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Quickmodel-based viscoelastic clot strength
predictions from blood protein concentra-
tions for cybermedical coagulation control

Damon E. Ghetmiri1,7, Alessia J. Venturi 1, Mitchell J. Cohen2,3 &
Amor A. Menezes 1,4,5,6

Cybermedical systems that regulate patient clotting in real time with perso-
nalized blood product delivery will improve treatment outcomes. These sys-
tems will harness popular viscoelastic assays of clot strength such as
thromboelastography (TEG), which help evaluate coagulation status in
numerous conditions: major surgery (e.g., heart, vascular, hip fracture, and
trauma); liver cirrhosis and transplants; COVID-19; ICU stays; sepsis; obstetrics;
diabetes; and coagulopathies like hemophilia. But these measurements are
time-consuming, and thus impractical for urgent care and automated coagu-
lation control. Because protein concentrations in a blood sample can be
measured in about fiveminutes, we develop personalized, phenomenological,
quick, control-oriented models that predict TEG curve outputs from input
blood protein concentrations, to facilitate treatment decisions based on TEG
curves. Here, we accurately predict, experimentally validate, and mechan-
istically justify curves and parameters for common TEG assays (Functional
Fibrinogen, Citrated Native, Platelet Mapping, and Rapid TEG), and verify
results with trauma patient clotting data.

Trauma remains the leading cause of death between the ages of 1 and
441, with the majority of deaths and essentially all morbidity driven by
coagulation and inflammation biology2. While much is known about
mechanistic drivers, clinical phenotypes, and biologic endotypes of
the post-trauma milieu, real-time hemostatic state identification,
future coagulation trajectory prediction, and overall therapeutic clin-
ical decision-making are hindered by inadequate models with slow-
arriving inputs. Smart devices are desired to assist a busy clinician by
automating the delivery of blood products based on point-of-care
hemostasis testing, continuous coagulation monitoring, and perso-
nalized, timely therapeutic delivery according to programmed

knowledge and artificial intelligence3, the combination of which will
realize a cybermedical system4. Steps toward a practical coagulation
cybermedical system, Fig. 1, have been made for trauma5, including its
process control6–8 and targeted treatment9. However, to truly realize a
closed-loop, feedback-based, cybermedical blood-product delivery
system, repeated and sequential measurements are needed to eluci-
date a patient’s coagulation patterns, and to capture and predict the
time course of clotting dynamics. Conventional coagulation tests like
prothrombin time and partial thromboplastin time do not yield suffi-
cient information to guide personalization9. Although viscoelastic
tests provide patient-specific clotting information, these assays are
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quite time-consuming at about an hour per run, which is in addition to
sample preparation time, and even newer rapid versions of these
assays take at least 30min10. Such delays preclude treatment protocols
from being dynamic, and prevent the automation of interventions due
to few and incomplete patient-specific measurements. Delays can also
reduce treatment efficacy, especially in hemorrhage11.

Thromboelastography (TEG) and Rotational Thromboelastometry
(ROTEM) are two pervasive and similar viscoelastic coagulation assays
that provide information on clot development, stabilization, and dis-
solution reflecting in vivo hemostasis12. Clotmechanical properties like
viscoelasticity are critical to clot function since overclotting blocks
vessels and leads to thrombosis, while weak clots do not close an injury
enough to stop bleeding13,14. These viscoelastic measures indicate the
clot strength of a blood sample with the aid of an immersed pin that
measures changes in rotational force as the sample blood coagulates.
Clot strength measurements can identify patients at risk for throm-
boembolic events15, and can improve patient outcomes in numerous
conditions: cardiac16, vascular17, and hip fracture surgeries18,19; liver
cirrhosis and transplants20–22; coronavirus disease 2019 (COVID-19)23;
intensive care unit stays24; sepsis25; obstetrics26–28; diabetes29;
hemophilia30; and trauma31, where viscoelastic measurements can

guide goal-driven patient treatments32–34. In all these conditions, blood
viscoelastic measurements provide clinical insight into the delivery of
blood products such as transfusions (e.g., fresh frozen plasma35), blood
protein concentrates (e.g., factor VII30), pharmacological agents (e.g.,
tranexamic acid36), and anticoagulant treatments (e.g., heparin23).

