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Proteomics-driven noninvasive screening of
circulating serumproteinpanels for the early
diagnosis of hepatocellular carcinoma

Xiaohua Xing 1,4, Linsheng Cai1,2,4, Jiahe Ouyang1, Fei Wang1, Zongman Li1,
Mingxin Liu1, Yingchao Wang1, Yang Zhou1, En Hu1, Changli Huang2,
Liming Wu 1,3 , Jingfeng Liu 2 & Xiaolong Liu 1

Early diagnosis of hepatocellular carcinoma (HCC) lacks highly sensitive and
specific protein biomarkers. Here, we describe a staged mass spectrometry
(MS)-based discovery-verification-validation proteomics workflow to explore
serum proteomic biomarkers for HCC early diagnosis in 1002 individuals.
Machine learning model determined as P4 panel (HABP2, CD163, AFP and
PIVKA-II) clearly distinguish HCC from liver cirrhosis (LC, AUC 0.979, sensi-
tivity 0.925, specificity 0.915) and healthy individuals (HC, AUC 0.992, sensi-
tivity 0.975, specificity 1.000) in an independent validation cohort,
outperforming existing clinical prediction strategies. Furthermore, the P4
panel can accurately predict LC to HCC conversion (AUC 0.890, sensitivity
0.909, specificity 0.877) with predicting HCC at a median of 11.4 months prior
to imaging in prospective external validation cohorts (No.: Keshen
2018_005_02 and NCT03588442). These results suggest that proteomics-
driven serum biomarker discovery provides a valuable reference for the liquid
biopsy, and has great potential to improve early diagnosis of HCC.

Hepatocellular carcinoma (HCC) ranks fourth in cancer mortality
worldwide, and chronic cirrhosis caused by hepatitis virus (mainly
Hepatitis B and C Virus) and metabolic diseases (mainly alcoholic liver
disease and diabetes) is the major risk factor for HCC1,2. Although
surgery remains an effective therapy forHCCpatients according to the
HCC treatment guidelines, most patients are diagnosed at advanced
clinical stage due to the lack of early symptoms and thus suffer from
poor outcomes3. Thus, early screening and diagnosis of HCC still
remain a clinical dilemma.

Current strategies for HCC diagnosis include imaging (CT/MRI),
serum protein biomarkers (alpha-fetoprotein (AFP), protein induced
by vitamin K absence or antagonist-II (PIVKA-II, namely Des-gamma-
carboxy prothrombin) and histopathology, which are difficult to

accurately diagnose early-stage HCC due to empirical limitations,
restricted sensitivity or invasive detection modalities4,5. Serum and
plasma are routinely collected in patients with liver symptoms and
reflect changes in liver function, making them ideal for liquid biopsy
with great safety, simplicity and suitable for large populations with
long-period follow-up6,7, and many circulating liquid biopsy tumor
biomarkers such as ctDNA8, cfDNA9,10, metabolites11, and proteins12–14

are developed rapidly. Plasma or serum proteins, as the ultimate
bearers and effectors of human biological activities, are the common
study objects in biomarker development. The FDA has approved over
100 plasma or serum proteins and some serum protein biomarkers
have been tested for long-term clinical applications15,16. Therefore,
system-widediscovery of serumprotein biomarkers for early diagnosis
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ofHCCwouldbe very attractive, and these globaldata couldbeused to
build up machine learning-based classification models for the early
diagnosis of HCC.

Mass spectrometry (MS)-based proteomics is in principle an ideal
tool for biomarker discovery. However, proteomic analysis of serumor
plasma has been challenging because of low protein concentrations
and a wide dynamic range of protein abundances, resulting in low
quantification precision, throughput, and limited proteome depth16–18.
Recent advances in MS-based proteomics have greatly improved the
depth and breadth of serum and plasma proteins, and extended its
impact in biomedical and clinical studies19. Data independent acquisi-
tion based MS (DIA-MS) could effectively avoid the masking effect of
high abundance proteins (HAP) on low abundance proteins (LAP), and
improve detection efficiency and sample reproducibility; therefore, it
has been widely used in the development of tumor serum
biomarkers20. Furthermore, circulating proteomic panels for diagnosis
and risk stratification of various tumors were developed using the
targeted proteomic strategy, avoiding the restrictions of
antibodies21,22. The specificity for the identification and quantification
of hundreds and even thousands of proteins in serum or plasma
samples makes it suitable in principle for the identification and vali-
dation of biomarkers. Many research groups have performed a series
of biologically meaningful proteomic studies in clinical samples from
various clinical cohorts using the DIA + PRM workflow23–26. For HCC
biomarker discovery, the DIA + PRM strategy has only been applied to
very small clinical cohorts, and there is a lack of screening and vali-
dation studies in large clinical cohorts.

In this study, using serum as a liquid biopsy, we performed a
staged MS-based discovery-verification-validation proteomics work-
flow in 1002 individuals to screen HCC diagnosis biomarkers, from
which a biomarker panel was developed by learning machine for
diagnosis ofHCCpatients. Furthermore, the clinical significance of this

panel for early diagnosis and even early predicting of HCC was further
evaluated in a prospective cohort. The aim of this research was to
reveal the change of serum proteins in HCC patients, discovering
valuable serum protein biomarkers for early diagnosis of HCC, and
providing valuable data resource for HCC study.

Results
Study design and clinical characteristics of serum specimens
To systemically identify and validate potential noninvasive protein
biomarkers for HCC diagnosis in serum, we performed a staged MS-
based discovery-verification-validation proteomics workflow for this
study (Fig. 1). For discovery cohort, 320 individuals including HCC
(n = 163), liver cirrhosis (LC, n = 53), basic liver diseases (BLD, n = 64,
including 16 chronic hepatitis B (CHB), 18 alcoholic liver disease (ALD)
and 30 non-alcoholic fatty liver disease (NAFLD) samples) and chronic
asymptomatic hepatitis B virus carrier (AsC, n = 40) patients were
included for DIA-MS quantitative proteomic analysis. The detailed
clinical information is shown in Supplementary Data 1. There were no
statistically significant differences in routine indicators such as gender
among patients in different groups. However, the indicators reflecting
the severity of the liver function decompensation of patients differed
significantly among four groups, which was consistent with the pro-
gression of the disease from benign to malignant (Supplementary
Data 2). The validation cohort included an independent retrospective
validation cohort (n = 429, consisting of 210 HCC patients, 115 LC
patients, and 104 healthy controls (HC)) and an independent pro-
spective validation cohort (consisting of 253 LC patients, of whom 36
developed HCC during follow-up). The candidate biomarkers were
quantified using targeted proteomics based on parallel reaction
monitoring (PRM). Furthermore, machine learning models based on
early diagnosis panels for HCC were developed and used for the pre-
diction of HCC risk.
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Fig. 1 | Overall experimental design for biomarker model development. Large-
scale DIA-based proteomics was used to select HCC-related biomarker candidates,
which were then validated in an independent validation cohort using PRM-based

targeted proteomic approach. HCC diagnosis models were constructed based on
machine learning and the efficacy of the models for HCC risk prediction was
assessed through prospective long-term follow-up of LC patients.
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Proteomic characterization of serum samples
We performed proteome profiling of serum samples using
high-throughput DIA-MS-based proteomics strategy (Fig. 2a). To max-
imize proteome depth and coverage, we generated a hybrid spectral
library consisting of 128 fractions of pooled serum samples from
DDA and 320 individual serum samples from DIA. The hybrid
spectral library contained 875 proteins, of which 82 proteins
were detected only in the DIA-MS data (Supplementary Fig. 1a). The
majority of the library proteins (85.9%; 752/875) were reported in the
Plasma Proteome Database (http://plasmaproteomedatabase.org/)
(Supplementary Fig. 1b). Using this spectral library, the DIA-MS

analysis acquired 451 quantifiable proteins, which occupied
more than half of proteins in the library (51.5%; 451/875) (Fig. 2b,
Supplementary Data 3). On average, we quantified 300 (AsC), 278
(BLD), 289 (LC), and 304 (HCC) proteins in each group per serum
sample in a single run (Fig. 2c). Our DIA workflow resulted in a com-
parable serum proteome coverage with previous studies that applied
a similar single-run strategy without deleting serum HAPs27.
The quantification of serum protein intensity spanned over six orders
of magnitude, and the top ten most abundant proteins account for
about 80% of the serum proteome signal, illustrating the challenge of
analysis (Fig. 2d).
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Fig. 2 | MS-based serum proteomic analysis of discovery cohort. a Overview of
serumproteomicsbyDIA-MS.bComparisonof the number ofproteins identified in
the serum proteome and the spectral library. c Number of proteins identified and
quantified with a 1% FDR in four groups (AsC, n = 40 biologically independent
samples; BLD, n = 64 biologically independent samples; LC, n = 53 biologically

