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JOINTLY: interpretable joint clustering of
single-cell transcriptomes

Andreas Fønss Møller 1,2 & Jesper Grud Skat Madsen 1,3,4,5

Single-cell and single-nucleus RNA-sequencing (sxRNA-seq) is increasingly
being used to characterise the transcriptomic state of cell types at home-
ostasis, during development and in disease. However, this is a challenging task,
as biological effects can be masked by technical variation. Here, we present
JOINTLY, an algorithm enabling joint clustering of sxRNA-seq datasets across
batches. JOINTLY performs on par or better than state-of-the-art batch inte-
gration methods in clustering tasks and outperforms other intrinsically
interpretable methods. We demonstrate that JOINTLY is robust against over-
correction while retaining subtle cell state differences between biological
conditions and highlight how the interpretation of JOINTLY can be used to
annotate cell types and identify active signalling programs across cell types
and pseudo-time. Finally, we use JOINTLY to construct a reference atlas of
white adipose tissue (WATLAS), an expandable and comprehensive commu-
nity resource, in which we describe four adipocyte subpopulations and map
compositional changes in obesity and between depots.

Single-cell and single-nucleus RNA-sequencing (sxRNA-seq) has
immense potential to enhance our understanding of human biology
during homeostasis and how development or diseases shape our cells,
tissues, and organs. To relate gene expression programs in specific cell
types or cell states to a disease or developmental state, it is required
that batch effects, which are technical sources of variation, between
samples are removed, as they can otherwise introduce false or mask
true associations.

In recent years, severalmethods have attempted to overcome the
problem of batch effects by integrating sxRNA-seq datasets using
graph-based (e.g., fastMNN1), statistical (e.g., Harmony2), or deep
learning-based (e.g., scVI3) approaches. However, it remains a chal-
lenging problem. A recent comprehensive benchmark of batch inte-
gration methods by the Theis group found that each method has a
different balance between conserving biological variation and
removing batch effects and that this balance can depend on the inte-
gration task4. In addition to conserving different amounts of biological
variation, each method also has different and task-specific sensitivity
to over-correction, where biological variation, rather than batch

effects, are removed5,6. Interpretable batch integration methods can
aid in evaluating the integration performance in a specific task by
enabling the user to evaluate whether the genes or gene modules,
driving integration are meaningful in the biological context.

There are already interpretable batch integration methods, such
as LIGER7, which is based on non-negative matrix factorisation-based
(NMF). LIGER learns shared (or dataset-specific) factors that in linear
combination can describe each cell, and these factors are interpretable
as they are defined by non-negative linear combinations of genes.
Thus, the factors, that can be used for clustering, also represent
weighted genemodules that allow the user to evaluate the integration
and can assist in functional annotation of datasets. However, in
benchmarks, such linear methods are not efficient at removing batch
effects4 likely because batch effects can be highly non-linear8.

Here, we introduce JOINTLY, a hybrid linear and non-linear
NMF-based joint clustering tool. We benchmark JOINTLY and eight
other batch integration methods in five different integration tasks
composed of a total of 52 datasets. JOINTLY achieves state-of-the-art
performance and additionally generates interpretable factors.

Received: 14 July 2023

Accepted: 6 December 2023

Check for updates

1Institute of Biochemistry and Molecular Biology, University of Southern, Odense, Denmark. 2Sino-Danish College (SDC), University of Chinese Academy of
Sciences, Beijing, China. 3Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark. 4Center for Functional
Genomics and Tissue Plasticity (ATLAS), Odense M 5230, Denmark. 5The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad
Institute of MIT and Harvard, Cambridge, MA 02142, USA. e-mail: jgsm@imada.sdu.dk

Nature Communications |         (2023) 14:8473 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4073-5568
http://orcid.org/0000-0002-4073-5568
http://orcid.org/0000-0002-4073-5568
http://orcid.org/0000-0002-4073-5568
http://orcid.org/0000-0002-4073-5568
http://orcid.org/0000-0002-0518-0800
http://orcid.org/0000-0002-0518-0800
http://orcid.org/0000-0002-0518-0800
http://orcid.org/0000-0002-0518-0800
http://orcid.org/0000-0002-0518-0800
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44279-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44279-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44279-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44279-8&domain=pdf
mailto:jgsm@imada.sdu.dk


We show that the genes associated with the interpretable factors are
more specific for cell types than traditional marker genes and that
they can be used to guide cell type annotation and discover active
biological processes across cell types and pseudo-time. We evaluate
the robustness against over-correction by integrating multi-donor
datasets from different tissues and find that JOINTLY removes
within-tissue batch effects but retains across-tissue biological
variability. Finally, we demonstrate how JOINTLY can be used to
create a tissue atlas by clustering and labelling cell types and states
in white adipose tissue from six different studies. Based on these
high-quality labels, we create a reference atlas of white adipose tis-
sue (WATLAS) deeply characterising the transcriptome of 43 cell
types and states. The WATLAS is a community resource, which is a
source for hypothesis generation, for contextualising new datasets
through co-embedding and cell type and state annotation using
transfer learning, as well as for use as a reference for deconvolution.
Analysis of WATLAS revealed compositional differences between
lean and obese donors and between different white adipose tissue

depots, which we support by deconvoluting bulk RNA-sequencing
samples from approximately 1300 additional donors.

Results
JOINTLY identifies joint clusters and shared gene modules
Thereareat least twomajor sources of variation inmulti-sample single-
cell and single-nucleus RNA-seq (sxRNA-seq), namely biological signals
and batch effects. The objective of our method, named JOINTLY, is to
exclusively capture the biological signals for cell clustering (Fig. 1A). To
achieve this, JOINTLY employs a hybrid framework of linear and non-
linear non-negative matrix factorisation. This framework optimises
three distinct low-rank matrices through multiplicative updating. The
non-linear component of JOINTLY decomposes the gene expression
matrix using consensus PCA (see “Methods”) into a reduced dimen-
sional space that effectively captures the shared variance between
batches, while also accounting for residual dataset-specific variance.
For each dataset, this reduced dimensional space is used to estimate
local cell–cell distances using an adaptive heat-based kernel9.
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Fig. 1 | JOINTLY clusters single-cell RNA-seq and single-nucleus RNA-seq
(sxRNA-seq) datasets without explicit integration. A Schematic illustration of
JOINTLY. JOINTLY uses a hybrid linear and non-linear non-negative matrix factor-
isation to optimise reduced dimensional spaces, which allows for clustering across
datasets and interpretation to discover conserved and active biological processes.
The gene expression matrix (X) for each dataset (d in D) is decomposed into lower
rank matrices (H and F) in a mapped higher or infinitely dimensional space (Φ).
Graph regularisation is applied using the graph Laplacian L. Interpretable factors V

constrain JOINTLY to patterns that are generalisable across datasets. α, β and λ

weigh components of the loss function. Subject to (s.t.) non-negativity constraints
on the F andHmatrix. Tr is the tracematrix. I is the identitymatrix.B,CUMAP for 8
cell lines11 with simulated batch effects (see “Methods”) based on reduced dimen-
sional spaces calculated using PCA or JOINTLY. The UMAPs are coloured by batch,
cell line, and cluster (B) or by selected gene modules derived from the inter-
pretation JOINTLY (C). Source data are provided as a Source Data file.
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This kernel is factorised using kernel non-negative matrix
factorisation10 into two low-rank matrices (factor by cell and cell by
factor) regularised by shared nearest neighbours graphs. The third and
final low-rankmatrix is a linear featurematrix (factor by gene), which is
minimised to generalise across all batches. This ensures that learned
factors, which describe the gene expression space in each dataset, are
characterised by the same genes across batches facilitating both joint
clustering and interpretation.