Models that substitute for the TEG/ROTEM assay and make vis-
coelastic clot strength predictions based on coagulation factor con-
centrations are a viable alternative. This is because the concentrations
of multiple coagulation factors in a blood sample can be measured
rapidly (within about five minutes), and because coagulation factor
deficiencies affect plasma coagulation kinetics as captured by TEG37.
Thereafter, control algorithms can leverage these models to generate
clotting predictions from patient blood sample measurements, and
provide frequent, personalized, and dynamic treatment recommen-
dations to move a patient along a desired recovery trajectory.
Although several viscoelastic models of blood flow38 and blood
coagulation39,40 exist, these models are highly mechanistic, computa-
tionally heavy, and unsuited to a cybermedical input-output type of
control system application. A recent ROTEM modeling advance41 may
enable the estimation of an important coagulation factor, factor XIII, in
a sample, and may also enable the estimation of other sample

Fig. 1 | A coagulation cybermedical system. Elements include: (1) Top left: point-
of-care hemostasis testing, e.g., by measuring the concentration of blood sample
components like factors II, V, VII, VIII, IX, X, antithrombin (ATIII), protein C (PC),
fibrinogen (FBG), plasmin (PLS), fibrin degradation product D-dimer (D-di), and
platelets (PLT). This illustration is a lightly modified version of purchased Vector-
Stock image 25805645. (2) Top right: continuous coagulation monitoring, e.g., by

measuring thrombin generation via the Calibrated Automated Thrombogram
(CAT)50 and clot strength via Thromboelastography (TEG)12. The doctor semi flat
illustration is courtesy of Storyset. (3) Bottom: personalized, timely delivery of
blood products according to programmed knowledge and artificial intelligence,
e.g., in the form of clinician decision support provided on a hand-held device, or
autonomously, using a feedback control system6,7.
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coagulation factor concentrations. However, the forward problem of
predicting a ROTEM curve from sample coagulation factor con-
centrations remains open. A promising TEG model42 cannot yet iden-
tify coagulation factor concentration deficits.

Hence, there is a need for a model that replaces the TEG / ROTEM
assay and that quickly provides the viscoelastic parameters that clin-
icians use to indicate patient coagulation status and guide treatment.
These parameters are derived from a TEG or ROTEMoutput curve and
consist of: reaction R time, which is the time from the start of the
reaction until a clot strength of 2mm amplitude is measured on the y-
axis; K time, which is the time immediately after the R time until a clot
firmness of 20mm amplitude is achieved; the angle α, a proxy for the
slope of the curve, which reflects the initial rate of clot formation; the
maximum amplitude MA, which indicates the maximum clot strength;
and Ly30, which is ameasurement of clot lysis, or degradation, 30min
after the MA time.

Here, from a control-oriented, phenomenological perspective, we
develop quick viscoelastic, dynamic coagulationmodels that accurately
predict the above parameters, toward future deployment for control-
oriented interventions of coagulation factor concentrations. We show
that model-based prediction of coagulation state for fast (<1 s), fre-
quent, automated, and tailored treatment is feasible. Such predictions
can potentially obviate the need for TEG assays in numerous disease
conditions, reduce the time to ascertain clotting in patients, and thus
increase the targeting of interventions at the point-of-care. Our intel-
lectual contributions include: (i) a novel, simplemodel that captures the
viscoelastic contributions of quickly- and easily-measurable coagulation
factor concentrations in plasma; (ii) a second new model to express
viscoelastic clot formation, stabilization, and degradation in whole
blood; (iii) an identification of platelet and platelet inhibition effects on
clot strength; (iv) mappings from our viscoelastic blood models to
typical clot measurement parameters for different TEG assays (Func-
tional Fibrinogen, Citrated Native, Platelet Mapping, and Rapid TEG);
and (v) a comparison to the generalized Maxwell viscoelastic model to
mechanistically justify our new identified models.

Results
Modeling approach
We first articulated our coremodeling idea in a conference paper43 and
tested preliminary idea implementation on a small trauma patient
dataset of whole blood TEG assays. However, the ensuing viscoelastic
curve prediction errors were large. This archival article differentiates
itself by including: substantial model revisions to improve prediction
errors; experimental model validation; model verification on a larger
and different trauma patient dataset; a determination of model-to-
parameter mappings for additional types of TEG assays; the incor-
poration of known hemostatic understanding; and the placement of
our work in a broader context beyond trauma coagulopathies.

Taken together, our results capture both stages of the blood coa-
gulation mechanism to stop bleeding, i.e., hemostasis, which are
reflected in viscoelastic clot strength measurements44: (i) primary
hemostasis: the formation of a weak platelet plug; and (ii) secondary
hemostasis: the formation of a clot through a fibrin network that sta-
bilizes this platelet plug. Primary hemostasis is the initial response upon
injury, when damaged endothelium (the tissue that forms a single layer
of cells) exposes vonWillebrand factor (vWF) and triggers inflammatory
mediators. Subsequently, blood platelets adhere to the areas with
exposed vWF. Thrombin (factor IIa, where the supplementary “a”
denotes an activated coagulation factor) facilitates platelet attachment
to the vWF and any circulating fibrinogen to form a weak platelet plug.