independent samples; HCC, n = 163 biologically independent samples). Data
represent mean± SD. d Proteins identified in the 4 groups were ranked according
to theirmedian intensity. The top tenmost abundant proteins are labeled, and their
relative contribution to the total protein intensity is indicated. Source data are
provided as a Source Data file.
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Assessment of the mass spectrometry platform and
proteomic data
To assess the quality control of themass spectrometry platform in our
study, we investigated the variables of our workflow by repeatedly
measuring a Hela cell protein digest standard sample throughout the
process, includingDDA-MS andDIA-MS. The quality-control analysis of
different replications showed high technical reproducibility for DDA-
MS andDIA-MS, with an average number of quantified proteins of 3591
and 4120 (Fig. 3a), coefficients of variations (CVs) of 0.31 and 0.18
(Fig. 3b), andmedian correlation coefficients of 0.92 and 0.92 in DDA-
MS and DIA-MS, respectively (Supplementary Fig. 1c, d). These results
demonstrated the consistent stability of the mass spectrometry
platform.

331 proteins in standards were also found in the serum samples,
with correlation coefficients ranging from 0.96–0.99 (median: 0.99)
(Supplementary Fig. 1e), which were comparable to the standards. To
further assess the quantitative accuracy of the serum proteome
experiments, we also performed technical replicates analysis of six
serum samples (HCC, n = 2; LC, n = 2; CHB, n = 2) in the middle and at
the end of the project. Notably, repeat experiments with the same
samples have good reproducibility, with a low CV (range: 0.06–0.22;
median: 0.11) and ahigh level of correlation (range: 0.94–0.99;median:
0.95) (Fig. 3c, Supplementary Fig. 1f), thus demonstrating the con-
sistent stability of the serum proteomic experiments.

Furthermore, the CVs values of the four groups were significantly
higher than those in the technical replicates (Fig. 3d), which combined
with the correlation of identified proteins among four groups revealed
the high heterogeneity within patients, especially within the LC group
and HCC group (Supplementary Fig. 1g). Consistent with clinical per-
ceptions, AFP and PIVKA-II were higher in HCC than that in non-HCC
patients (Supplementary Fig. 1h), and MS quantitative proteomic
results of AFP showed a high correlation with clinical antibody-based
assays (Fig. 3e, f). When we used Yoden index threshold to classify MS-
based AFP quantitation into positive and negative, 82.2% of the
patients were consistent with the results that defined by clinical AFP or
PIVKA-II antibody assay (Fig. 3g). These results strongly affirmed the
high quality of our proteomic data.

Differentially abundant proteins and functional alterations
related to HCC
To further screen meaningful diagnostic biomarkers for HCC, 201
immunoglobulins were excluded from further analyses. A total of 17
up-regulated and 17 down-regulated proteins differed in HCC/AsC,
HCC/BLD, and HCC/LC comparisons were used for further analysis
(Supplementary Fig. 2a, b, Supplementary Data 4). The expression
profiles of these proteins clearly showed intergroup differences and
trended with disease severity, with the most dramatic differences in
the HCC group (Fig. 4a, b).

As expected, most proteins located in extracellular space, extra-
cellular exosome, extracellular region, and bloodmicroparticle, which
was consistent with the characteristics of serum proteins. These dys-
regulated proteins mainly enriched in the biological process of
immunity and inflammation, as well as in molecular functions asso-
ciated with activation of multiple receptors and various enzymatic
activities related to tumorigenesis and development. Moreover, the
enriched pathways like complement and coagulation cascades, NOD-
like receptor signaling pathway, NF-kappa B signaling pathway, Toll-
like receptor signaling pathway, TNF signaling pathway, and leukocyte
transendothelial migration, indicating that HCC was likely to promote
its own development by regulating a variety of receptors or pathways
related to immune and inflammatory (Fig. 4c).

In addition, PPI network analysis revealed three highly con-
nected clusters involving cell proliferation and apoptosis (blue), cell
adhesion and recognition (red), complement activation and innate
immunity (green) (Fig. 4d). In the blue and green clusters, the

abundance of up-regulated proteins changed more dramatically, sug-
gesting that these proteins might played a dominant role in HCC
proliferation, development, and migration. In the green cluster, the
abundance of most proteins decreased, suggesting that HCC might
have some inhibitory regulation of the immune system. Candidate
proteins for further validation were mainly selected from these three
clusters.

Verification of serum candidate biomarkers using PRM-based
targeted MS
Based on the HCC-related proteomic and functional alteration
revealed in the discovery study, we then sought to develop
protein biomarkers that reflect the HCC occurrence with high accu-
racy. Firstly, the Learning Vector Quantization (LVQ) model was used
to evaluate the diagnostic performance of 34 HCC-related differen-
tially abundant proteins, by comparing the accuracy of each protein in
identifying HCC patients, 15 proteins with accuracy higher than 0.8
were selected (Fig. 5a). Secondly, the candidate proteins required
unique peptides and a good peptide profile matched in DIA-MS data.
Finally, 11 candidate biomarkers with unique peptides and aberrant
abundance in HCC were proposed for further targeted proteomics
analysis (Fig. 5b, Supplementary Table 1). In order to verify the
authenticity of candidate biomarker, we further validated the abun-
dance of matched peptides in an independent validation cohort con-
taining 130 HCC patients, 68 LC patients, and 61 HC individuals by
PRM-MS. And five peptides could be quantified in more than three
pairs of ions matched in the light and heavy labels, and their quanti-
fication was statistically significant in the HCC compared with LC and
HC groups (p < 0.05), which was consistent with the trend of DIA-MS
results (Fig. 5c, Supplementary Fig. 3a, b, SupplementaryData 5). Thus,
these five proteins were used in different combinations to construct
HCC diagnostic models.

Machine learning-based classification of HCC
To screen the best panel for HCC diagnosis, 130 HCC, 68 LC and 61
HC samples with PRM quantitative data for candidate serum proteins
were used to construct a random forest predictive model and to
correct the cut-off. Another 80 HCC, 47 LC, and 43 HC samples from
the validation set were then introduced to assess the reliability of the
model externally. We compared the area under the ROC curve (AUC)
for five potential biomarkers and different combinations of permu-
tations in the validation set (Supplementary Table 2). This process
resulted in a panel of HABP2 and CD163 with high performance for
distinguishing HCC from LC (AUC: 0.935, sensitivity:0.838, specifi-
city: 0.872) and from HC (AUC: 0.977, sensitivity:0.875, specificity:
0.907) (Supplementary Fig. 4a). Notably, it still maintains effective
diagnosis in HCC patients who were negative for AFP (<20 ng/mL),
PIVKA-II (<40mAU/mL) and even negative for both AFP and PIVKA-II
(Supplementary Fig. 4b-d). Furthermore, it possessed significantly
higher score in HCC than that in LC and HC (p < 0.0001) and a high
diagnostic accuracy of more than 0.85 (Supplementary Fig. 4e-f).