To evaluate the ability of JOINTLY to cluster scRNA-seq datasets
with batch effects, we initially analysed a simple dataset consisting of
eight purified cell lines11. We randomly split the dataset into two bat-
ches and simulated non-linear and cell type-dependent batch effects
(see “Methods”). The clusters identified using JOINTLY recover the
original cell types, whereas clustering on the unintegrated dataset
wrongly assigned one batch of Ramos cells to the Jurkat cluster
(Fig. 1B). In addition, JOINTLY also identifies interpretable factors that
represent gene modules driving clustering. These modules are highly
cell line-specific containing genes relevant to cellular function (Fig. 1C,
Supplementary Fig. S1A). For example, Decorin (DCN), a fibroblast
marker gene, is contributing to the module highly specific for
fibroblast-derived IMR90 cells, while Cluster of Differentiation 3B
(CD3B), a T-cell coreceptor, is contributing to the module highly spe-
cific for T-cell derived Jurkat cells. The genemodules are generally not
strongly correlated to each other within a single batch, but highly
correlated acrossbatches (Supplementary Fig. S1B) suggesting that the
modules represent different but reproducible gene programs. To
assess how these modules are affected by the presence of batch
effects, we analysed the same datasets without the simulated batch
effects and compared the detected gene modules. We found that the
modules in the datasets with and without simulated batch effects are
highly conserved (Supplementary Fig. S1C) indicating that JOINTLY
discovers reproducible gene programs independent of batch effects.

JOINTLY achieves state-of-the-art clustering performance
To compare the joint clustering performance of JOINTLY to existing
methods, we applied JOINTLY and eight state-of-the-art integration
methods1–3,7,12–14 to a sxRNA-seq dataset from the human lung con-
taining ~10,000 cells distributed over six batches4.We reannotated the
dataset automatically using a similar public dataset15 and support
vector classification (see “Methods”), which in recent tests has been
shown to have very good performance for label transfer16,17. We chose
to reannotate the data, rather than using labels defined by the original
authors, to avoid any potential biases in favour of the clustering and
batch integration methods used in the original publication. In this
dataset, several methods, including JOINTLY, reach an adjusted rand
index (ARI) in the range of 0.89−0.91 (Fig. 2A). Notably, among the
tested interpretable methods, only JOINTLY reaches this state-of-the-
art performance level. Nomethod achieves perfect performance since
they all fail to separate endothelial subtypes (blood vessel, vein, and
lungmicrovascular), aswell asmyeloid cell types (classicalmonocytes,
macrophages, and dendritic cells), but do correctly group them.

Next, we expanded the benchmark by including an additional 4
integration tasks containing between 8444 and 46,993 cells dis-
tributed over five to 18 batches4,18–21 with labels transferred from
similar datasets4,20–24. Summarised across all tasks, JOINTLY ranks
second only superseded by scVI, while the other interpretable meth-
ods rank eighth and ninth, respectively (Fig. 2B, Supplementary
Fig. S2A, see Source Data). In joint clustering, all datasets may not be
equally well clustered, or some datasets may dominate the integration
due to for example a difference in the number of cells. To assess if
there is a performance imbalance between datasets, we evaluated the
clustering performance in each dataset after joint clustering. Together
with scVI and Scanorama, JOINTLY ranks first in the worst dataset of
each task (Fig. 2B) showing that JOINLY has a highly balanced perfor-
mance acrossdatasets. Taken together, this demonstrates that JONTLY

effectively captures latent gene expression patterns, which are related
to cellular identity, and generalises well across all datasets.

In addition to clustering performance, we also evaluated batch
and cell typemixing using local inverse Simpson’s index2 (LISI) and the
average silhouette width (ASW) (Fig. 2C). The cell type LISI (cLISI)
assesses cell type mixing; the number of closest neighbours for each
cell that are of a different cell type. All methods perform approxi-
mately equally well, including naïve unintegrated analysis. The cell
type ASW (cASW) assesses how separated cell types are; the average
distance to another cell of the same cell type compared to the average
distance to another cell of a different type. JOINTLY ranks fifth fol-
lowed by scVI and Scanorama. The integration LISI (iLISI) assesses
batch mixing; the number of closest neighbours for each cell that is of
a different batch. JOINTLY ranks seventh after scVI. Finally, batch ASW
(bASW) assesses how separated batches are; the average distance to
another cell of the same cell type in the same batch compared to the
average distance to another cell of the same cell type in a different
batch. For this metric, JOINTLY ranks first followed by LIGER and then
scVI, scGPT, and Scanorama. In summary, JOINTLY achieves state-of-
the-art joint clustering performance and has similar trade-offs as scVI
and Scanorama in terms of cell type and batch separation and mixing.

One of the differences between JOINTLY and other methods is
that JOINTLY, by default, uses consensus PCA (see “Methods”) as a
basis for integrating samples. Therefore, the initial decomposition of
each sample depends on the other samples. Thus, integration perfor-
mance is dependent on the number and similarity of input samples. To
evaluate the extent of this dependency, we removed all sample com-
binations from the human liver dataset resulting in 25 subsampleswith
two to four batches. We found no difference in the ARI, in the average
cell type and integration LISI nor the cell type and batch ASW for
subsamples with two to four batches compared to the full dataset with
five batches (Fig. 2D–H, Supplementary Fig. 2B), although we did find
that with fewer batches, the standard error of the mean increases,
indicating that integration performance becomes more variable. We
also evaluated howwell the nearest neighbours are conservedbetween
each subsample and the full dataset and found that approximately
50–60% of the nearest neighbours are conserved with a minor
decrease with fewer batches, which is similar in range to the variation
between different integrations on the full dataset (Fig. 2I). Collectively,
this indicates that the performance of JOINTLY is not strongly
dependent on the number of input datasets.

JOINTLY retains biological variation across conditions
An important use case for joint clustering is multi-sample, multi-
condition datasets, such as studies comparing several healthy and
diseased individuals. In suchadataset, the aim is tomake inferences on
the level of conditions, while controlling for sample-to-sample varia-
tion. It is especially challenging to perform joint clustering in this type
of dataset since both batch effects and biological variability between
conditions contribute to intra-sample variability. Thus, we cannot
assume a priori that all samples should overlap. To evaluate the ability
of JOINTLY and alternative methods to retain biological variability
between conditions, while removing batch effects between samples,
we created 10 multi-sample, multi-condition datasets by pairwise
combination of the 5 datasets used for benchmarking. For each inte-
gration method, we evaluated the integration and cell type LISI for
each tissue, as well as the integration LISI across tissues. We found
JOINTLY consistently achieves a high overall ranking (Fig. 3A, see
Source Data). Generally, JOINTLY balances the preservation of biolo-
gical variation, while removing batch effects within each tissue, with
obtaining a good separation across tissues. As anexample, we analysed
the mixture of Pancreas and Lung in more detail and found upon
visualising the data, that all methods, except LIGER and Seurat, suc-
cessfully keep the majority of the two datasets unmixed. Of the
remaining methods, JOINTLY, Scanorama, Harmony, and scVI obtain
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good integration of the samples, while separating within-tissue cell
types (Fig. 3B and Supplementary Fig. S3A, B). Among these four
methods, we found subtle differences. For example, Harmony mixes
the endothelial cells across tissues, while JOINTLY, scVI, and Scanor-
ama place them close to each other in embedded space but retain
tissue-specific clusters. This prompted us to investigate the similarity
of endothelial cells between tissues. Initially, we identified shared
marker genes and found that the shared marker genes contain several
known endothelial markers, such as lymphatic vessel endothelial
hyaluronan receptor 1 (LYVE1) and melanoma cell adhesion molecule
(MCAM) (Fig. 3C) highlighting that both populations are bona fide
endothelial cells. However, differential expression analysis between
the two populations revealed a large set of 3529 differentially

expressed genes that are similarly expressed across samples within
each tissue (Fig. 3D). We submitted lung- and pancreas-specific
endothelial markers to enrichment analysis using a database of tran-
scription factor targets and found an almost complete dichotomy
(Fig. 3E) suggesting that distinct transcriptional programs and reg-
ulatorymechanisms are shaping endothelial cells from the two tissues.
As an example of different biological processes shaping the cells, we
found that interferon signalling is specifically high in the lung-derived
endothelial cells (Fig. 3F). Taken together, this strongly suggests that
lung-derived and pancreas-derived endothelial cells represent differ-
ent states of the same cell type. JOINTLY correctly retains this varia-
bility indicating that JOINTLY is robust against deletion of condition-
specific variation in multi-sample, multi-condition datasets.