Thrombin is the end product of the coagulation cascade45, a
network of coagulation factor biochemical reactions. Secondary
hemostasis involves these coagulation factors stabilizing the weak
platelet plug. Once the coagulation cascade is triggered by the release
of tissue factor (TF) upon injury, thrombin is generated to enhance

platelet action as described above, activate factor XIII into factor XIIIa,
and convert fibrinogen into fibrin. This fibrin then forms the cross-
linked mesh that binds and stabilizes the weak platelet plug to stop
hemorrhage. As a procoagulant, thrombin also catalyzes other
coagulation-related reactions, like the activation of factors V, VIII, XI,
andproteinC (PC),which in turn regulate thrombin generation46. As an
anticoagulant, thrombin binds to thrombomodulin to initiate fibrino-
lysis, i.e., clot degradation47.

This fibrinolysis is reflected in viscoelastic clot strength mea-
surement curves, Fig. 2a, via Ly30. Fibrinolysis dissolves a blood clot to
prevent it from becoming large and problematic48. Plasminogen, a key
fibrinolysis component, is weaved into a blood clot during its forma-
tion. Tissue plasminogen activator (tPA, an enzyme that is slowly
released by the damaged endothelium of blood vessels) and factors
XIa and XIIa convert plasminogen to plasmin. This plasmin breaks
down fibrin strands, resulting in blood clot dissolution and fibrin
degradation products like D-dimer49.

Fig. 2 | Key elements of viscoelastic clot strength curves and approaches to
modeling them. Source data are provided as a Source Data file. a Experimental TEG
curves from two whole blood trauma patient samples show differences in lysis.
b Clot strength (total MA, navy) has secondary hemostasis (fibrin MA, olive) as an
underlying component, and their difference can be interrogated with platelet inhi-
bition, the amount of which indicates the amount of primary hemostasis. A hyper-
coagulable patient can have any one of hypercoagulable, normal, or hypocoagulable
secondary hemostasis. cThis article presents twoparallel approaches to predict TEG
output frommeasured coagulation factor concentrations in a patient blood sample.
The top path first predicts thrombin generation (blue block), which is then used to
predict viscoelasticity (greenblock), which is thereafter corrected for platelet effects
(yellow block). The bottom path predicts whole blood viscoelasticity directly from
coagulation factor concentrations (red block). Created with BioRender.com.
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Both primary and secondary hemostasis effects are merged in
the MA parameter, Fig. 2b, although the constituent fibrin MA value
that indicates secondary hemostasis is not immediately apparent
from this total MA parameter. Because platelet contributions to clot
strength complement coagulation factor contributions to clot
strength, patients with the same total MA can have different con-
stituent clot strength contributions from platelets (primary hemos-
tasis) and fibrin MA (secondary hemostasis). The amount that
platelets contribute to clot strength can be isolated by platelet inhi-
bition, which can reveal secondary hemostasis effects that can be
quite different from the whole blood viscoelastic indication (e.g.,
Patient C in Fig. 2b has a hypercoagulable whole blood viscoelastic
curve but a hypocoagulable fibrin clot strength curve). Providing
a treatment that increases clot strength by using a fixed amount
of added platelets can therefore yield very different coagulation
outcomes depending on the fibrin MA that a patient starts with.
Hence, it is very important to separately quantify platelet and coa-
gulation factor contributions to viscoelastic clot strength in a pre-
diction model.

Figure 2c illustrates two parallel paths to obtaining the dynamics
of viscoelastic clotting in a blood sample. The top path systematically
deduces secondary hemostasis (blue and green blocks) and then pri-
mary hemostasis (yellow block), by first using piece-by-piece models
for thrombin generation from other coagulation factors (blue block),
then predicting their contribution to overall viscoelasticity (green
block), and then accounting for platelet effects in whole blood vis-
coelasticity (yellow block). The bottom path constructs a viscoelastic
model of clotting in whole blood directly from coagulation factor
concentrations (red block).