Due to the complementarity of HABP2 +CD163 with AFP and
PIVKA-II, we further constructed a 4 protein-based (P4) panel for HCC
diagnosis. The P4 panel had significantly improved the performance in
diagnosing HCC patients than AFP, PIVKA-II and their combination,
with the highest AUC, sensitivity and specificity (Validation Set: HCC/
LC: AUC: 0.979, sensitivity: 0.925, specificity: 0.915; HCC/HC: AUC:
0.992, sensitivity: 0.975, specificity: 1.000) (Fig. 6a, Supplementary
Fig. 5a, b). Furthermore, P4 panel performed significantly better than
PIVKA-II in AFP-negative HCC (Validation Set: HCC/LC: AUC: 0.963 vs.
0.893, sensitivity: 0.857 vs. 0.833; HCC/HC: AUC: 0.984 vs. 0.938,
sensitivity: 0.952 vs. 0.833) (Fig. 6B, Supplementary Fig. 5c, d), as well
as significantly better than AFP in PIVKA-II negative HCC (Validation
Set: HCC/LC: AUC: 0.946 vs. 0.868, sensitivity: 0.813 vs. 0.563; HCC/
HC: AUC: 0.958 vs. 0.902, sensitivity: 0.875 vs. 0.563) (Fig. 6c,
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Fig. 3 | Quality assessment of MS platform and serum proteomics data. a The
protein number of standards through library process and targeted process
including data from DDA mode (n = 50 independent experiments) and DIA mode
(n = 32 independent experiments). b Distribution of CVs of standards in DDA-MS
(n = 50 independent experiments) and DIA-MS (n = 32 independent experiments).
Data represent median, 25% quartile and 75% quartile. c Distribution of CVs of
technical replicates of 6 serum samples (HCC, n = 2 independent experiments; LC,
n = 2 independent experiments; CHB,n = 2 independent experiments) in themiddle
and at the end of the project. Data represent median, 25%, and 75% quartile.
d Distribution of CVs of serum samples in four groups (AsC, n = 40 biologically
independent samples; BLD, n = 64 biologically independent samples; LC, n = 53

biologically independent samples; HCC, n = 163 biologically independent samples).
Data represent median, 25%, and 75% quartile. e Correlation analysis of AFP quan-
tification results through DIS-MS strategy and clinical serological assays. Pearson’s
correlationcoefficients andp value are shown. Significanceof linear correlationwas
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AFP_MSwas determined bymaximumYouden index. Source data are provided as a
Source Data file.
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Supplementary Fig. 5e, f). Even in AFP negative and PIVKA-II negative
HCC patients, the performance of P4 panel remained effective, with
AUC of 0.878 (HCC/LC) and 0.904 (HCC/HC) in the validation set
(Fig. 6d, Supplementary Fig. 5g, h). In addition, the P4 panel possessed
significantly higher score inHCC than that in LC and inHC (p <0.0001)
(Fig. 6e, Supplementary Fig. 5i, j), and the high diagnostic accuracy of

HCCpatients (HCC/LC: 74/80, 92.1%; HCC/HC: 78/80, 98.4%) indicated
the high clinical value of the P4 panel for HCC (Fig. 6f, Supplementary
Fig. 5k, l).

Next, we determined the performanceof P4 panel in the diagnosis
of HCC at the early stage, due to the low sensitivity of existing diag-
nostic strategies. As the best-performing serum biomarker
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combination in the diagnosis of HCC, AFP + PIVKA-II was used in
comparison to P4 panel. The P4 panel had higher and more stable
sensitivity than AFP + PIVKA-II in different clinical stages, especially in
early HCC clinical stages like TNM I stage (0.875 vs 0.750), BCLC 0-A
stage (0.902 vs 0.754), CNLC I stage (0.878 vs 0.683) (Fig. 6g, Sup-
plementary Table 3). It suggested that P4 panel possessed a good
predictive effect in early diagnosis of HCC patients.

The P4 panel accurately predicted conversion of LC to HCC
earlier
As well known that imaging remains the gold standard for the diag-
nosis of HCC compared to the clinical protein biomarkers AFP, PIVKA-
II, AFP + PIVKA-II, and other reported score-based models. To assess
the efficacy of the P4 panel in detecting early-stage HCC and to
compare it with other commonly used methods, we recruited 253 LC
patients in a prospective clinical cohort to collect imaging data, PRM
quantitative results of HABP2 +CD163, traditional protein biomarker
assessment results (AFP and PIVKA-II) and the widely accepted ASAP
risk score model (including age, sex, AFP and PIVKA-II) and aMAP risk
score (including age, male, albumin, bilirubin and platelet) data at a
series of follow-up time points with LC patients developing HCC as the
final end-point. 253 LC patients of themodeling set were divided into a

training set (n = 177) and a testing set (n = 76) at a ratio of 7:3 randomly
by random sampling (Supplementary Data 6). As expected, the P4
panel was effective in the diagnosis of the early stage HCCwith highest
AUC (0.890), sensitivity (0.909), and specificity (0.877), out-
performing AFP, PIVKA-II, AFP + PIVKA-II, ASAPmodel and aMAP score
(Fig. 7a, Supplementary Fig. 6a, Supplementary Table 4). The scores of
P4 panel were significantly higher for LC patients who subsequently
developed HCC than that for LC patients who did not develop HCC
(p <0.0001) (Fig. 7b). Significantly, in the validation cohort, more than
90% LC patients (90.9%, 10/11) who subsequently developedHCCwere
detected accurately, which was significantly higher than AFP (45.5%, 5/
11), PIVKA-II (18.2%, 2/11), AFP + PIVKA-II (81.8%, 9/11), ASAP model
(54.4%, 6/11) and aMAP score (72.7%, 8/11), suggesting that the P4 panel
could be a good predictor for LC patients at the risk of developing
HCC (Fig. 7c, Supplementary Fig. 6b-m). While there were 12.3% (8/65)
of LC patients inconsistent with the prediction for conversion to HCC,
which had high scores but none had HCC at the end of follow-up,
suggesting that the P4 panel also suffered from the inevitable false
positive rate of other strategies (12.3%).

Notably, the P4 panel detected more than 90% LC patients who
subsequently developed HCC (90.9%, 10/11), completely consistent
with the imagingdiagnosis and is even earlier than the imaging ranging
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from 3.6 to 20.1 months, with a median of 11.4months (Fig. 7d, e). The
only patient whose HCCwas not diagnosed earlier by the P4 panel was
also not diagnosed using any other clinical biomarkers or other early
diagnosismodels. Furthermore, P4 panel hadbetter concordancewith
positive imaging findings during follow-up (100% vs. 63.6%, 63.6%,
90.9%, 63.6%) compared to AFP, PIVKA-II, ASAP model, and aMAP
scores at the follow-up periods (Fig. 7f, g). These findings suggest that

P4 panel could indeed be a promising predictor of conversion to HCC
in LC patients compared to traditional protein biomarkers or other
score-based models.

Discussion
In current studies, many biomarkers based on liquid biopsy have been
developed for the cancer diagnosis or monitoring, for example
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methylated DNA28–30, ctDNA31,32 and microRNA33,34. However, nucleic
acid biomarkers are economic- and time-constrained for clinical
applications due to their complex detection methods and high
requirements for sample preservation and handling35. Proteins, on the
other hand, have good stability and can be easily developed into bio-
markers for clinical applications36.While,MS-based screening of serum
protein biomarkers has unique challenges due to the interference of
high abundance proteins37. In this study, we replaced traditional DDA-
MS with DIA-MS, which eliminated the need for cumbersome and
expensive abundance protein reseparation and fraction in individual
serum samples38,39. Although the depth of our serum proteome could
be improved, we detected hundreds of proteins that are not available
in the human plasma proteome database, e.g., serum amyloid A-1
protein and Proline-rich acidic protein 1. The high dynamic range of
protein abundance in serum limits the sensitivity of MS-based pro-
teomics, while a median CV of 18% in our assay is much better than the
biological variation. Furthermore, the use of PRM-MS targeted pro-
teomics validation method improves the accuracy of high-throughput
validation, which can be used for antibody-free and batched validation
of candidate biomarkers cost-effectively, and could be further opti-
mized for clinical translation40,41. Therefore, ourworkflow is well suited
to study tumor-related serum protein variations at a proteomic scale
and provides an important resource for screening early diagnostic
biomarkers for HCC.

In this study,wedeveloped and validated a 4-serum-protein based
panel for early diagnosis of HCC with sensitivity 0.925, specificity
0.915, and AUC 0.979. In an independent validation cohort, the panel
was able to identify occult HCC that did not observed by imaging with
more than 90% accuracy, although there was a certain rate of false
positives (12.3%). The identification of high-risk populations for HCC
by this panel that were diagnosed 1 year later through standard diag-
nostic methods demonstrated the utility of this panel for HCC
screening and the potential for detecting high-risk populations for
HCC through such screening. Therefore, we proposed that facile and
scalable analyses of serum proteins based on serum proteomics could
be used to prescreen high-risk populations for HCC to increase the
accessibility of HCC detection and reduce unnecessary follow-up
imaging procedures and invasive biopsies. In the current field of HCC
screening, our initial idea on how to integrate the panel with the clinic
in the future comes from three sources: (1) the panel can be further
used as a complementary testing for patients with AFP-negative or
PIVKA-II-negative but with high-risk clinical factors; (2) the panel can
be used as a basis for further screening in patients who refuse imaging
screening; (3) the panel can improve the detection rate of early HCC
and serve as an alternative screening method for people at high
risk of HCC.