A

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1
U

M
AP

2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

ARI = 0.90 ARI = 0.90
JOINTLY

ARI = 0.89
scVI Harmony FastMNN

ARI = 0.91
La

be
ls

C
lu

st
er

s
PCA

ARI = 0.66
Scanorama

ARI = 0.90
LIGER

ARI = 0.74
Seurat

ARI = 0.90

1
2
3
4
5
6
7

Cluster

Label
Blood vessel endothelial cell
Vein endothelial cell
Lung microvascular endothelial cell
B cell
Plasma cell
CD8+ alpha-beta T cell
Classical monocyte
Macrophage
Dendritic cell
Fibroblast
Lung ciliated cell
Adventitial cell
Respiratory goblet cell
Type 1 pneumocyte
Basal cell

B C

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

scGPT
ARI = 0.90

Rank

Feature
Yes
No

All
Pancreas

Lung
Liver

PBMC
Kidney

All
Pancreas

Lung
Liver

PBMC
Kidney

G
lo

ba
l

pe
rfo

rm
an

ce
W

or
st

pe
rfo

rm
an

ce

Cell-type Batch

ARI

8
7
6
5
4
3
2
1

9
All

Pancreas
Lung
Liver

PBMC
Kidney

All
Pancreas

Lung
Liver

PBMC
Kidney

G
lo

ba
l

pe
rfo

rm
an

ce
W

or
st

pe
rfo

rm
an

ce

cLISI iLISIcASW bASW

Interpretable
Cell matching

JO
IN

TL
Y

sc
VI

sc
G

PT
H

ar
m

on
y

fa
st

M
N

N
Sc

an
or

am
a

Se
ur

at
LI

G
ER PC

A JO
IN

TL
Y

sc
VI

sc
G

PT
H

ar
m

on
y

fa
st

M
N

N
Sc

an
or

am
a

Se
ur

at
LI

G
ER PC

A

JO
IN

TL
Y

sc
VI

sc
G

PT
H

ar
m

on
y

fa
st

M
N

N
Sc

an
or

am
a

Se
ur

at
LI

G
ER PC

A

JO
IN

TL
Y

sc
VI

sc
G

PT
H

ar
m

on
y

fa
st

M
N

N
Sc

an
or

am
a

Se
ur

at
LI

G
ER PC

A

JO
IN

TL
Y

sc
VI

sc
G

PT
H

ar
m

on
y

fa
st

M
N

N
Sc

an
or

am
a

Se
ur

at
LI

G
ER PC

A

D

0.0

0.2

0.4

0.6

0.8

1.0

# Datasets removed

AR
I

0 1 2 3

E

0.0

0.2

0.4

0.6

0.8

1.0

# Datasets removed

iL
IS

I

0 1 2 3

F

0.0

0.2

0.4

0.6

0.8

1.0

# Datasets removed

bA
SW

0 1 2 3

G

0.0

0.2

0.4

0.6

0.8

1.0

# Datasets removed

cL
IS

I

0 1 2 3

H

0.0

0.2

0.4

0.6

0.8

1.0

# Datasets removed

cA
SW

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

# Datasets removedN
ei

gh
bo

rh
oo

d 
pr

es
er

va
tio

n

0 1 2 3

I

8
7
6
5
4
3
2
1

9
Rank

Fig. 2 | JOINTLY performs on par with competing batch integration and clus-
tering methods. A UMAP based on embedded spaces calculated by the indicated
methods and coloured by transferred cell type labels and clusters in the Lung
dataset, as indicated in the figure. Heatmap showing ranks aggregated across all
datasets (global) and for theworst dataset (worst) based on the adjusted rand index
(ARI) between clusters and cell types (B) as well as ranks based on batch and cell
type separation and mixing evaluated using cell type local inverse Simpson’s index
(cLISI), cell type average silhouette width (cASW), integration LISI (iLISI) and batch
ASW (bASW) (C) for the indicated methods and datasets. Line charts showing ARI
(D), iLiSI (E), bASW (F), cLISI (G), and cASW (H) for the full dataset (zero datasets
removed), and the average across all possible subsamples removing between one

and three datasets from the Lung dataset where n0 = 5, n1 = 5, n2 = 10 and n3 = 10
unique sample combinations. Error bars show the standarderror of themean. I Line
chart showing the average fraction of conserved neighbours. For the full dataset
(zero datasets removed), the averagewas calculated from the fractionof conserved
neighbours between different runs of JOINTLY on the full dataset and a reference
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tions. Error bars show the standard error of themean. Source data are provided as a
Source Data file.
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Interpretable factors augment cell type annotation and uncover
active biological processes
Both JOINTLY and scVI achieve state-of-the-art performance in joint
clustering and are both robust against over-correction. However, one
defining difference between the two approaches is that JOINTLY is
intrinsically interpretable. To evaluate the value of JOINTLY’s inter-
pretable factors, we reanalysed a dataset from human white adipose
tissue subset to whole tissue single-nucleus RNA-seq on visceral adi-
pose tissue from nine donors25 using JOINTLY to integrate across
donors and different visceral adipose tissue sources (Supplementary
Fig. 4A, B).We identified 13 unique cell types (Fig. 4A), each of which is

enriched for knownmarker genes (Fig. 4B) and overlaps the cell types
identified by the original authors (Supplementary Fig. 4C). We scored
the genemodules identified by JOINTLY in each cell and found that the
modules are enriched in one cell type or a group of related types
(Fig. 4C, see Source Data). Inspecting themodules, we found that they
contain many genes associated with cellular identity. For example,
factor 13, which is specific to adipocytes, contains genes such as cluster
of differentiation 36 (CD36), diacylglycerol O-acyltransferase 2
(DGAT2), lipoprotein lipase (LPL), perilipin 5 (PLIN5), adiponectin
(ADIPOQ), acyl-CoA synthetase long chain 1 (ACSL1), and peroxisome
proliferator-activated receptor γ (PPARG), and factor 7, which is
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Fig. 3 | JOINTLY is robust to cell state deletion. A Heatmap showing ranked
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iLISI between tissues) for mixtures of the indicated tissues. B UMAP based on
embedded spaces calculated by the indicated methods and coloured by trans-
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specific to lymphatic endothelial cells (LEC), contain genes such as
LYVE1, reelin (RELN), multimerin 1 (MMRN1), and neuropilin 2 (NRP2).
To test if the modules and associated genes can be used for cell type
annotation, we performed gene set enrichment analysis using the
modules and databases of cell type-specific marker genes and found
that for several cell types, the correct label was identified in the top
three best hits per factor (Fig. 4C, right annotation, see Source Data).

We compared the modules identified by JOINTLY to the list of
marker genes for each cell type and found a high overlap between
modules and marker genes (Supplementary Fig. 4D). However, we
found that the marker genes, which are also module genes, have a
significantly higher area under the curve (AUC) than marker genes,
which are not in the most enriched module (Fig. 4D), indicating that
module genes aremore discriminatory between cell types thanmarker

genes. Similarly, we found that module genes, which are not marker
genes, have a significantly lower AUC than genes, which are neither
marker nor module genes (Fig. 4D) indicating these module genes are
markers of other cell types. Finally, we evaluated the consistency of
markers across batches by finding marker genes in each batch inde-
pendently and found that marker genes, which are alsomodule genes,
are more often markers in multiple batches compared to marker
genes,which are notmodule genes (Fig. 4E). Collectively, this indicates
that module genes are highly discriminatory between cell types, and
more so than marker genes.

In addition to cell type-specificmodules, we also observed shared
gene modules with non-uniform distribution within enriched cell
types. For example, factor 10, which scores high in a subset of adipo-
cytes and fibro-adipogenic progenitors (FAPs) (Fig. 4F). We
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hypothesised that such factors may represent distinct transcriptional
states or programs. Pathway analysis revealed that factor 10 contains
genes involved in insulin signalling and sensitivity (Fig. 4G) suggesting
that this factor marks cells with high insulin signalling capacity. Stra-
tifying adipocytes and FAPs by sex revealed that factor 10 scores high
specifically in females indicating that femalesmay have higher adipose
tissue insulin sensitivity than men consistent with existing
literature26 (Fig. 4H).