In the top path, the thrombin generation piece can come from a
model that replaces the Calibrated Automated Thrombogram (CAT)50,
which is another time-consuming coagulation assay that is applied to
the plasma component of a whole blood sample to measure the con-
centration time-history of thrombin upon TF addition, as in the coa-
gulation cascade. An example model from our prior work5 showed the
importance of PC on inferred coagulation dynamics, as well as the
impact that antithrombin III (ATIII) had on a delay-associated model
parameter,Kd. This inference captures the knownmechanistic biology,
because ATIII is an anticoagulant that slows down thrombin produc-
tion during coagulation. We next develop models for the green, red,
and yellow blocks in Fig. 2c.

The datasets used in this article and their contributions to model
development are organized in Supplementary Fig. 1. The character-
istics of the trauma patients in these datasets are summarized in
Supplementary Fig. 2.

Platelet-poor plasma viscoelasticity and its relationship to TEG
functional fibrinogen
Weperformed TEG experiments on platelet-poor plasma (PPP) samples
of blood from ten normal individual donors (Dataset (7), Supplemen-
tary Fig. 1) to isolate the effects of coagulation factors following
thrombin generation (the second green block in the top path of Fig. 2c).
The results of CAT andTEG assays for each plasma sample are in Fig. 3a.

Application of the Akaike Information Criterion51 to this experi-
mental data suggested that a simple, second-order viscoelastic model
from an input of thrombin (CAT data) to an output of clot strength
(TEG curve) is sufficient to capture observed behavior without over-
fitting. We propose a second-order plasma TEGmodel that consists of

Fig. 3 | CAT and TEG plasma experiments andmodel relationships. Source data
are provided as a Source Data file. a Experimental CAT curves of ten normal plasma
samples, Dataset (7) Supplementary Fig. 1, and their experimental TEG curves,
which indicate clot strength from protein concentrations alone. b Linear

correlations exist between TEG model parameters, CAT model parameters, and
coagulation factor concentrations. A linear relationship betweenKnp

in (1) andKd in
the model from ref. 5 has R2 = 0.905. A linear relationship between Knp

in (1) and
ATIII concentration has R2 = 0.873.
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three elements: a first-order system to capture the step-like increase in
clotting activity, a first-order integrator to hold this value over time,
and a timedelay for a horizontal shift. Below, we state thismodel in the
controls-oriented frequency domain s instead of the time domain t;
the implication is that we assume that the underlying dynamical sys-
tem is linear and time-invariant52. This is a reasonable assumption
despite nonlinear coagulation dynamics53 and possibly time-varying
parameters, because our prior work9 showed that a linear, time-
invariant model for coagulation is experimentally justified at the
typical input value of 5 pMTF. The CAT curves for Fig. 3a are for a 5 pM
TF input.

Our input-output transfer function model (from CAT to Plasma
TEG) is:

GðsÞ= PðsÞ
Y ðsÞ =

Knp

sðKps + 1Þ
e�Kdp

s , ð1Þ

where Y(s) is the thrombin generation input, and P(s) is the plasma TEG
output. This model has three parameters: Knp

defines the maximum
TEG amplitude, equivalently clot firmness; Kp is a time constant of clot
formation kinetics; and Kdp

is a delay term for clot initiation. Changes
in these parameters change viscoelastic properties between samples.

Model (1) accurately captures plasma viscoelasticity. Using the
MATLAB Simulink Design Optimization (SDO) toolbox, unique para-
meters of model (1) were fit for each sample in Fig. 3a, with an input of
thrombin (CAT) data and an output of clot strength (TEG) data. The fit
parametersminimized the least square error betweenmodel simulation
and experimental data using the trust region reflective algorithm and a
solver tolerance of 10−9. The mean R2 value of the fits was R2 = 0.985,
which confirms model capacity to capture the observed data.

We identified correlations between the fit parameters for TEG
data and those of our published model5 for CAT data. Figure 3b shows
that coefficient Knp

in model (1) is linearly correlated with coefficient
Kd in our CAT model5 (the plotted line of best fit was obtained by
excluding two outliers; this line hasR2 = 0.905). Since ATIII is a primary
driver of Kd

5, we hypothesized a correlation between parameter Knp

and ATIII. We confirmed the existence of a linear relationship, Fig. 3b
(the plotted line of best fit was again obtained by excluding two out-
liers; this line has R2 = 0.873). Consequently, predicting the parameters
of model (1) from coagulation factor concentrations is feasible. We
developed estimates of these parameters using the matching pursuit
algorithm54 on concentrations of factors II, V, VII, VIII, IX, X, and ATIII.
The percent error results and the high quality of these estimates are in
Fig. 4a, b, respectively.