Of course, we should acknowledge several limitations of this
study. Firstly, multi-center and large-scale prospective clinical cohorts
still need to be used to verify the universality of our model, including
the sensitivity, specificity and accuracy of the model. Secondly, more
healthy individual samples were needed to confirm the specificity of
the assay in future studies. Thirdly, whether the P4 panel in clinical
routine to enable early diagnosis of HCC is need further test. Finally, in

this study, we did not directly assess the model in patients with other
cancer types, which can determine whether the model is spe-
cific to HCC.

In summary, our study presented an effective spectrometry (MS)-
based proteomics workflow for the discovery and validation of early
diagnosis serum biomarkers of HCC. We developed an earlier and
more accurate predictive panel for the conversion of LC to HCC than
existing clinical methods, which may provide useful reference for the
early diagnosis of HCC.

Methods
Patient cohorts and sample collection
This project was approved by the Institution Review Board of Meng-
chao Hepatobiliary Hospital of Fujian Medical University. Informed
consent was obtained from each participant before the operation. The
use of clinical specimens was completely in compliance with the
“Declaration of Helsinki”.

For constructing the discovery cohort, 40 chronic asymptomatic
hepatitis B virus carrier (AsC), 64 basic liver diseases (BLD) (including
16 chronic hepatitis B (CHB), 18 ALD, and 30 NAFLD samples), 53 liver
cirrhosis (LC) and 163 hepatocellular carcinoma (HCC) serum samples
of patients were enrolled fromApril 2014 to June 2021 in local hospital.
The inclusion criteria for HCC patients were: 1) Histopathologically
confirmed hepatocellular carcinoma; (2) Radical hepatectomy
performed2; (3) No preoperative anti-cancer treatment; (4) had com-
plete physio-biochemical clinicopathological data. Patients with CHB,
ALD, NAFLD, and LC required physiological and imaging evidence for
the diagnosis. Gender, detailed physiological and biochemical indica-
tors for all patients, as well as clinicopathological characteristics for
HCC patients can be found in the Supplementary Data 1.

The retrospective validation cohort collected serum samples
from 210 HCC patients, 115 LC patients and 104 healthy individual
controls from June 2016 to July 2021 in local hospital, and candidate
biomarkers were validated using PRM-MS. Detailed inclusion and
exclusion criteria of the patients were the same as for the discovery
cohort.

Notably, 253 LC patients were prospectively collected from the
clinical trail of Early Screening for Hepatocellular Carcinoma program
(n = 17, Ethical Approval No.: Keshen 2018_005_02) and the PreCar
program (n = 236, Prospective suRveillance for very Early hepatoCel-
lular cARcinoma project, ClinicalTrials.gov No.: NCT03588442) from
June 2018 to July 2022, inwhich the enrolled LC patients were followed
up every 6 months with AFP, liver function tests, a chest computed
tomography (CT) and ultrasound or a contrast-enhanced CT scan or
magnetic resonance imaging (MRI) of the abdomen at each visit. The
diagnosis of HCC followed the strict criteria of the European Associa-
tion for the Study of the Liver (EASL). Themedian follow-up time of LC
patientswas 43.9months and 36 LCpatients werediagnosedwithHCC
during subsequent follow-up. The median time from enrollment to
progression to HCC for these LC patients was 28.1 months.

All samples were collected from clinical specimen banks of
Mengchao Hepatobiliary Hospital of Fujian Medical University.
Serum samples were collected using an intravenous tube without

Fig. 6 | Diagnosis performance of the P4 model in validation cohort. a ROC
curves of P4 panel, AFP, PIVKA-II, and their combination for HCC patients (n = 80)
versus LC patients (n = 47) and HCC patients (n = 80) versus HC (n = 43) in valida-
tion cohort. b ROC curves of P4 panel and PIVKA-II for AFP-negative HCC patients
(n = 42) versus LC patients (n = 47) and HCC patients (n = 42) versus HC (n = 43) in
validation cohort. c ROC curves of P4 panel and AFP for PIVKA-II -negative HCC
patients (n = 16) versus LC patients (n = 47) and HCC patients (n = 16) versus HC
(n = 43) in validation cohort. d ROC curves of P4 panel for AFP-negative and PIVKA-
II-negative HCC patients (n = 7) versus LC patients (n = 47) and HCC patients (n = 7)
versus HC (n = 43) in validation cohort. e Differences of P4 scores between HCC
patients (n = 80) and LC patients (n = 47), and HCC patients (n = 80) and HC

(n = 43). Significance was determined by two-sided Wilcoxon test with Benjamini-
Hochberg multiple test adjustment. Box plots indicate median (middle line), 25%,
75% percentile (box) and minimum and maximum (whiskers) as well as outliers
(single points). f Confusion matrix showed P4 panel performance for classifying
HCC and LC, HCC and HC in the validation set. g Sensitivity with 95% confidence
interval (CI) of P4 score and AFP + PIVKA-II in HCC of different clinical stages, such
as TNM stages (Stage I, n = 24; Stage II, n = 42; Stage III, n = 8; Stage IV, n = 4), BCLC
stages (Stage 0–A, n = 61; Stage B, n = 4; Stage C, n = 13) and CNLC stage (Stage Ia,
n = 41; Stage Ib, n = 20; Stage II, n = 4; Stage III, n = 13). Error bars were defined to
95% CI of sensitivity. Source data are provided as a Source Data file.
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anticoagulant and coagulated at room temperature for 30min, then
centrifuged at 1000 g for 10min. The supernatant serumwas collected
and frozen at −80 °C for subsequent use.

Separation of LAPs and HAPs for serum samples
To construct a spectrum library for DIA-MS, 40 samples were ran-
domly selected andmixed equally into one pool, so 320 samples were

divided into 8 pools in total. HAPs and LAPs in serum were separated
by high performance liquid chromatography (HPLC) using Human 14
Multiple Affinity Removal System Column (Agilent Technologies,
Santa Clara, CA, USA) according to the manufacturer’s instructions.
The collected fractions of LAPs and HAPs were concentrated into one
tube by 3 K cutoff centrifugal filter for protein concentration mea-
surement using the BCA assay, respectively42.
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Protein digestion
Protein digestion for serum samples were performed using amodified
Filter-Aided Sample Preparation (FASP)method43. To prepare the LAPs
and HAPs peptides for MS detection, 500μg protein samples were
diluted by 400μL lysis buffer (6M urea and 1× protease inhibitor
cocktail). Then, 8mMdithiothreitol was added to reduce for 30min at
55 °C, followedby 50mM iodoacetamide (IAA) to alkylate for 30min in
dark at room temperature. The protein solutions were then washed
twice with 100mM tetraethyl-ammonium bromide in 3 K cutoff cen-
trifugal, and digested using trypsin at a concentration of 1:50 (w/w) for
18 h at 37 °C. Digested peptides are centrifuged at 14,000 g for 30min
and collected in the outer tube of the filter. Finally, the digested pep-
tides were eluted and evaporated to dryness for LC-MS/MS analysis.

For peptide preparation of DIA-MS and PRM-MS, 10μL of each
individual serum samplewasdilutedby adding 200μL lysis buffer, and
200μg proteins were prepared in the same method as mentioned
above for subsequent MS analysis, respectively.

High pH reversed-phase separation
LAPs and HAPs were fractioned by an offline LC system (Acquity UPLC,
Waters, the U.S.A) via high pH (pH= 10) separation, which was per-
formed in C18 reverse phase column (2.1mm× 50mm, 1.7 μm, catalog
No.186002350, Waters, the U.S.A) with a flow rate of 400μL/min.
Peptidemixtures were resuspended inmobile phase A and eluted with
a subsequent and linear gradient as following: 0–5min, 100% mobile
phase A; 5–20min, 93%mobile phase A; 20–25min, 65%mobile phase
A. Mobile phase A was H2O with 0.1% FA and mobile phase B was ACN
with 0.1% FA. Starting at 1min, one tube of fractions was collected
every 30 s. Thus, 48 tubes of LAPs or HAPs fractions were collected for
each of the 25min gradients. To reduce the MS detection time, we
mixed these fractions with the same time interval. For example, frac-
tions collected in 1, 4, 7, 10, 13, and 16min were mixed into one tube.
Finally, a final of eight samples were dried by vacuum centrifugation
for proteomic analysis.

