S, Fujikura) to dynamically modulate the output
light field, controlled by an SLM (PLUTO-2, Holoeye), which further
enables optical control of cell rotation. The core of the setup, theMCF-
OCR, comprises the MCF and an opposing SMF (SM600, Thorlabs).
The SMF has dual functions: it accommodates the reference beam
used for calibrating the MCF, and it is also used as the waveguide for
the near-infrared fiber laser (Eylsa 780; Quantel), which is responsible
for optical trapping. The output laser power from each optical fiber is
kept under 40mW to minimize the risk of photodamage and photo-
thermal effects. A custom-built brightfieldmicroscope is used to image
the cell rotation process. We use a blue light-emitting diode (LED)
(M455L4, Thorlabs) as the light source for bright-field imaging. The
area of optical manipulation is magnified by a microscope objective
(50×, 0.42 NA, Mitutoyo) and tube lens (TTL200, Thorlabs), and this
magnified image is projected onto a recording camera (Ueye CP, IDS)
via lens systems. To achieve clear and high-contrast imaging, short-
pass filters (FES0500, Thorlabs) are positioned before the camera to
eliminate scattered light from the laser beams used for optical
manipulation.

In situ calibration of phase distortion in the MCF
Each individual fiber core in the MCF acts as a separate single-mode
waveguide with the capacity to carry light from one end of the fiber to
the other. However, inherent variations stemming from the manu-
facturing process and its physical characteristics can cause each fiber
core to introduce unique phase alterations to the transmitted light.
These differences in phase shifts among various fiber cores result in
phase distortions across the output light field. To address this chal-
lenge, we utilize a specialized in-situ calibration method tailored for
theMCF-OCR system. As depicted in Supplementary Figure 1, the laser
source for the MCF is concurrently coupled into the SMF within the

MCF-OCR system. This beam travels through the MCF and interferes
with the reference beam on the camera positioned on the MCF’s
opposite side. Subsequently, the phase distortion in the MCF is
reconstructed from the off-axis hologram and compensated using the
SLM. When the MCF-OCR system is integrated into a newmicroscope,
further phase drifts, aswell as temporal andbendingphase distortions,
can be in-situ calibrated through this approach. This method also
allows us to compensate for bending-induced phase distortions,
thereby significantly boosting the robustness of the MCF-OCR tomo-
graphy system. Moreover, the latest advancements in our lab indicate
that phase distortion in the MCF can be corrected using 3D-printed
diffractive optical elements on the fiber facet61,62. These diffractive
optical elements could potentially replace the SLM, resulting in a less
costly, simpler, and more robust setup.

Physics-informed neural network for fiber-optic manipulation
The generation of computer-generated holograms for complex
wavefront shaping through MCFs has been a challenging task due to
the randomanddiscrete distribution of the fiber cores in theMCF.This
complexity limits the real-time light field control in MCF-OCR. To
overcome these challenges, a physics-informed neural network named
CoreNet was developed41. CoreNet incorporates a diffraction model, a
physical concept, into its network design. The incorporation of this
physics-based model allows CoreNet to propagate the light field
between the phase modulation plane and the target intensity plane
numerically. This feature of CoreNet enables the network to efficiently
search for the optimal phase modulation maps for the target image
and also learn the mapping from the target images to the phase
modulation holograms in an unsupervisedmanner. CoreNet is capable
of generating tailored CGHs at a quasi-video rate of 7.1 frames
per second, speeding up the computation time by two magnitudes
compared to conventional algorithms. The application of CoreNet for
generating tailored light fields inMCF-OCRhas significant implications
for real-time control of the light field, allowing for the accurate control
of the optical force exerted on the cells during rotation. This enhanced
control can lead to improvements in the quality of cell rotation
tomography.