Since this test performance was on the same dataset as that used
for learning, and the number of samples in our dataset was limited, we
applied two validation techniques. First, we performed fivefold cross-
validation to bootstrap our data while checking predictive perfor-
mance. That is, we estimated parameters using the matching pursuit
algorithm on 80% of the data, and validated performance on the
remaining 20% of dataset samples, repeating the process five times.
Themeanpercent errors are in Fig. 4c. Thesemeanpercent errorswere
calculated by comparing the estimated model properties to the actual
values obtained from experimental fits. This table quantifies good
prediction of plasma TEG curves, with the entire dataset clearly
required for delay time prediction.

We additionally validated model (1) using Dataset (8), Supple-
mentary Fig. 1, consisting of plasma TEGs of five normal donors who
were different from those constituting the dataset that was used in
model parameter estimation training, Dataset (7). Plasma TEG graph
estimates for Dataset (8) using each plasma sample’s coagulation fac-
tor concentrations are in Fig. 5a, and the associatedmean relative error
of the estimated graph properties in Fig. 5b confirms the accuracy of
the model. We anticipate improving our MA time predictions with
more training data.

But our MA value predictions for plasma TEGs, the fibrin MA
values, are quite accurate. A fibrin MA value is equivalent to the
experimental MA value that can be obtained from the TEG Functional
Fibrinogen (FF) assay, which is a whole blood TEG assay that evaluates
fibrinogen contributions to clot strength by blocking platelet con-
tributions using a potent inhibitor. Because the clot strength of
platelet-poor plasma is proportional to functional fibrinogen
concentration37, our predictedMA value can be used as an indicator of
secondary hemostasis.

To show this, consider the following transformation of TEG FFMA
to a shear elasticity value, Gf [dynes/centimeter2, i.e., 0.1 Pascal]55:

Gf = 5000×
MA

100�MA
: ð2Þ

Figure 5c demonstrates a linear map from Gf to the TEG machine-
reported functional fibrinogen level (FLEV), R2 = 0.990, for Gf

transformed from the TEG FF MA available for 63 of the 97 trauma
patients (Dataset (6), Supplementary Fig. 1). A similar linear map from
Gf to laboratory-measured fibrinogen concentration exists for the
same dataset, Fig. 5d. Therefore, even if coagulation is abnormal, it is
possible to replace the TEG FLEV value and the TEG FF assay
parameters by leveraging quickly-measurable coagulation factor
concentrations, predicting MA using model (1), and then using (2) to
predict TEG FLEV and functional fibrinogen, and hence secondary
hemostasis.

Whole blood viscoelasticity and its relationship to TEG
citrated native
Plasma TEGs cannot show two key clot strength elements. First,
because platelets are removed from a plasma sample, platelet con-
tributions to whole blood viscoelasticity and overall clot strength (for
example, the TEG curves in Fig. 6a) aremissing. Thus, the TEG curve of
a plasma sample, Fig. 5a, has a lowerMA compared to the TEG curve of
its whole blood counterpart, Fig. 7a. Second, drivers of fibrinolysis are
also not present in a plasma sample. Accordingly, the typical decays of
whole blood TEG curves, Fig. 2a, are omitted, and the plasma TEGs in
Figs. 3a and 4b are constant after reaching MA, since the formed clot
remains intact over time.

We extend plasma TEG model (1) to capture the effects of both
platelets and fibrinolysis (the red block in the bottom path of Fig. 2c).
We assume that platelet contributions can be captured by a scaling
gain to increaseMA, an assumption that we confirm later in this article.
We propose that fibrinolysis requires a model of identical structure to
clot initiation (i.e., a second-order system) but in the opposite direc-
tion for decay. Hence, a two-term viscoelastic frequency domain
model to capture full clot dynamics is:

GðsÞ= W ðsÞ
UðsÞ =

Kn1

sðKp1
s + 1Þ e

�Kd1
s � Kn2

sðKp2
s + 1Þ e

�Kd2
s, ð3Þ

where Kn1
, Kn2

, Kp1
, Kp2

, Kd1
, and Kd2

are positive parameters, U(s) is a
5 pM impulse TF input as before, and W(s) is the TEG whole blood
model output. Thefirst termofmodel (3) has the structure ofmodel (1)
to represent the effects of coagulation factors, with Kn1

including the
scaling effects of platelets. In this term, Kd1

is the time to initial clot
formation, and Kp1

relates to the speed of clot formation. The second
term of model (3) represents fibrinolysis, reversing clot formation
effects from the first term due to the negative sign in front of Kn2