Data acquisition by DDA mass spectrometry
For spectrum library construction, 1μg of each fraction was added to
the nano liquid chromatography (Easy-nLC 1000, Thermo, the U.S.A.)
which was linked with a Quadrupole-Orbitrap mass spectrometer
(Q Exactive plus, Thermo, the U.S.A.). Briefly, the peptide was resus-
pended in mobile phase C (0.1% FA in water) and equal amounts of
indexed retention time (iRT) peptide standards (Biognosys, Switzer-
land) were spiked into each sample. And the peptides were separated
onto the C18 analytical column (75μm×250μm, 1.8 μm, catalog No.
186008818, Waters, the U.S.A) with a 70min gradient at a constant
flow rate of 300 nL/min (0–3min, 4–7% of mobile phase D; 3-45min,
7–14% mobile phase D; 45–60min, 14–30% of mobile phase D,
60–70min, 30–90%ofmobilephaseD andheld at90%mobile phaseD
for 15min. Mobile phase C was 0.1% FA in water, mobile phase D was
0.1% FA in ACN). Mass spectrometry was operated under a DDA mode
with 1.9 kV electrospray voltage at the inlet. DDA scheme included a
full MS scan from 300 to 1,800m/z at a 70,000 resolution (at m/z of

200) using an AGC target value of 3E6. Fifteen most intensive pre-
cursors of MS/MS scan were selected for high energy collisional dis-
sociation (HCD) with 27% normalized collision energy. MS/MS spectra
were acquired at resolution of 17,500 (at m/z of 200) using an AGC
target value of 1E5 and a maximum injection time (IT) of 45ms.
Dynamic exclusion was applied with a repeat count of 1 and an
exclusion time of 30 s.

Data acquisition by DIA mass spectrometry
For data acquisition of DIA-MS, equal amount of iRTpeptide standards
were spiked into individual sample peptide, and nano-LCMS/MS basic
parameter settings were the same as that for DDA. We used the
experimental setting of the ordered allocation with HCC samples
processed first, followed by LC, CHB, and AsC; while, within-group
samples were analyzed in a complete randomized allocation. In DIA
mode, DIA scheme was included a full MS scan from 400 to 1200m/z
at a 70,000 (at m/z of 200) resolution and 32 MS/MS scans were
acquired with a 17,500 resolution at a m/z of 200 and a max IT of
20ms. The cycle of 32 MS/MS scans (center of isolation window) with
two kinds of wide isolation window are as follows (m/z): 410–990m/z
with 20m/z wide and 1050–1150m/z with 100m/z wide. The dynamic
exclusion time was set to 20 s.

Construction of spectral library and analysis of DIA-MS
For spectrum library construction, both DDA and DIA files were pro-
cessed using Spectronaut (Version. 13.2.19)44. The background data-
base was built with FASTA file of Homo sapiens containing 20368
reviewed proteins (Published by Uniprot in 2020 year), combining
with the fusion sequence of iRT. Digest enzyme was trypsin/P andmax
missed cleavages only allowed 2. Carbamidomethyl was set to fixed
modification, and acetyl (Protein N-term) and oxidation were set to
variable modification. The false discovery rate was set to 1% at peptide
precursor level and 1% at protein level. For the quantitative analysis of
proteins across the 320 serum samples, 320 DIA raw data files were
searched against the hybridized spectral library followed by the
quantification via Spectronaut Pulsar X. Q value cutoff of protein and
precursor were both set to 0.01.

Quality control of the mass spectrometry platform and the
serum proteomics experiment
To evaluate the performance of the mass spectrometry systems, the
Hela standard peptides (Pierce, theU.S.A)wasmeasured in the process
of the project as the quality-control standard. DDA analysis was
interspersed per two experimental samples and DIA-MS analysis was
interspersedper ten experimental samples. The standardwas analyzed
using the same method and conditions as using in the HCC-related
serum samples. A Pearson’s correlation coefficient was calculated for
all quality-control runs based on package reshape2 (Version.1.4.4) and
corrplot (Version.0.92) of R (Version.4.0.2).

To evaluate the quantitative accuracy of the serum proteome
experiments, technical replicates of six serum samples (HCC, n = 2; LC,
n = 2; CHB, n = 2) were also measured in the middle and at the end of

Fig. 7 | Performance of the P4model in predicting people at high risk of HCC in
prospective validation cohort. a Performance of the P4 score, serum biomarkers
(AFP, PIVKA-II, AFP + PIVKA-II), and early diagnosis score models (ASAP and aMAP
score model) for LC patients (n = 76) in prospective validation set to predict LC
patients who developed to HCC at subsequent follow up. The upper panel illu-
strated ROC curves, and the lower panel showed the AUC, sensitivity, and specifi-
city. b Differences of P4 scores between LC patients who developed HCC (n = 11)
and LC patients who did not develop HCC (n = 65) in the validation cohort. Sig-
nificance was determined by Wilcoxon test with Benjamini-Hochberg multiple test
adjustment. Box plots indicate median (middle line), 25%, 75% percentile (box) and
minimum and maximum (whiskers) as well as outliers (single points). c Confusion
matrix showed P4 panel performance for predicting people at high risk of HCC in

the validation cohort (n = 76). d The categorization of imaging results, P4 scores,
serum biomarkers, ASAP model and aMAP score results of 11 LC patients in the
validation cohort who developed HCC during follow-up was shown in each color-
code plot. Blue indicated positive, gray indicated negative, while pink indicated no
detection. e Time distribution of P4 panel predicted HCC occurrence earlier than
imaging results. f The concordance comparison of P4 scores, serum biomarkers
and risk scores compared with positive and negative of CT/MRI scan results during
HCC occurrence. g The time-course demonstration of imaging results and quan-
tified levels of P4 scores, serum biomarkers and risk scores during the clinical
course of 11 patients who developed HCC. The corresponding cutoffs were indi-
cated by dashed lines. Source data are provided as a Source Data file.
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the project by DIA-MS. The reproducibility of two replicates with the
same samples was assessed by correlation analysis and CV calculation.
A Pearson’s correlation coefficient was calculated for all replicated
runs based on package reshape2 and corrplot of R. CV calculation was
based on the ratio of the standard deviation (SD) to the mean of the
protein quantification, and the visualization of the violin plot was
performed by Graphpad Prism (Version.8).

Data processing for serum proteomics data
The pre-processing of the proteomic data was performed using wko-
mics (https://www.omicsolution.com/wkomics/main/) analysis
platform45. For proteins with ≥ 40% integrity in HCC or non-HCC
samples, missing values were filled with the SeqKNN method; while
when integrity <40% in both two groups, missing values were filled
with a minimal value. Then median normalization and Log2 transfor-
mation were performed for subsequent data analysis.

Identification and functional analysis of HCC-related differen-
tially abundant proteins
Differentially abundance proteins were identified using two-sided
independent sample t-test and Benjamini-Hochberg multiple test
adjustment based onwkomics analysis platform. Proteinswithp <0.05
and FC ≥ 1.2 were eligible as differentially abundant proteins. Gene
ontology (GO) analysis andKyotoEncyclopediaofGenes andGenomes
analysis were used to enrich the functions and pathways of HCC-
related differentially abundant proteins. The statistical difference of
the enrichment was evaluated by the hypergeometric test and the
method of Benjamini-Hochberg multiple test adjustment. Protein-
protein interaction (PPI) network analysis was performed using online
analysis tool String (https://cn.string-db.org/). Proteins clustering in
PPI was based on K-means algorithm and visualization of the network
diagram used mapping tool Cytoscape 3.9.1.

Selection of unique peptides of HCC candidate diagnosis
biomarkers
Learning Vector Quantization (LVQ) model46 achieved via package
mlbench and caret of R was used to evaluate the accuracy of single
protein in identifying HCC patients for HCC-related differentially
abundantproteins. Thediscovery cohort of 320patientswas randomly
divided into ten equaldata sets and repeated ten times to train the LVQ
model. And the candidate proteins were selected with accuracy higher
than 0.8. The ionic characteristics of peptides matched candidate
proteins were continued to evaluate as follows: the selected peptides
were required to be unique and without modification; the best length
of peptides was 8–12 amino acids and have at least 5 ions with the
intensity more than 104. Each protein ultimately selected one unique
peptide as a candidate for PRM-MS validation.