In addition to discrete cell types, sxRNA-seq can also be used to
probe continuous biological processes, such as differentiation. To test
JOINTLY in this setting, we applied JOINTLY and scVelo27 to three
batches of cells undergoing erythropoiesis from an atlas of mouse
gastrulation28. We found that JOINTLY orders cells along cell types and
along latent time in a comparable manner to scVelo (Fig. 4I, Supple-
mentary Fig. 4E). Interpretation of JOINTLY revealed that the JOINTLY
factors have different temporal profiles (Fig. 4J). Pathway analysis of
genes associated with early, temporary, early-mid, late-mid, or late
latent time revealed signalling cascades with different timing, con-
sistent with existing literature on erythropoiesis (Fig. 4K). Collectively,
this suggests that the interpretable factors learned by JOINTLY can be
used to guide the analyst toward annotating their datasets, recovering
temporal dynamics, and discovering new biological insights.

Building a white adipose tissue reference atlas using JOINTLY
Finally, having established that JOINTLY achieves high clustering per-
formance, we set out to generate a reference atlas for white adipose
tissue as a vignette of a use-case of JOINTLY to generate a community
resource. Integration of tissue atlases has different requirements than
integration of multiple samples in a single dataset. The datasets used
to construct tissue atlases often are more heterogeneous and have
stronger batch effects, as the datasets are often generated using a
multitude of technologies across several different laboratories. Fur-
thermore, a tissue atlas is often aimed towards being a resource for a
community, and it is therefore beneficial to create tissue atlases using
methods with transfer learning capabilities. This enables the atlas to
grow as new data is added, and it allows researchers to use the atlas to
contextualise their data without sharing raw data. Recent bench-
marking efforts have shown that semi-supervised integration using
scANVI is among the best-performing methods in this space4. How-
ever, to apply semi-supervised integration and build a state-of-the-art
tissue atlas, cell type labels are required.

We uniformly annotated cells from white adipose tissue from six
independent sxRNA-seq studies15,25,29–32 by applying JOINTLY to each
study separately (Fig. 5A). Subsequently, we created an expandable
tissue atlas, termed WATLAS, by integration using scANVI33, totalling
~300,000 cells from both visceral (VAT) and subcutaneous adipose
tissue (SAT) depots. In the WATLAS, we were able to recover 17 major
cell types in WAT, and 43 total subtypes (Fig. 5B, Supplementary

Fig. 5A, B). Our labels for cell types and subtypes are highly consistent
with the original author labels (Supplementary Fig. 5C) and all cell
types and subtypes are supported by robust gene signatures (Sup-
plementary Fig. S5D, see Source Data). We have made the atlas,
annotations, and metadata openly and freely available34 as well as the
model weights for transfer learning35. To highlight the richness of this
resource for hypothesis generation, we investigated how obesity
affects the composition of thewhite adipose tissue. Controlling for sex
and depot, we found that obesity is associated with a trend towards a
decrease in the fractional number of smooth muscle cells and fibro-
adipogenic progenitors (FAPs), driven by CXCL14+ and PPARG+ FAPs,
and a trend towards an increase in LPL+ and LYVE1+ macrophages as
well as all subtypes of adipocytes, except PRSS23+ adipocytes (Fig. 5C).
An increase in adipocytes and a decrease in FAPs could suggest an
increased rate of adipogenesis in obesity in humans, similar towhatwe
have previously reported in obese mice36.

The number of transcriptional states of mature adipocytes is
currently being debated in the field with studies reporting between
three and seven subtypes25,32,37. Adding to this debate, a recent inte-
grated analysis of sxRNA-seq studies found low batch integration for
adipocytes and inconsistent enrichment of marker genes across
studies38 suggesting either low adipocyte heterogeneity or inadequate
power to detect it due to either technical or analytical challenges. In
theWATLAS, we annotated four different adipocyte populations;DCN+

adipocytes are the most distinctive population marked by genes nor-
mally associated with expressed in fibro-adipogenic progenitors, such
as DCN, apolipoprotein D (APOD) and Lumican (LUM) suggesting they
may represent newly differentiated adipocytes. The second most dis-
tinct population is the PRSS23+ adipocytes, which is similar to the hAd3
population defined by the Rosen group25 and express several sulfo-
transferases, such as sulfotransferase family 2B member 1 (SULT2B1)
and glutamate NMDA receptor components, such as glutamate iono-
tropic receptor NMDA type subunit 2A (GRIN2A) (see Source Data).
CLSNT2+ adipocytes resemble the hAd5 population defined by the
Rosen group25 and express genes associatedwith insulin signalling and
sensitivity, such as ectonucleotide pyrophosphatase phosphodiester-
ase 1 (ENPP1). Finally, DGAT2+ adipocytes, which resemble hAd4 as
defined by the Rosen group25 express lipolysis and lipogenesis genes,
such as monoacylglycerol o-acyltransferase 1 (MOGAT1) and dia-
cylglycerol o-acyltransferase 2 (DGAT2). All four populations have
variable, but high expression of established adipocyte markers com-
pared to non-adipocyte cells (Fig. 5D) suggesting that they all repre-
sent bona fide adipocytes. We investigated the similarity of gene
expression programs across populations, depots, and studies by
identifying marker genes for each population and scoring the enrich-
ment of all marker gene modules in each cell. We found that modules
are enriched in the population of origin across studied and depots,
except for SAT-derived PRSS23+ adipocytes from the Lumeng group,

Fig. 4 | Interpretable factors uncover activebiologicalprocesses. AUMAPbased
on JOINTLY embeddings of 73,118 adipose tissue cells from 9 batches coloured by
cell type annotations25. Cells were annotated based on marker gene expression.
B Dot plot showing expression levels and frequency for selected marker genes for
each identified cell type. C Heatmap showing average module scores using gene
modules derived from JOINTLY factors across the identified cell types. Annotations
on the right show the top 3most enriched cell types identified by pathway analysis.
Correct matches between enrichment results and manual curation are highlighted
in bold. D Boxplots showing area under the curve (AUC) for genes identified
through interpretation of JOINTLY or through differential gene expression analysis
between cell types. The centre represents the median AUC across the 13 cell types
and whiskers indicate 1.5 times the interquartile range above or below the 75% and
25%quantiles, respectively.EBoxplot showing the fraction ofmarker genes that are
identified as marker genes in at least two batches stratified by whether the marker
gene is also identified through interpretation of JOINTLY. The centre represents the
median fraction across the 13 cell types and whiskers indicate 1.5 times the

interquartile range above or below the 75% and 25%quantiles, respectively. FUMAP
based on JOINTLY embeddings of 73,118 adipose tissue cells from 9 batches
coloured by module score of genes assigned to JOINTLY factor 10. G Barplot
showing the -log10 FDR-corrected p-values from Enrichr fisher’s exact test of
selected pathways that are enriched for genes assigned to JOINTLY factor 10.
H Boxplot showing module scores for genes assigned to JOINTLY factor 10 across
adipocytes and FAP stratified by donor sex. The centre represents the mean and
whiskers indicate 1.5 times the interquartile range above or below the 75% and 25%
quantiles, respectively. IUMAP based on JOINTLY embeddings of cells undergoing
erythropoiesis during mouse gastrulation28 from 3 batches coloured by cell type
annotations. J Heatmap showing the average module score for all JOINTLY factors
across cell bins. Cells were binned in 50 groups based on pseudo-time (calculated
using scVelo27). Modules were grouped based on their temporal profile.K Barplots
showing the combined score of selected pathways identified by pathway enrich-
ment analysis of groups of modules (see J). Source data are provided as a Source
Data file.
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Fig. 5 | Building a white adipose tissue atlas with JOINTLY. A Illustration of the
datasets and workflow used to generate the white adipose tissue atlas (WATLAS).
The colour of the characters indicates the donor sex (green = male, red = female),
visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) indicates the
depot origin, stromal vascular fraction (SVF) andwhole tissue (WT) indicate the cell
fractions used. * Indicate a fraction was enriched for. B UMAP based on scANVI33