. In
this term, Kd2

is the time to fibrinolysis start, and Kp2
relates to the

speed of clot breakdown.
With MATLAB SDO, we fit model (3) to 15 patients of an experi-

mental TEGdataset of 24 traumapatient whole blood samples, Dataset
(10), Supplementary Fig. 1, to obtain unique parameters for each
sample (a mean R2 = 0.9995 attests to model suitability). These 15
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patients had complete coagulation factor concentration data. We
developed parameter estimates using the matching pursuit
algorithm54 on measured concentrations of coagulation factors. We
used the concentrations of factors II, V, VII, VIII, IX, X, ATIII, and PC to
estimate Kd1

and Kp1
due to the role of these coagulation factors in

secondary hemostasis. We used the concentrations of these eight
coagulation factors as well as the concentrations of fibrinogen and
platelets to estimate Kn1

, so that the parameter accounts for both
primary and secondary hemostasis. We additionally used D-dimer
(fibrin degradation product) measurements when estimating para-
meters of the second term of model (3). Figure 6a shows satisfactory
estimation of clot strength, stability, and degradation, and Fig. 6b
quantifies the accuracy of model (3).

We again applied two validation techniques, fivefold cross-
validation and a dataset not used for training. We used fivefold
cross-validation to bootstrap Dataset (10) by splitting it into five sub-
sets (four for training and one for validation) to estimate clotting
properties. The mean relative error for TEG graph properties in each

fold and the overall mean error is in Fig. 6c. This table quantifies good
prediction of whole blood TEG curves, with MA time prediction
improvements possible with more training data. We also validated
model (3) with Dataset (8), Supplementary Fig. 1, which had whole
blood TEGs in addition to plasma TEGs for the five normal donors, and
these donors were different individuals from the trauma patients who
constituted the dataset that was used in model parameter estimation
training, Dataset (10).Whole bloodTEGgraphestimates forDataset (8)
are in Fig. 7a, and the associated mean relative error of the estimated
graph properties in Fig. 7b confirms the accuracy of the model.

Our model (3) can replace the TEG Citrated Native (CN) assay,
whichevaluates clot formation, stabilization, anddegradation inwhole
blood samples. This is true even if coagulation is abnormal. As Fig. 7c
shows with red lines of best fit for the 24 trauma patients in Dataset
(10), fitted Kn1

is directly related toMA, R2 = 0.838; fitted Kd1
is directly

related to R time, R2 = 0.989; fitted Kp1
is inversely related to α angle,

R2 = 0.687; and the reduction in area under the curve (AUC), as com-
puted from the fibrinolysis term in the model, is directly related to

Fig. 4 | Dataset (7) plasma TEG curves and model estimates. Source data are
provided as a Source Data file. a TEG model (1) relative error. b Experimental TEG
curves from plasma samples compared to TEG model predictions confirm the

efficacy of model (1), with a mean prediction accuracy of R2 = 0.969. c Fivefold
cross-validation of plasma TEG model (1).
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Ly30, R2 = 0.931. Therefore, it is possible to replace the TEG CN
assay parameters by leveraging quickly-measurable coagulation factor
concentrations, predicting the parameters of model (3), and then
using these parameters to predict the TEG CN parameters (MA,
R time, α angle, and Ly30), thereby substantially reducing long
experiment times.

Platelet viscoelasticity and its relationship to TEG Platelet
Mapping
We next show that platelet contributions to clot strength scale up
the fibrinMA ofmodel (1) (thus constituting the third yellow block in
the top path of Fig. 2c). The TEG Platelet Mapping (PLT) assay
enables a quantitative analysis of platelet function by relating

Fig. 5 | Validation of plasma TEG model (1), and its connection to the TEG
FF assay. Source data are provided as a Source Data file. a Predictions of experi-
mental TEG curves of five normal plasma samples using coagulation factor con-
centrations (Dataset (8), Supplementary Fig. 1, which was not used in model
estimation training) confirm the efficacy of model (1), with a mean prediction
accuracy of R2 = 0.786. b Prediction mean relative error, with low errors on MA.
c The parameter Gf, a transformation of MA, available for 63 of the 97 trauma

patient samples (Dataset (6), Supplementary Fig. 1), is nearly perfectly correlated
with TEG reported fibrinogen level (FLEV) from the FF assay, R2 = 0.990, and
d correlated with themeasured fibrinogen level in these patients, R2 = 0.624, which
is an indicator of secondary hemostasis. It follows that plasma TEG model predic-
tions of MA can replace the TEG FF assay and be a viable indicator of secondary
hemostasis even in abnormal clotting conditions.
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percent platelet inhibition to an individual’s maximum uninhibited
platelet function. We used a dataset of 48 trauma patients, Dataset
(11), Supplementary Fig. 1, for whom we had TEG FF, CN, and PLT
assays, as well as platelet count measurements. Figure 8a compares
the MA from the CN and PLT assays. The red line of best fit,
R2 = 0.487, shows that these two measurements are linearly corre-
lated with a nearly one-to-one map (e.g., a whole blood sample will
have an MA of 60mm on both the CN and PLT assays). Figure 8b
compares the MA from the FF and PLT assays. The red line of best fit
through the origin, R2 = 0.583, depicts that a linear relationship
between these two measurements exists. Hence, an alternate way to
estimate CN MA via Kn1