Validation of candidate biomarkers using targeted proteomics
PRMquantification strategy was used to further validate the candidate
biomarkers identified by DIA-MS above. The synthesized isotope
labeled peptides of the candidate unique peptides were spiked into
peptide samples for absolute quantification. The mixed peptides
were loaded into LC-MS/MS for data acquisition in PRMmode at a flow
rate of 300nL/min. The LC gradient started with 92% of phase C and
decreased to 82% at 46min. Phase C then reached 68% at 51min. The
gradient finally reached 20% C at 52min and was held for 5min until
next injection. A full MS survey scanwas set from 300 to 1800m/z at a
resolution of 70,000 (at 200m/z) with 1.9 kV electrospray voltage
at the inlet. Target ions were submitted toMS/MS by HCDwithMS/MS
spectra resolution of 17,500 (at 200m/z) and 1m/z isolation window.
PRM transitions were extracted from PRM-MS raw data files and ana-
lyzed using Skyline (Version.3.6.0.1)47. Peptide peak areas were

calculated as the sum of at least three most abundant transitions.
Lists of all peptides targeted in the PRM analyses are provided in
Supplementary Table 2.

Random forestmodel construction andperformance evaluation
for HCC early diagnosis biomarkers
Machine learning model based on Random forest algorithm48 was
constructed by package randomForest (Version.4.6-14) of R to predict
diagnostic performance for different biomarker panels. 259 samples
(containing130 HCC, 68 LC, and 61 HC) of the modeling set were
divided into a training set (n = 182, containing 93 HCC, 47 LC, and 42
HC) and a testing set (n = 77, containing 37 HCC, 21 LC, and 19 HC) at a
ratio of 7:3 randomly by randomsampling. In the training of themodel,
the number of decision trees (ntree) was set to 500 and its number of
variables (mtry)was set tohalf of thenumber of classifiers according to
different panels (non-integer values were rounded). The trained
models were then tested internally in the testing set to obtain cor-
rected thresholds for distinguishing HCC patients from LC patients
and HC individuals. The stability validation of models was performed
in an extra validation set consisting of 80 HCC, 47 LC, and 43 HC. The
performance of different models was assessed by comparing sensi-
tivity, specificity, and area under the curve (AUC) of receiver operating
characteristic (ROC) curve. ROC curves were achieved by package
pROC (Version.1.18.0) of R.

Random forestmodel construction andperformance evaluation
for HCC early diagnosis panels in the prospective
validation cohort
Random forest model for HCC early diagnosis was constructed by the
same method as above. A prospective validation cohort containing 36
LC patients with HCC development and 217 LC without HCC devel-
opment was divided into a training set (n = 177) and a validation set
(n = 76) at a ratio of 7:3 randomlyby randomsampling. The training set
was used to model training for HCC early diagnosis biomarker panel.
The trainedmodels were then verified in the validation set to assess its
prediction performance ability for LC patients with HCCdevelopment.
The performance of different models was assessed by comparing
sensitivity, specificity, and AUC of ROC curve. ROC curves were
achieved by package pROC of R. In addition, two clinical HCC risk
prediction models, ASAP (including age, sex, AFP, and PIVKA-II)49 and
aMAP (including age, male, albumin, bilirubin, and platelet)50, were
used to compare with the P4 panel in LC patients with HCC
development.

Statistics and reproducibility
No statistical method was used to determine sample sizes. Experi-
ments were not randomized. As samples were required for both clas-
sifier training and validation, they were randomly allocated into two
subsets at a ratio of 7:3. Data distributions were assumed to be normal,
but this was not formally tested. No data were excluded from the
analyses. AUC was used to measure the performance of biomarkers in
distinguishingHCC and LCpatients. All statistical testswere two-sided,
and unless stated otherwise, the results were considered as significant
at a p value threshold of 0.05. Details of statistical analyses were pro-
vided throughout the text and in figure legends with their associated
sample sizes. Graphpad Prism version 8 was used for drawing scatter
plot, box plot, violin plot, and column for data visualization. Further
information on research design is available in the Nature Research
Reporting Summary linked to this article.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw data of mass spectrometry generated in this study have been
deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the iProX partner reposi-
tory (https://www.iprox.cn/, Project ID: IPX0005766000)51,52 with the
dataset identifier PXD046887. The iProX data is publicly available
(www.iprox.org, accession number IPX0005766000). All relevant data
are included in the manuscript and the Supplementary Informa-
tion. Source data are provided with this paper.

Code availability
Data analysis was performed in R version 4.0.2. using custom or
publicly-available R package. Individual packages are explicitly cited in
the manuscript. The code is available upon request and deposited in a
Github repository. We have obtained a (https://doi.org/10.5281/
zenodo.10117967) for the Github repository at Zenodo53.

References
1. Llovet, J.M. et al. Hepatocellular carcinoma.Nat. Rev. Dis. Prim.7, 6,

https://doi.org/10.1038/s41572-020-00240-3 (2021).
2. General Office of National Health Commission Standard for diag-

nosis and treatment of primary liver cancer (2022 edition). J. Clin.
Hepatol. 38, 288–303, https://doi.org/10.3969/j.issn.1001-5256.
2022.02.009 (2022).

3. European Association for the Study of the Liver. Electronic address:
easloffice@easloffice.eu; European Association for the Study of the
Liver EASL clinical practice guidelines: management of hepato-
cellular carcinoma. J. Hepatol. 69, 182–236, https://doi.org/10.
1016/j.jhep.2018.03.019 (2018).

4. Patel, M. et al. Hepatocellular carcinoma: diagnostics and screen-
ing. J. Eval. Clin. Pract. 18, 335–342, https://doi.org/10.1111/j.1365-
2753.2010.01599.x (2012).

5. Tsukamoto, M. et al. Clinical significance of half-lives of tumor
markers alpha-fetoprotein and des-gamma-carboxy prothrombin
after hepatectomy for hepatocellular carcinoma. Hepatol. Res. 48,
E183–E193, https://doi.org/10.1111/hepr.12942 (2018).

6. Ferrari, E. et al. Urinary proteomics profiles are useful for detection
of cancer biomarkers and changes induced by therapeutic proce-
dures. Molecules 24, 794, https://doi.org/10.3390/
molecules24040794 (2019).

7. Sun, Y. et al. Noninvasive urinary protein signatures associatedwith
colorectal cancer diagnosis andmetastasis.Nat.Commun. 13, 2757,
https://doi.org/10.1038/s41467-022-30391-8 (2022).

8. Cai, Z. et al. Comprehensive liquid profiling of circulating tumor
DNA and protein biomarkers in long-term follow-up patients with
hepatocellular carcinoma. Clin. Cancer Res. 25, 5284–5294,
https://doi.org/10.1158/1078-0432.CCR-18-3477 (2019).

9. Zhang, X. et al. Ultrasensitive and affordable assay for early
detection of primary liver cancer using plasma cell-free DNA frag-
mentomics. Hepatology 76, 317–329, https://doi.org/10.1002/hep.
32308 (2022).

10. Labgaa, I. et al. A pilot study of ultra-deep targeted sequencing of
plasma DNA identifies driver mutations in hepatocellular carci-
noma. Oncogene 37, 3740–3752, https://doi.org/10.1038/s41388-
018-0206-3 (2018).

11. Huang, L. et al. Machine learning of serum metabolic patterns
encodes early-stage lung adenocarcinoma.Nat. Commun. 11, 3556,
https://doi.org/10.1038/s41467-020-17347-6 (2020).

12. Ahn, K. S. et al. Associations of serum tumor biomarkers with inte-
grated genomic and clinical characteristics of hepatocellular car-
cinoma. Liver Cancer 10, 593–605, https://doi.org/10.1159/
000516957 (2021).

13. Zhang, Q. et al. Mass cytometry-based peripheral blood analysis as
a novel tool for early detection of solid tumours: a multicentre
study. Gut https://doi.org/10.1136/gutjnl-2022-327496 (2022).

14. Fan, H. et al. Urine proteomic signatures predicting the progression
from premalignancy tomalignant gastric cancer. EBioMedicine 86,
104340, https://doi.org/10.1016/j.ebiom.2022.104340 (2022).

15. Anderson, N. L. The clinical plasma proteome: a survey of clinical
assays for proteins in plasma and serum. Clin. Chem. 56, 177–185,
https://doi.org/10.1373/clinchem.2009.126706 (2010).

16. Geyer, P. E., Holdt, L. M., Teupser, D. & Mann, M. Revisiting bio-
marker discovery by plasma proteomics. Mol. Syst. Biol. 13, 942,
https://doi.org/10.15252/msb.20156297 (2017).

17. Geyer, P. E. et al. Plasmaproteomeprofiling to assess human health
and disease. Cell Syst. 2, 185–195, https://doi.org/10.1016/j.cels.
2016.02.015 (2016).