embeddings coloured by cell type labels. Cells were annotated based on marker
genes andclusteringof each individual datasetwith JOINTLY. Subsequently, scANVI
was trainedusing the JOINTLY labels.C Scatterplot showing compositional changes
in cell type abundances between individuals with or without obesity, corrected for
depot and sex in 46 donors. Broad cell types in the left panel, and states of high-
lighted cell types in the right panel. Centres represent the mean effect size and
error bars represent the 95% confidence intervals.D Heatmap showing normalised
and standardised average expression of adipocyte markers in adipocyte sub-
populations and all other cell types stratified by the depot. E Heatmap showing

normalised and standardised average module scores in adipocyte subpopulations
stratified by depot and study. Modules were generated using differentially
expressed genes in the indicated adipocyte subpopulations. F Heatmap showing
normalised and scaled per-donor pseudo-bulk expression levels of differentially
expressed genes between depots stratified by adipocyte subtypes, study, and
depot. G Scatterplot showing compositional changes in cell type abundances
between adipose tissue depots, corrected for sex and weight status in 46 donors.
Broad cell types in the left panel, and states of highlighted cell types in the right
panel. Centres represent the mean effect size and error bars represent the 95%
confidence intervals. H Scatterplot showing compositional changes in cell type
abundances between adipose depots, corrected for sex using deconvoluted cell
type abundances from 1293 donors. Centres represent the mean effect size and
error bars represent the 95% confidence intervals. Source data are provided as a
Source Data file.
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which has stronger enrichment for a DGAT2+ signature (Fig. 5E). The
expression patterns of individual marker genes, although less clear,
support that the four populations reported here replicate between
studies and across depots (Supplementary Fig. 6A).

However, there are depot-specific differences in the expression
level of established marker genes as well as in the enrichment of gene
modules suggesting that the depot shapes the gene expression profile
of the adipocytes. A deeper analysis of depot-specific gene programs
in adipocyte subpopulations revealed that depot differences are
shared between subpopulations and studies (Fig. 5F), although
expression is sparser inDCN+ adipocytes compared to other adipocyte
subpopulations, which we attribute to the low number of DCN+ adi-
pocytes. Taken together, this indicates that the niche effects from the
depot affect all adipocyte populations similarly. However, we found
that different depots are characterised by different white adipose tis-
sue composition. VAT is enriched for mesothelial cells, macrophages
overall, and especially LPL+ macrophages (that are similar to TREM2+

macrophages), lymphatic endothelial cells (LECs), and endometrium,
whereas SAT is enriched for vascular endothelial cells (VECs), DPP4+

and CXCL14+ FAPs and several immune cell types (Fig. 5G, see Source
Data). To support these claims, we deconvoluted 562 VAT and 731 SAT
bulk RNA-seq samples from GTEx at medium label resolution using
WATLAS and evaluated depot differences in adipose tissue composi-
tion, excluding mesothelial cells, which are only present in VAT. The
average deconvoluted cell type fractions in both VAT and SAT was
highly correlated with the observed cell type fractions observed in the
WATLAS (Supplementary Fig. 6B) and several trends from the single-
cell dataset are conserved including enrichment of VEC, FAPs, and
T cells in SAT and enrichment of macrophages and LECs in VAT
(Fig. 5H). These observations are consistent with reports that find VAT
has a higher content of macrophages in mice39 and humans40,41, while
SAT has been reported to have a higher content of adipocyte pro-
genitors in humans40 and a higher proportion of CD4+T cells42. In the
literature, there are conflicting reports concerning vascularisation,
capillarydensity, and endothelial cells. Some studiesfind an increase in
VAT compared to SAT43–45, while other studies find no difference 45 or
the opposite46. This suggests that the difference in vascularity between
depots depends on the biological context.

Discussion
To deeply characterise the transcriptional state of cells in the human
body using single-cell or single-nucleus RNA-sequencing (sxRNA-seq),
and evaluate how diverse biological processes, such as development
and disease, alter those states, it is necessary to distinguish between
biological and technical variation. Here, we introduce JOINTLY, a
hybrid linear and non-linear matrix factorisation-based method for
joint clustering of sxRNA-seq. JOINTLY aims to capture shared features
across datasets without explicitly harmonising them. To that end,
JOINTLY defines a reduced dimensional space, using consensus PCA,
which is based on shared axes of variation supplemented with the
batch-specific axis of variation, that describes most of the variation
across all datasets. This choice is appropriate for datasets, where the
major axes of variation are assumed to be similar, such as biological
replicates. For more complex datasets, where all samples do not
necessarily share the same axes of variation, such as multi-condition,
multi-sample datasets, we advise users to use regular PCA in JOINTLY
to ensure that the most important axes of variation are captured.
Cellular similarity is estimated in this reduced space using a data-
adaptive heat-based kernel9 as well as a shared nearest neighbourhood
graph. Thesemeasures are used to learn a reduced dimensional space,
which reconstructs non-linear cell-to-cell similarity in each dataset, as
well as the linear gene expression space acrossdatasets. This allows for
joint clustering of the data without explicitly assuming any overlap
between datasets, and it allows for the interpretation of the model to
discover genes’ contribution to clustering. We evaluate JOINTLY and

compare its performance to eight state-of-the-art batch integration
methods1–3,7,12–14 on 52 sxRNA-seq samples fromfive tissues.The chosen
methods are widely applied in the field, and are, like JOINTLY, unsu-
pervised integration methods. We chose to only include unsupervised
methods, as systematic benchmarking has shown that (semi)super-
vised integration methods often outperform their unsupervised
counterparts4. JOINTLY performs on par with state-of-the-art batch
integration tools, such as scVI3 and Harmony2, in clustering tasks and
has a similar trade-off between biological heterogeneity and batch
mixing as scVI. In line with a recent benchmark47, we found that
JOINTLY and several task-specific models, outperformed scGPT, a
foundational single-cell RNA-sequencing model. As a future perspec-
tive, we envision that the performance of JOINTLY can be even further
improved by initialising the algorithm using cell type labels.

A critical and challenging task for joint clustering is multi-condi-
tion,multi-sample datasets, where both batch effects, which should be
removed, and biological variation introduced by the condition, which
should be retained, contribute to intra-sample variance. To assess how
thedifferentmethodsperform in this setting,wegenerated anartificial
multi-condition, multi-sample dataset by mixing single-cell RNA-
sequencing samples from the lung and the pancreas. We found that
JOINTLY, scVI, and Scanorama retain biological variation across con-
ditions, while removing batch effects, suggesting that these methods
are preferable for analysing multi-condition, multi-sample datasets,
such as cohort studies of healthy and diseased individuals.

In our benchmark, we noted that although JOINTLY, scVI3, and
Harmony2 generally have the best performance, there is substantial
task-to-task variation. Across tasks, JOINTLY achieves ranks between
second and fifth, while both scVI and Harmony rank between first and
seventh. This indicates that no method is always the best across all
tasks, and therefore, that it is critical to evaluate the performance of a
chosenmethod on any new integration task. This can be accomplished
using various integration metrics, such as those formalised in scIB4.
However, such metrics do not provide insight into the genes or fea-
tures driving integration and clustering. By design, JOINTLY is inter-
pretable meaning that it learns which gene modules contribute to
integration and clustering. Analysis of these gene modules gives the
analyst an immediate insight into the dataset, allowing the analyst to
compare genes driving clustering to known marker genes, thereby
evaluating the biology of integration. Based on a cell line dataset with
simulated batch effects, we found that the interpretable factors gen-
erated by JOINTLY are highly insensitive to batch effects. To further
evaluate the interpretable factors, we processed a dataset from human
visceral white adipose tissue consisting of nine samples.We found that
the interpretable factors can be used to predict cell type labels and to
re-discover a known sexual dimorphism in insulin signalling in adipo-
cytes and fibro-adipogenic progenitors. Compared to regular cluster-
based differential expression analysis, the genes identified through
interpretation of JOINTLY are more discriminative, and more con-
served between batches. An additional advantage of the interpretable
factors is that they not limited tobeing enriched in a cluster or cell type
but can be shared between several cell types that share transcriptional
programs, or specific to certain conditions. This allows the analyst to
discover active biological programs that would have been missed by
cluster-based DE analysis. Taken together, this indicates that in addi-
tion to helping the analyst evaluate clustering, the interpretable fac-
tors can also be used to guide the functional annotation of a dataset
and to discover important active biological processes.