in model (3) is to predict the fibrin MA from
quickly-measurable coagulation factor concentrations using model
(1), and then multiply this fibrin MA by the slope of the fitted line
from Fig. 8b.

Because Dataset (11) did not have coagulation factor concentra-
tiondata, andDatasets (8) and (10) didnot haveTEGPLTassay data, we
validated our above scaling claim using platelet count measurements.
First, adenosine diphosphate (ADP) is a platelet agonist that inhibits
platelet activity, thereby reducing clot strength. The TEG PLT assay
uses ADP to indicate percent platelet inhibition. Fig. 8c illustrates the
inhibitory effects of ADP in reducing clot strength, where

%MA Reduction= MACN�MAFF

MACN
. To evaluate platelet function, we next

identified a relationship between uninhibited (activated) platelets
(which are the total number of measured platelets multiplied by 1 −%
ADP inhibition) and the effect that these uninhibited platelets had on

the amplification from plasma MA to whole blood MA (i.e., MACN

MAFF
),

Fig. 8d. The line of best fit through the origin has R2 = 0.467. Figure 8d
shows that: (i) MA amplification is directly related to uninhibited pla-
telets; (ii) the scale factor is approximately constant for most mea-
surements (platelet counts between 50 and 150), which validates our
above scaling claim; and (iii) the scale factor is not constant but varies
linearly when evaluated over a large range of platelet counts (from0 to
more than 300). Figure 8c, d also confirms that we can estimate the
effect of ADP inhibition in different patients by using a combination of:
their platelet counts, fibrin MA from model (1) calculated using their
coagulation factor concentrations, and whole blood MA from
model (3).

Predicting rapid TEG parameters from TEG CN parameters
Since we have previously shown how to predict the parameters of the
TEG CN assay from quickly-measurable coagulation factor con-
centrations and model (3), we can extend our prediction capabilities
to the Rapid TEG assay variant. Compared to TEG CN, Rapid TEG uses
a higher TF concentration to promote faster coagulation cascade
initiation and coagulation factor activation. This implies that throm-
bin generation is increased and consequently that fibrin production
and platelet activation is higher. Accordingly, we anticipate that CN
MA will slightly increase, Fig. 9a for a dataset of 97 trauma patients
(Dataset (6), Supplementary Fig. 1), which is confirmed by the red line
of best fit, R2 = 0.516. We also expect that faster clot formation will
reduce R time; however, the R time panel in Fig. 9b shows that this
value is constant for all Rapid TEG samples (its ratio with CN R time
changes linearly with CN R time) at 1.107 ± 0.089 (mean ± standard
deviation). TF does not have a direct impact on fibrinolysis, and so the

Fig. 6 | Dataset (10) whole blood TEG curves and model estimates. Source data
are provided as a Source Data file. a Experimental TEG curves on whole blood
samples from 15 trauma patients compared to TEG model predictions confirm the

efficacy of model (3), with a mean prediction accuracy of R2 = 0.976. b TEG model
(3) relative error. c Fivefold cross-validation of whole blood TEG model (3).
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Ly30 property that indicates clot breakdown remains identical
between Rapid TEG, and TEG CN, Fig. 9c, as indicated by the one-to-
one red line of best fit, R2 = 0.974. Finally, faster coagulation scales up
the Rapid TEG α angle from TEG CN, Fig. 9d, with red line of best fit
R2 = 0.457. The point remains that coagulation factor concentrations
can help quickly predict Rapid TEG output, by determining TEG CN
parameters via model (3) and then modifying these parameters using
the relationships identified in Fig. 9.

Model relationship to the Maxwell–Wiechert model of
viscoelasticity
The generalizedMaxwell model (or Maxwell-Wiechert model) consists
of several parallel Maxwell elements of viscoelastic material, Fig. 10a,
where each Maxwell element is a spring and a damper connected in
series. This model accounts for slow force relaxation over time. The
generalized Maxwell model for linear viscosity56 is

σðtÞ= σ0 1� e�
1
τt

� �
, ð4Þ

which is the solution to the stress-strain (σ − ϵ) relationship of a
Maxwell material E _ϵðtÞ= _σðtÞ+ 1

τ σðtÞ, where τ is the relaxation time
constant defined as τ≜ η

E, E = σ0
ϵ0

is Young’s elastic modulus, and η is
viscosity.