18. Holewinski, R. J., Jin, Z., Powell, M. J., Maust, M. D. & Van Eyk, J. E. A
fast and reproducible method for albumin isolation and depletion
from serum and cerebrospinal fluid. Proteomics 13, 743–750,
https://doi.org/10.1002/pmic.201200192 (2013).

19. Bergemalm,D. et al. Systemic inflammation in preclinical ulcerative
colitis. Gastroenterology 161, 1526–1539.e1529, https://doi.org/10.
1053/j.gastro.2021.07.026 (2021).

20. Gillet, L. C. et al. Targeted data extraction of the MS/MS
spectra generated by data-independent acquisition: a new
concept for consistent and accurate proteome analysis. Mol.
Cell Proteom. 11, O111 016717, https://doi.org/10.1074/mcp.
O111.016717 (2012).

21. Sun, Z. et al. Circulating proteomic panels for diagnosis and risk
stratification of acute-on-chronic liver failure in patients with viral
hepatitis B. Theranostics 9, 1200–1214, https://doi.org/10.7150/
thno.31991 (2019).

22. Niu, L. et al. Noninvasive proteomic biomarkers for alcohol-related
liver disease. Nat. Med 28, 1277–1287, https://doi.org/10.1038/
s41591-022-01850-y (2022).

23. Virreira Winter, S. et al. Urinary proteome profiling for stratifying
patients with familial Parkinson’s disease. EMBO Mol. Med 13,
e13257, https://doi.org/10.15252/emmm.202013257 (2021).

24. Bader, J. M. et al. Proteome profiling in cerebrospinal fluid reveals
novel biomarkers of Alzheimer’s disease.Mol. Syst. Biol. 16, e9356,
https://doi.org/10.15252/msb.20199356 (2020).

25. Niu, L. et al. Plasma proteome profiling discovers novel proteins
associated with non-alcoholic fatty liver disease.Mol. Syst. Biol. 15,
e8793, https://doi.org/10.15252/msb.20188793 (2019).

26. Wewer Albrechtsen, N. J. et al. Plasma proteome profiling reveals
dynamics of inflammatory and lipid homeostasis markers after
Roux-En-Y gastric bypass surgery. Cell Syst. 7, 601–612 e603,
https://doi.org/10.1016/j.cels.2018.10.012 (2018).

27. Che, Y. Q., Zhang, Y., Li, H. B., Shen, D. & Cui, W. Serum KLKB1 as a
potential prognostic biomarker for hepatocellular carcinomabased
on data-independent acquisition and parallel reaction monitoring.
J. Hepatocell. Carcinoma8, 1241–1252, https://doi.org/10.2147/JHC.
S325629 (2021).

28. Xu, R. H. et al. Circulating tumour DNA methylation markers for
diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater.
16, 1155–1161, https://doi.org/10.1038/nmat4997 (2017).

29. Chan, K. C. et al. Noninvasive detection of cancer-associated gen-
ome-wide hypomethylation and copy number aberrations by
plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. USA 110,
18761–18768, https://doi.org/10.1073/pnas.1313995110 (2013).

30. Cai, J. et al. Genome-widemapping of 5-hydroxymethylcytosines in
circulating cell-free DNA as a non-invasive approach for early
detection of hepatocellular carcinoma.Gut 68, 2195–2205, https://
doi.org/10.1136/gutjnl-2019-318882 (2019).

31. Ikeda, S., Lim, J. S. & Kurzrock, R. Analysis of tissue and circulating
tumor DNA by next-generation sequencing of hepatocellular car-
cinoma: implications for targeted therapeutics. Mol. Cancer Ther.
17, 1114–1122, https://doi.org/10.1158/1535-7163.MCT-17-
0604 (2018).

Article https://doi.org/10.1038/s41467-023-44255-2

Nature Communications |         (2023) 14:8392 13

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
https://www.iprox.cn/
http://www.iprox.org
https://doi.org/10.5281/zenodo.10117967
https://doi.org/10.5281/zenodo.10117967
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.3969/j.issn.1001-5256.2022.02.009
https://doi.org/10.3969/j.issn.1001-5256.2022.02.009
https://doi.org/10.1016/j.jhep.2018.03.019
https://doi.org/10.1016/j.jhep.2018.03.019
https://doi.org/10.1111/j.1365-2753.2010.01599.x
https://doi.org/10.1111/j.1365-2753.2010.01599.x
https://doi.org/10.1111/hepr.12942
https://doi.org/10.3390/molecules24040794
https://doi.org/10.3390/molecules24040794
https://doi.org/10.1038/s41467-022-30391-8
https://doi.org/10.1158/1078-0432.CCR-18-3477
https://doi.org/10.1002/hep.32308
https://doi.org/10.1002/hep.32308
https://doi.org/10.1038/s41388-018-0206-3
https://doi.org/10.1038/s41388-018-0206-3
https://doi.org/10.1038/s41467-020-17347-6
https://doi.org/10.1159/000516957
https://doi.org/10.1159/000516957
https://doi.org/10.1136/gutjnl-2022-327496
https://doi.org/10.1016/j.ebiom.2022.104340
https://doi.org/10.1373/clinchem.2009.126706
https://doi.org/10.15252/msb.20156297
https://doi.org/10.1016/j.cels.2016.02.015
https://doi.org/10.1016/j.cels.2016.02.015
https://doi.org/10.1002/pmic.201200192
https://doi.org/10.1053/j.gastro.2021.07.026
https://doi.org/10.1053/j.gastro.2021.07.026
https://doi.org/10.1074/mcp.O111.016717
https://doi.org/10.1074/mcp.O111.016717
https://doi.org/10.7150/thno.31991
https://doi.org/10.7150/thno.31991
https://doi.org/10.1038/s41591-022-01850-y
https://doi.org/10.1038/s41591-022-01850-y
https://doi.org/10.15252/emmm.202013257
https://doi.org/10.15252/msb.20199356
https://doi.org/10.15252/msb.20188793
https://doi.org/10.1016/j.cels.2018.10.012
https://doi.org/10.2147/JHC.S325629
https://doi.org/10.2147/JHC.S325629
https://doi.org/10.1038/nmat4997
https://doi.org/10.1073/pnas.1313995110
https://doi.org/10.1136/gutjnl-2019-318882
https://doi.org/10.1136/gutjnl-2019-318882
https://doi.org/10.1158/1535-7163.MCT-17-0604
https://doi.org/10.1158/1535-7163.MCT-17-0604


32. Cai, Z. X. et al. Circulating tumor DNA profiling reveals clonal evo-
lution and real-time disease progression in advanced hepatocel-
lular carcinoma. Int. J. Cancer 141, 977–985, https://doi.org/10.
1002/ijc.30798 (2017).

33. Komoll, R.M. et al. MicroRNA-342-3p is a potent tumour suppressor
in hepatocellular carcinoma. J. Hepatol. 74, 122–134, https://doi.
org/10.1016/j.jhep.2020.07.039 (2021).

34. Liu, W. et al. Circ-ZEB1 promotes PIK3CA expression by silencing
miR-199a-3p and affects the proliferation and apoptosis of hepa-
tocellular carcinoma. Mol. Cancer 21, 72, https://doi.org/10.1186/
s12943-022-01529-5 (2022).

35. Chen, L. et al. Genome-scale profiling of circulating cell-free DNA
signatures for early detection of hepatocellular carcinoma in cir-
rhotic patients. Cell Res. 31, 589–592, https://doi.org/10.1038/
s41422-020-00457-7 (2021).

36. Paltridge, J. L., Belle, L. & Khew-Goodall, Y. The secretome in cancer
progression. Biochim. Biophys. Acta 1834, 2233–2241, https://doi.
org/10.1016/j.bbapap.2013.03.014 (2013).

37. Jacobs, J. M. et al. Utilizing human blood plasma for proteomic
biomarker discovery. J. Proteome Res. 4, 1073–1085, https://doi.
org/10.1021/pr0500657 (2005).

38. Muntel, J. et al. Advancing urinary protein biomarker discovery by
data-independent acquisition on a quadrupole-orbitrap mass
spectrometer. J. Proteome Res. 14, 4752–4762, https://doi.org/10.
1021/acs.jproteome.5b00826 (2015).