Finally, we use JOINTLY to create a white adipose tissue reference
atlas (WATLAS) by processing and labelling six independent datasets
with JOINTLY and subsequently, integrating across datasets using
scANVI, a semi-supervised integration method. This yields an
expandable atlas available as a resource for the community to
explore34 and use for contextualisation of new datasets with transfer
learning35. In the WATLAS, we identify 46 distinct cell states, with
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unique and specific gene signatures. Our WATLAS covers a high
dynamic rangeof cell abundances, fromhighly abundant adipocytes to
ultra-rare populations, such as Schwann cells, which have not pre-
viously been identified in individual scRNA-seq datasets, as well as a
plethora of subpopulations of major cell types. Unlike previous stu-
dies, we find that adipocyte populations do share gene expression
programs. We characterise compositional changes between lean and
obese donors and between subcutaneous and visceral adipose tissue
finding remodelling of the immune environment and changes in the
balance between adipocytes and progenitor cells. We support the
latter analysis by performing computational deconvolution of 1293
bulk RNA-sequencing samples from human subcutaneous and visceral
adipose tissue depots. These analyses highlight that the WATLAS can
be used for deconvolution with high accuracy and be used to discover
compositional differences in obesity, type 2 diabetes, or other adipose
tissue-related diseases.

In summary, JOINTLY is an advanced computational tool for
characterising transcriptional states in sxRNA-seq data. By effectively
addressing biological and technical variations, our method enables
joint clustering and interpretation, facilitating the exploration of
diverse biological processes across multiple datasets. To facilitate the
use of JOINTLY, we have developed an R (www.github.com/madsen-
lab/rJOINTLY) package, that integrates with common single-cell ana-
lysis frameworks, such as Seurat13.

Methods
JOINTLY
The default workflow for the integration of datasets using JOINTLY
involved six major steps:
1. Highly variable feature selection.
2. Normalisation and dimensional reduction.
3. Cell-cell similarity estimation using a kernel.
4. Optimising factors using hybrid linear and non-linear non-

negative matrix factorisation.
5. Identification of gene modules.
6. Clustering and visualisation.

As a default, JOINTLY automatically selects (default = 1000) highly
variable genes (HVGs) using a deviance-based measure48,49 for each
batch, and the union across all HVG sets is used for downstream ana-
lyses. Users can use Seurat for HVG identification or supply a user-
defined list of HVGs.

In each batch, a size factor for each cell is calculated by dividing
the sum of counts by 10,000 similarly to Seurat13 or optionally using
scran50. Each cell is then normalised and transformed using the
logCPMmethod fromSeurat13 or optionally the shifted log transform51.
The normalised and transformed counts are then standardised and
decomposed into a reduced dimensional space using the selected
HVGs. By default, JOINTLY uses consensus PCA for dimensional
reduction. In consensus PCA, we calculate the variance-covariance
matrix for each batch and calculate their sumweighted by the number
of cells in each batch. This within-group variance-covariance matrix is
decomposedusing randomised singular valuedecomposition52 into 20
components. In each batch, the amount of variance explained by these
15 components relative to a dataset-specific decomposition using the
same number of components is evaluated. For batches where the
common decomposition explains less than 80% of the variance
explained by the dataset-specific decomposition, additional batch-
specific components are added (see Supplementary Note 1 for a
mathematical definition of consensus PCA).

The cell-cell similarity in each dataset is estimated using a data-
adaptive alpha-decay kernel9 based on the Euclidean distance between
cells in the consensus PCA (or user-supplied) reduced dimensional
space. The reduced dimensional space is also used to calculate a
shared nearest neighbour graph using Seurat13.

To optimise factors using hybrid linear and non-linear non-nega-
tive matrix factorisation, JOINTLY minimised the following loss func-
tion:

argmin
F ,H
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This approach aims to reconstruct the normalised and standar-
dised count matrix as well as the kernel space using the H (clustering
matrix), F (basis matrix of the kernel), and V (shared feature matrix)
matrices. The first term in the loss function, weighted by α, represents
the reconstruction error within a single batch. Minimising this term
encourages the clustering matrix to reconstruct the kernel. The sec-
ond term, weighted by λ, applies graph regularisation to the Hmatrix.
Minimising this term encourages that cells close to each other in the
consensus PCA space also are close to each other in the clustering
matrix. The last term,weighted by β, represents the sumof differences
in linear gene expression space across the clustering matrix between
batches. Minimising this term encourages that the same genes con-
tribute the same factors in the clustering matrix across batches. By
default, the H matrix is initialised per batch using fuzzy clustering in
the consensus PCA space, and the F and V matrices using linear
regression based on the H matrix as well as the kernel and gene
expression space, respectively. Next, the loss function is minimised
using multiplicative updating algorithm53 (see Supplementary Note 2
for a mathematical description of the algorithm) for 200 iterations.
Finally, the H matrices from each batch are concatenated and stan-
dardised per factor and then per cell.

To identify and score gene modules, the V matrices are standar-
dised per factor and then per gene for each batch and then averaged
across batches. The averaged V matrix is standardised per factor and
then per gene. Genes are assigned to each factor by ordering the gene
scores within each factor and finding the inflection point of the score
distribution using the unit invariant knee method54. Genes with scores
higher than the inflection point are assigned to the factor module and
each factor module is scored in each cell using UCell55.

For clustering and visualisation, the standardisedHmatrix is used
as input. For visualisation, UMAP coordinates were calculated using
Seurat13 and for clustering, we used hierarchical graph-based
clustering56, but any other clustering methods can be applied, such
as Louvain clustering.

Benchmarking
Datasets. Cell lines11: Counts were downloaded from Zenodo under
[https://doi.org/10.5281/zenodo.3238275] and randomly split each cell
type into two batches of equal size. We simulated a complex batch
effect by introducing cell type-specific Poisson noise into the second
batch. For each cell type, we drew a maximum noise level at random
from a normal distribution with a mean and standard deviation of 0.5.
Then we draw a noise fraction for each gene from a uniform dis-
tribution between zero and the maximum noise level for the cell type.
Based on the average gene count across cells in the cell type and batch
and the noise fraction, we calculate the mean of the noise distribution
and randomlydrawnoise counts from thePoissondistribution. Adding
gene-wise noise to gene-wise counts results in a newgene-wise Poisson
distribution with a shifted mean corresponding to complex cell type-
and gene-specific batch effects.

Lung4: Counts were downloaded from figshare under [https://doi.
org/10.6084/m9.figshare.12420968.v8]. The dataset was subset to
only contain cells from control patients retaining 10,046 cells and
15,148 genes across six batches. The donor ID was used as a batch
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identifier, and cell type labels were transferred using a complementary
human lung atlas15.

Pancreas19: Counts from 20,784 cells and 30,378 genes across 12
donors were downloaded from NCBI Gene Expression Omnibus under
accession codeGSE114297. The donor IDwas used as a batch identifier,
and cell type labels were transferred using a complementary human
pancreas atlas24.

Kidney20: Counts were downloaded from cellxgene under acces-
sion code bcb61471-2a44-4d00-a0af-ff085512674c. The dataset was
subset to only contain cells from healthy living donors retaining
20,497 cells and 27,305 genes across 18 batches. The donor ID was
used as a batch identifier, and cell type labels were transferred using
the single nucleus fraction from the same kidney atlas20.

Liver18: Counts from 8444 cells and 32,922 genes across five
donors were downloaded from cellxgene under accession code
bd5230f4-cd76-4d35-9ee5-89b3e7475659. The donor ID was used as a
batch identifier, and cell type labels were transferred using a com-
plementary human liver atlas22.