Sample preparation
The HL60 is a myeloid precursor cell line, initially derived from an
Acute Promyelocytic Leukemia (APL) female patient in 1977, and has
been widely used in various research. This work utilizes the HL60/S4
line, a modified variant of the original HL60 lineage. The HL60/S4
cells, kindly provided by D. and A. Olins from the Department of
Pharmaceutical Sciences, College of Pharmacy, University of New
England, were rigorously authenticated prior to their application in
our research63. The HL60 cells were cultured at 37 °C and 5% CO2 in
RPMI medium (Gibco) supplemented by 10% fetal bovine serum
(FBS, Gibco) and 1% penicillin–streptomycin. After reaching the
desired confluency, cells were centrifuged for 5min at 115×g and
then resuspended in phosphate-buffered saline (PBS). For sub-
sequent measurements, the cell suspension was diluted by adding
PBS to rotate one cell at a timewithout flushing a second cell into the
field of view. The diluted cell suspension was pumped into a spe-
cialized microchannel constructed from hollow square capillaries
(CM Scientific), which have an inner diameter of 50 × 50 μm and a
wall thickness of 25 μm.

Inverse Radon transform for tomographic reconstruction
The inverse Radon transform is used for reconstructing 3D cell volume
from 2D projections of the cell rotation. It operates under the princi-
ples of the Fourier slice theorem and the inverse Fourier transform.
The Fourier slice theorem specifies that the Fourier transform of a
Radon transform of an object, which is the sinogram, equates to a slice
through the 3D Fourier transform of that object. Mathematically, this
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can be written as:

F ½Rðθ,pÞ�=F 3Dðω cosðθÞ,ω sinðθÞ, zÞ ð1Þ

where F ½Rðθ,pÞ� is the Fourier transform of the sinogram R(θ, p) at a
specific angle θ and position p. Meanwhile, F 3Dðω cosðθÞ,ω sinðθÞ, zÞ
represents a slice through the 3DFourier transformof the object at the
same angle θ and frequencyω, at a specified depth zwithin the object.
The 3D reconstruction is then performed by taking the inverse Fourier
transformof the projections and summingover all angles. This process
can be described by:

f ðx, y, zÞ=
Z Z

F�1fF ½Rðθ,pÞ�geiωðx cos θ+ y sin θÞ dpdθ ð2Þ

where f(x, y, z) is the reconstructed 3D volume of the cell,
F�1fF ½Rðθ,pÞ�g is the inverse Fourier transform of the sinogram,
eiωðx cosθ+ y sinθÞ is the Fourier kernel, which is used to transform the
sinogram back into the spatial domain, and the integrals dp and dθ are
performedover the sinogram(p-axis) and all projection angles (θ-axis),
respectively.

3D visualization of the tomographic reconstruction
The 3D intensity distribution volume of the cell, which was recon-
structed using the inverse Radon transform, was subsequently
imported into ImageJ. Specifically, the data were processed using
the Volume Viewer plugin64. A nearest-neighbor interpolation
method was employed to optimize the visualization of the intensity
distribution volume and to minimize sampling artifacts. This
method, while computationally efficient, retains the original voxel
values of the input dataset, thereby preventing the introduction of
new, interpolated values that could potentially alter the original
data. To further enhance the visualization and analysis of subcellular
structures, the 2D gradient values of the volume were utilized as a
filtering mechanism. These gradient values, indicative of the rate of
intensity change across the image, are instrumental in identifying
and delineating boundaries between distinct subcellular structures.
By effectively harnessing these gradient values, we were able to
generate a clearer, more detailed visualization of the internal
architecture of cells, thereby facilitating a more nuanced under-
standing of their morphological characteristics.

Statistics and reproducibility
We employed a specialized approach focusing on a single HL60
human cancer cell and a cell phantom to validate the proposed AI-
driven tomographic reconstruction method. Due to the specific and
exploratory nature of the research, traditional statistical analyses
were not applicable, and the sample size, including one cell and one
phantom, was chosen based on the objective of demonstrating the
method’s feasibility rather than for statistical generalization.
Therefore, no statistical method was used to predetermine sample
size. All data obtained from the experiments were included in the
analysis, hence, no data were excluded from the analyses. The
study’s design did not incorporate randomization or blinding as it
focused on the technical validation of the imaging method, there-
fore, the experiments were not randomized and the investigators
were not blinded to allocation during experiments and outcome
assessment. To ensure reproducibility, the source code65 and test
data65 have been made publicly available, allowing the scientific
community to replicate our findings and apply the methodology in
similar settings.

Data availability
The3D reconstructiondata generated in this study and the source data
for the figures have been deposited in Figshare66.

Code availability
The source code for the AI-driven tomography reconstruction is
publicly available on Github65. Pre-trained DNN for hologram genera-
tion is publicly available on Github.
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