39. Jia, B. et al. Identification of serum biomarkers to predict peme-
trexed/platinum chemotherapy efficacy for advanced lung adeno-
carcinoma patients by data-independent acquisition (DIA) mass
spectrometry analysis with parallel reaction monitoring (PRM) ver-
ification. Transl. Lung Cancer Res. 10, 981–994, https://doi.org/10.
21037/tlcr-21-153 (2021).

40. Xiong, Y. et al. Circulating proteomic panels for risk stratification of
intracranial aneurysm and its rupture. EMBO Mol. Med. 14, e14713,
https://doi.org/10.15252/emmm.202114713 (2022).

41. Rauniyar, N. et al. Data-independent acquisition and parallel reac-
tion monitoring mass spectrometry identification of serum bio-
markers for ovarian cancer. Biomark. Insights 12, 1177271917710948,
https://doi.org/10.1177/1177271917710948 (2017).

42. Liu, H. et al. The serum proteomics tracking of hepatocellular
carcinoma early recurrence following radical resection. Cancer
Manag Res. 11, 2935–2946, https://doi.org/10.2147/CMAR.
S190561 (2019).

43. Xing, X. et al.Quantitative secretomeanalysis reveals clinical values
of carbonic anhydrase II in hepatocellular carcinoma. Genom. Pro-
teom. Bioinform. 19, 94–107, https://doi.org/10.1016/j.gpb.2020.
09.005 (2021).

44. Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Data-independent
acquisition mass spectrometry-based proteomics and software
tools: a glimpse in 2020. Proteomics 20, e1900276, https://doi.org/
10.1002/pmic.201900276 (2020).

45. Wang, S. et al. NAguideR: performing and prioritizingmissing value
imputations for consistent bottom-up proteomic analyses. Nucleic
Acids Res. 48, e83, https://doi.org/10.1093/nar/gkaa498 (2020).

46. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-
negative matrix factorization. Nature 401, 788–791, https://doi.org/
10.1038/44565 (1999).

47. Stolze, S. C. & Nakagami, H. Targeted quantification of phospho-
peptides by parallel reaction monitoring (PRM). Methods Mol. Biol.
2139, 213–224, https://doi.org/10.1007/978-1-0716-0528-8_16 (2020).

48. Shen, B. et al. Proteomic and metabolomic characterization of
COVID-19 patient sera.Cell 182, 59–72.e15, https://doi.org/10.1016/
j.cell.2020.05.032 (2020).

49. Shen, F. et al. A novel online calculator based on serum biomarkers
to detect hepatocellular carcinoma among patients with hepatitis
B. Clin. Chem. 65, 1543–1553, https://doi.org/10.1373/clinchem.
2019.308965 (2019).

50. Fan, R. et al. aMAP risk score predicts hepatocellular carci-
noma development in patients with chronic hepatitis. J.
Hepatol. 73, 1368–1378, https://doi.org/10.1016/j.jhep.2020.
07.025 (2020).

51. Ma, J. et al. iProX: an integrated proteome resource. Nucleic
Acids Res. 47, D1211–D1217, https://doi.org/10.1093/nar/
gky869 (2019).

52. Chen, T. et al. iProX in 2021: connecting proteomics data sharing
with big data. Nucleic Acids Res. 50, D1522–D1527, https://doi.org/
10.1093/nar/gkab1081 (2022).

53. Xing, X. et al. Proteomics-driven noninvasive screening of circu-
lating serumprotein panels for the early diagnosis of hepatocellular
carcinoma. Serum-diagnostic-model, https://doi.org/10.5281/
zenodo.10117967 (2023).

Acknowledgements
Thisworkwas supportedby theScientificFoundationof FujianProvincial
Health Commission (Grant No. 2021ZQNZD014), the Major Science and
Technology Special Project of Fujian Province (Grant No.
2022YZ036012); the Major Projects of Medicine and Health in Zhejiang
Province (WKJ-ZJ-2306), the Natural Science Foundation of Fujian Pro-
vince (Grant No. 2023J011478); the Scientific research project of Health
and Family Planning Commission of Fujian province (Grant No.
2022GGA051), and the Scientific Foundation of Fuzhou Health Depart-
ment (Grant No. 2022-S-009).

Author contributions
X.L. and X.X. led this project in generating proteomics data, data ana-
lysis, data validation and manuscript preparation. Y.W. and Y.Z. per-
formed the collection and provision of clinical samples. L.C., E.H., Z.L.,
andC.H. contributed to the collection and collation of clinical data. L.C.,
J.O., F.W., Z.L., and M.L. contributed to proteomics sample preparation
of serum. X.X., L.C., and J.O. coordinated mass spectrometry data
acquisition. X.X. and L.C. performed proteomics data analysis and sta-
tistical analysis. L.C. and J.O. constructed the data portal; L.W., J. L., and
X.L. supervised the project, revised and reviewed themanuscript. All the
authors contributed to the manuscript revision.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-44255-2.

Correspondence and requests for materials should be addressed to
Liming Wu, Jingfeng Liu or Xiaolong Liu.

Peer review information Nature Communications thanks Arndt Vogel
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-44255-2

Nature Communications |         (2023) 14:8392 14

https://doi.org/10.1002/ijc.30798
https://doi.org/10.1002/ijc.30798
https://doi.org/10.1016/j.jhep.2020.07.039
https://doi.org/10.1016/j.jhep.2020.07.039
https://doi.org/10.1186/s12943-022-01529-5
https://doi.org/10.1186/s12943-022-01529-5
https://doi.org/10.1038/s41422-020-00457-7
https://doi.org/10.1038/s41422-020-00457-7
https://doi.org/10.1016/j.bbapap.2013.03.014
https://doi.org/10.1016/j.bbapap.2013.03.014
https://doi.org/10.1021/pr0500657
https://doi.org/10.1021/pr0500657
https://doi.org/10.1021/acs.jproteome.5b00826
https://doi.org/10.1021/acs.jproteome.5b00826
https://doi.org/10.21037/tlcr-21-153
https://doi.org/10.21037/tlcr-21-153
https://doi.org/10.15252/emmm.202114713
https://doi.org/10.1177/1177271917710948
https://doi.org/10.2147/CMAR.S190561
https://doi.org/10.2147/CMAR.S190561
https://doi.org/10.1016/j.gpb.2020.09.005
https://doi.org/10.1016/j.gpb.2020.09.005
https://doi.org/10.1002/pmic.201900276
https://doi.org/10.1002/pmic.201900276
https://doi.org/10.1093/nar/gkaa498
https://doi.org/10.1038/44565
https://doi.org/10.1038/44565
https://doi.org/10.1007/978-1-0716-0528-8_16
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1373/clinchem.2019.308965
https://doi.org/10.1373/clinchem.2019.308965
https://doi.org/10.1016/j.jhep.2020.07.025
https://doi.org/10.1016/j.jhep.2020.07.025
https://doi.org/10.1093/nar/gky869
https://doi.org/10.1093/nar/gky869
https://doi.org/10.1093/nar/gkab1081
https://doi.org/10.1093/nar/gkab1081
https://doi.org/10.5281/zenodo.10117967
https://doi.org/10.5281/zenodo.10117967
https://doi.org/10.1038/s41467-023-44255-2
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-44255-2

Nature Communications |         (2023) 14:8392 15

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Proteomics-driven noninvasive screening of circulating serum protein panels for the early diagnosis of hepatocellular carcinoma
	Results
	Study design and clinical characteristics of serum specimens
	Proteomic characterization of serum samples
	Assessment of the mass spectrometry platform and proteomic�data
	Differentially abundant proteins and functional alterations related�to HCC
	Verification of serum candidate biomarkers using PRM-based targeted�MS
	Machine learning-based classification�of HCC
	The P4 panel accurately predicted conversion of LC to HCC earlier

	Discussion
	Methods
	Patient cohorts and sample collection
	Separation of LAPs and HAPs for serum samples
	Protein digestion
	High pH reversed-phase separation
	Data acquisition by DDA mass spectrometry
	Data acquisition by DIA mass spectrometry
	Construction of spectral library and analysis of DIA-MS
	Quality control of the mass spectrometry platform and the serum proteomics experiment
	Data processing for serum proteomics�data
	Identification and functional analysis of HCC-related differentially abundant proteins
	Selection of unique peptides of HCC candidate diagnosis biomarkers
	Validation of candidate biomarkers using targeted proteomics
	Random forest model construction and performance evaluation for HCC early diagnosis biomarkers
	Random forest model construction and performance evaluation for HCC early diagnosis panels in the prospective validation�cohort
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