PBMC21: Counts were downloaded from cellxgene under acces-
sion code 03f821b4-87be-4ff4-b65a-b5fc00061da7. The dataset was
subset to only contain cells fromhealthy adult donors retaining 46,993
cells and 33,193 genes across eleven batches. The donor IDwas used as
a batch identifier, and cell type labels were transferred using com-
plementary human PBMC atlas23.

Label transfer. For all datasets, except the cell line dataset, we trans-
ferred labels from similar public datasets as indicated above. Query
and reference datasets were normalised to 10,000 UMI counts per cell
and transformed using log(x+1). In the reference, differentially
expressed (DE) genes were identified in each cell type versus all other
cells with Scanpy57 usingWilcoxon rank sumwith log fold changes > 3.
Gene sets are pruned, to remove genes that are in the first percentile
highest DE in any other cell type. The top 50 genes are kept per cell
type. Genes lists are further pruned for genes not expressed in the
query dataset. We then performed two rounds of label transfer. In the
first round,we trained a one-class support vectormachine per cell type
in the referencedataset using sklearn (linear kernel andnu=0.5). Since
probabilities in SVMs are uncalibrated, we identified classification
optimal thresholds per cell type by maximising the geometric mean
between the sensitivity and the specificity on the reference data and
used these to label cells in the query dataset. Cells labelled as multiple
cell types were labelled as unknown, as were cells not labelled as any
cell type. In the second round of labelling, we used the labelled query
cells to train a linear support vector classifier using sklearn (maximum
of 1000 iterations with balanced class weights). Again, we identified
classification optimal thresholds per cell type by maximising the
geometric mean between the sensitivity and the specificity and
obtained the final labels for all cells in the query dataset, and unla-
belled or ambiguously labelled cells were removed from the dataset.

Integration parameters. JOINTLY was run with default parameters on
all datasets, except for the cell line dataset, which was run using 15
components.

scVI3 parameters were obtained from online tutorials:58 The
dataset was subset to highly variable genes selected by JOINTLY and
integrated based on raw counts running 500 epochs using early
stopping with patience of 10. The integration was evaluated and
visualised using 10 dimensions.

Harmony2 parameters were obtained from online tutorials:59 The
dataset was normalised, scaled, and dimensionally reduced using
Seurat based on highly variable genes selected by JOINTLY. Harmony
was run using default parameters and evaluated and visualised using
20 dimensions.

Scanorama12 parameters were obtained from online tutorials:60

The dataset was normalised using scanpy57 and subset to highly

variable genes selected by JOINTLY. Each batch was scaled indepen-
dently and integrated. The integration was evaluated and visualised
using 50 dimensions.

LIGER7 parameters were obtained from online tutorials:61 The
dataset was normalised, scaled (per batch, without centring), and
dimensionally reduced using Seurat based on highly variable genes
selected by JOINTLY. The datasets were integrated using 20 factors
and a lambda of five following my quantile normalisation. The inte-
gration was evaluated and visualised using 20 components.

fastMNN1 parameters were obtained from online tutorials:62 The
datasets were integrated using auto merge and highly variable genes
selected by JOINTLY. The integration was evaluated and visualised
using 20 dimensions.

Seurat13 parameters were obtained from online tutorials:63 The
dataset was normalised, scaled, and dimensionally reduced using
Seurat based on highly variable genes selected by JOINTLY. Integration
anchorswere identified using reciprocal PCA and highly variable genes
selected by JOINTLY. The datasets were integrated using default
parameters, except for datasets with small batches (less than 100 cells)
where a k.weight of 50 was used. The integration was evaluated using
30 dimensions.

scGPT14 parameters were obtained from online tutorials:64 The
dataset was normalised and scaled using Scanpy based on highly
variable genes selected by JOINTLY. The datasets were integrated
using the parameters supplied in the tutorial, except that cell type
labels were not used for train test splitting making the method unsu-
pervised. The integration was evaluated using 512 dimensions.

Integration evaluation. We evaluated how well clustering could
recover cell types (using only cell types with at least 10 cells) by clus-
tering each dataset based on the integrated reduced dimensional
space using hierarchical graph-based clustering56 into between 2 and
50 clusters. For each clustering solution, we calculated the adjusted
rand index (ARI) between the clusters and the transferred labels for the
entire dataset and each batch. A higher value indicates better agree-
ment between clusters and cell type labels.

We evaluated how well cell types and batches mix using the
local inverse Simpson’s Index (LISI)2, which is ametric that measures
the distributions of categorical variables over local neighbourhoods.
We calculated LISI for cell type labels and batch labels and rescaled
the metrics as previously described4 such that a value of 0 corre-
sponds to low cell type separation and low batch integration,
whereas a value of 1 corresponds to high cell type separation and
high batch integration,

Finally, we evaluated the distance between cell types and batches
using the average silhouette width (ASW). The silhouette width mea-
sures the relationship between within-group distances and between-
group distances. We calculated scores for cell types and batches as
previously described4, where scores are transformed such that values
of 0 correspond to worst performance (low cell type separation and
high batch separation), whereas values of 1 correspond to best per-
formance (high cell type separation and low batch separation).

To account for the stochasticity of some of the methods, we ran
all methods five times and reported across all metrics for the inte-
gration run with the highest overall ARI. Ranks for each metric and
dataset was calculated using two significant digits and setting the
minimum rank for ties. The overall rank across tissues was calculated
by averaging across the ranks of individual metrics and setting the
minimum rank for ties.

Neighbourhood conservation. To evaluate neighbourhood con-
servation between two datasets, we calculated the 100 nearest neigh-
bours for each cell in each dataset based on the dataset-specific
reduced dimensional space from JOINTLY, and for cells represented in
both datasets, we summed the number of shared neighbours. This
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total of shared neighbours is divided by the total number of possible
shared neighbours.

Over-correction analysis
Dataset, integration, and evaluation. Datasets were merged pairwise
to generate all possible combinations of the 5 datasets used for
benchmarking. To merge datasets, the datasets were subset to genes
detected in both datasets and combined.

The combined datasets were integrated as described under
‘Benchmarking’ with the exception that JOINTLY was run using PCA
rather than consensus PCA. To evaluate integration, we calculated
an over-correction score by calculating the integration LISI using the
tissue as the label. Next, we split each dataset into each tissue
and calculated the integration and cell type LISI within each tissue.
Ranks for each metric were calculated using three significant digits
and setting the minimum rank for ties. The overall rank was calcu-
lated by averaging across the overall rank within each tissue sepa-
rately and the over-correction rank and setting the minimum rank
for ties.

Differential expression analysis
To identify differentially expressed genes, we created pseudo-bulk
expression levels per donor for each cell type in each tissue. Next, we
prefiltered genes that did not have at least 10 counts across all samples
We performed pairwise differential expression between all cell types.
To identify shared endothelial cell marker genes, we extracted all
pairwise tests between endothelial cells from the Lung or the Pancreas
dataset and any non-endothelial cell type. We combined the p-values
from all tests using the harmonic mean and FDR-corrected the com-
bined p-value. Finally, sharedmarker genes were defined as genes with
a combined FDR ≤0.01 and log2 fold change ≥ 1.5 in all pairwise tests.
Endothelial state markers were defined as genes with an FDR ≤0.01
and absolute log2 fold change ≥ 1.5 between Lung- and Pancreas-
derived endothelial cells.

Pathway and transcription factor identification. Enrichment analysis
of gene modules was performed using enrichR65 with default para-
meters using the Reactome_2022 databases for pathway identification
and ChEA_2022 for transcription factor identification. P-values were
corrected using FDR, and terms with an FDR-corrected P-value less
than 0.05 were kept.

Interpretability analysis
Datasets. Emont25: Counts were downloaded from the Single Cell
Portal under accession code SCP1376. The dataset was subset to total
visceral adipose tissue samples, containing 80,0085 cells across 10
donors.

Mouse gastrulation28: Counts were downloaded using scVelo27

and contain 9815 cells across three sequencing batches.

Cell type labelling. Enrichment analysis of gene modules was per-
formed using enrichR65 with default parameters using the Azi-
muth_Cell_Types_2021 and CellMarker_Augmented_2021 databases. In
the Azimuth_Cell_Types_2021, which does not contain categories spe-
cifically from adipose tissue, all terms associated with Neurons were
removed, as well as terms without cell type or tissue names. In the
CellMarker_Augment_2021, which does contain categories specifically
associated with adipose tissue, we only retained categories from adi-
pose tissue, excluding brown and beige adipose tissue. All termswith a
false discovery rate corrected P-value less than 0.1 were kept and for
each tested factor, the top three terms ordered by the combined
score65 were reported.

Pathway identification. Enrichment analysis was performed using
enrichR65 with default parameters using the WikiPathway_2021_Human,

KEGG_2021_Human, and Reactome_2022 databases for the human adi-
pose tissue and the WikiPathways_2019_Mouse database for the mouse
gastrulation dataset. P-values were corrected using FDR, terms with an
FDR-corrected P-value less than 0.05 were kept and selected pathways
were shown.

Constructing a white adipose tissue atlas (WATLAS)
Datasets. Tabula Sapiens15: Counts were download from Figshare
under https://doi.org/10.6084/m9.figshare.1426721966 and cells from
the adipose tissue from two donors were extracted. Subsequently,
cells with an abnormal relationship between the number of detected
genes and the total counts were removed in two rounds by fitting a
linear regressionmodel to the two variables and removing cells with an
absolute residual above 2 in thefirst round and above0.8 in the second
round. Finally, cells with a fraction of counts derived from mitochon-
drial genes above 0.2 were removed.

Jaitin31: Counts from one donor were downloaded from the NCBI
Gene Expression Omnibus under accession code GSE128518 and
metadata fromBitbucket67 repository amitlab/adipose-tissue-immune-
cells-2019 [https://bitbucket.org/amitlab/adipose-tissue-immune-
cells-2019/src/master/]. Cells passing quality control by the original
authors (as indicated in themetadata)were kept and further filtered to
remove cells with an abnormal relationship between the number of
detected genes and the total counts were removed by fitting a linear
regression model to the two variables and removing cells with an
absolute residual above 0.8 for run 22 and 0.7 for run 55. Finally, cells
with a fraction of counts derived frommitochondrial genes above 0.15
were removed.

Vijay30: Counts were downloaded from the NCBI Gene Expression
Omnibus under accession code GSE129363. Cells with a log2-
transformed total count and a total number of features higher than
six were kept. Next, cells with an abnormal relationship between the
number of detected genes and the total counts were removed by fit-
ting a linear regression model to the two variables and removing cells
with an absolute residual above 1.0. Finally, cells with a fraction of
counts derived from mitochondrial genes above 0.2 were removed,
and the two diabetic donors were removed.

Hildreth29: Counts from six donors were downloaded from the
NCBI Gene Expression Omnibus under accession code GSE155960. All
datasetsweremerged and cells with an abnormal relationship between
the number of detected genes and the total counts were removed by
fitting a linear regression model to the two variables and removing
cells with an absolute residual above 0.8. Finally, cells less than 500
counts or a fractionof counts derived frommitochondrial genes above
0.15 were removed.

Emont:25 Counts were downloaded from the Single Cell Portal
under accession code SCP1376. The dataset was split into two inde-
pendent sets containing samples from the stromal vascular fraction
and whole adipose tissue, respectively.

Barboza:32 We obtained a dataset fromwhole adipose tissue from
the original authors.

Integration. After processing and filtering, eachdatasetwas processed
with JOINTLY using 15 components, clustered using hierarchical graph-
based clustering56 into coarse cell types, and labelled based onmarker
genes. Clusters, that could not be assigned to specific cell types, had
high mitochondrial content, or low specificity of marker genes were
removed. We concatenated the datasets, harmonising metadata, and
gene names, retaining only genes with a total count above 10 and
expressed in at least one cell. We integrated the datasets using
scANVI33 using 15 latent dimensions and parameters from scArches68.
The cellswere clustered and separated intofine cell types and states, as
well as removing a few clusters containing low-quality cells (8097 cells
removed, 2.6%). The final dataset was re-integrated using scANVI and
the fine-grained labels.
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Composition analysis. Cell type or state fractions were calculated for
each donor and modelled using linear regression correcting for vari-
ables as indicated in the figures. Marginalised effect sizes and con-
fidence intervals were calculated using emmeans.

Cell type decomposition. GTEx adipose bulk RNA-seq data were
deconvoluted using bisque69. Pseudo-bulk references were generated
for both VAT and SAT depots of the WATLAS at intermediary label
granularity. Marker genes for decomposition were identified using
presto70 with an AUC threshold of 0.6. After deconvolution, we
removedmesothelial cells from VAT and rescaled each bulk sample to
sum to one. We tested for association between proportions and cate-
gorial variables using linear regression and estimated effect sizes and
confidence intervals using estimated marginal means.

Differential expression analysis of adipocyte populations. To iden-
tify differentially expressed genes between adipocyte populations, or
between depots within adipocyte populations, we created pseudo-
bulk expression levels per donor in the Emont et al. and Barboza et al.
datasets by summarising counts for all genes. Next, we prefiltered
genes that were not expressed in at least 20 cells in either study aswell
as genes that were identified by edgeR as lowly expressed in the
pseudo-bulk count matrix from either study. We performed differ-
ential expression analysis using edgeR correcting for study (and depot
in the case of comparing adipocyte populations). We defined depot-
specific genes as differentially expressed genes (FDR ≤0.05 and an
absolute log2 fold change ≥ 1.5) between VAT and SAT in any one
adipocyte subpopulation, and defined subpopulationmarker genes as
differentially expressed genes (FDR ≤0.05 and log2 fold change ≥ 1.5)
in one-versus-all comparisons aswell as log2 fold change≥ 1.3 across all
one-versus-one comparisons. For visualisation of depot- and
subpopulation-specific marker genes we used limma to batch-correct
the normalised counts.

Statistics and reproducibility
The statistical analysis of the data was described in the abovemethods
and can be reproduced from scripts available on GitHub (http://www.
github.com/madsen-lab/JOINTLY_reproducibility). No statistical
method was used to predetermine sample size. Benchmarking data-
sets were subset to only include cells from healthy controls in applic-
able datasets as described in the above methods to ensure that within
datasets the major axis of variation could be assumed to be shared
between batches. Data included in the WATLAS was rigorously quality
controlled as described in the above sections to exclude low quality
cells. The experiments were not randomised. The investigators were
not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The dataset
containing mixtures of cell lines is available through Zenodo under
[https://doi.org/10.5281/zenodo.3238275]. The datasets used for
benchmarking is available through figshare under [https://doi.org/10.
6084/m9.figshare.12420968], cellxgene under accession codes
bcb61471-2a44-4d00-a0af-ff085512674c, bd5230f4-cd76-4d35-9ee5-
89b3e7475659, and 03f821b4-87be-4ff4-b65a-b5fc00061da7, and
NCBI Gene Expression Omnibus under accession code GSE114297.
The datasets used for investigating interpretable factors and for
building WATLAS are available from the NCBI Gene Expression
Omnibus under accession codes GSE128518, GSE129363, and

GSE155960 and the Single Cell Portal under accession code SCP1376.
The processed data for the white adipose tissue atlas is explorable at
the Single Cell Portal34 under accession code SCP2289. The model
weights for transfer learning and integrating new datasets are avail-
able at Zenodo35 under https://doi.org/10.5281/zeodo.8086433
[https://zenodo.org/records/8086433]. The processed datasets used
for evaluation and the embeddings, results, and summaries are
available at Zenodo71 under https://doi.org/10.5281/zenodo.8434958
[https://zenodo.org/records/8434958]. Source data are providedwith
this paper.

Code availability
JOINTLY is available as an R package on GitHub (http://www.github.
com/madsen-lab/rJOINTLY) and Zenodo72 under https://doi.org/10.
5281/zenodo.10159672. Scripts for reproducibility are available on
GitHub (http://www.github.com/madsen-lab/JOINTLY_reproducibility).
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