The delay-free time-domain representation of model (1) is

gðtÞ=Knp
1� e�

1
Kp

t
� �

, ð5Þ

which is identical to the generalized Maxwell model (4) above. Hence,
models (1) and (3) have amechanistic viscoelastic interpretation. In the
case of coagulation, after thrombin production is stopped, equiva-
lently after a clotting-promotion force is removed, the resultant clot
will break down over time at a patient-specific rate.

A complex dynamic modulus G can be used to represent the
relations between the oscillating stress and strain. Similarly, a complex
dynamic modulus, E*, of a material with elastic modulus E (a Maxwell

Fig. 7 | Validation of whole blood TEGmodel (3), and its connection to the TEG
CN assay. Source data are provided as a Source Data file. a Predictions of experi-
mental TEG curves of five normal whole blood samples using coagulation factor
concentrations (Dataset (8), which was not used in model estimation training)
confirm the efficacy of model (3), with a mean prediction accuracy of R2 = 0.794.
b Predictionmean relative error. cWhole bloodTEGmodel predictions can replace

the TEG CN assay even in abnormal clotting conditions. For the trauma patient
samples of Dataset (10): fitted Kn1

is directly related to MA, R2 = 0.838; fitted Kd1
is

directly related to R time, R2 = 0.989; fitted Kp1
is inversely related to α angle,

R2 = 0.687; and the reduction in AUC (computed from the second, fibrinolysis term
in the model) is directly related to Ly30, R2 = 0.931.
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material) can be expressed with two components56:

E* = E1 + E2i, ð6Þ

where i=
ffiffiffiffiffiffi
�1

p
, and storage modulus E1 and loss modulus E2 in (6) are

defined as:

E1ðωÞ=
τ2ω2

τ2ω2 + 1
E; ð7Þ

E2ðωÞ=
τω

τ2ω2 + 1
E, ð8Þ

whichhasω as theoscillation frequency;η as thematerial coefficient of
viscosity; and τ as the relaxation time constant, τ≜ η

E.
Equations (7) and (8) can be obtained by considering the

stress-strain relationship of a Maxwell material E _ϵðtÞ= _σðtÞ+ 1
τ σðtÞ,

and considering the complex dynamic response where the stress

Fig. 8 | Dataset (11) TEG PLT assaymodel estimates and validation. Source data
are provided as a Source Data file. a Comparison of MA obtained from TEG CN
(whole blood contribution to clot strength) and PLT assays, R2 = 0.487.
b Comparison of MA obtained from TEG FF (fibrin contribution to clot strength)
and PLT assays, R2 = 0.583. c ADP inhibits platelet activation and consequently
reduces clot strength, R2 = 0.204. Here, %MA Reduction = MACN�MAFF

MACN
. d The

platelet role in clot strength amplification (MACN

MAFF
) is directly related to the number

of platelets uninhibited by ADP (platelet count × 1 −%ADP inhibition), R2 = 0.467.
This plot validates modeling platelet contributions as a scaling “gain” in clot
strength over platelet counts between 50 and 150, although the gain can vary
linearly with uninhibited platelet count over counts between 0 andmore than 300.

Fig. 9 | Dataset (6) rapid TEG relationships to the TEG CN assay. Source data are
provided as a Source Data file. a Rapid TEG MA is directly related to TEG CN MA,
R2 = 0.516. b Rapid TEG R time can be estimated as a constant of 1.107, R2 = 0.646.

cRapid TEGLy30 isdirectly related to TEGCNLy30,R2 = 0.974.dRapidTEGα angle
is directly related to TEG CN α angle, R2 = 0.457.
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and strain terms have a time dependency of the form eiωt. Hence, we
have:

ðiωÞϵ*0eiωtE = iω+
1
τ

� �
σ*
0e

iωt : ð9Þ

We can write (9) as:

E* =
σ*
0

ϵ*0
=
EðiωÞ
iω+ 1

τ

=
EτðiωÞ
1 + iωτ

,

=
ðEðiωÞτÞð1� iωτÞ
ð1 + iωτÞð1� iωτÞ =

Eτωi+ Eτ2ω2

1 + τ2ω2 ,

=
τ2ω2

1 + τ2ω2 E +
τω

1 + τ2ω2 Ei:

ð10Þ

The final terms of (10) are storage modulus E1, and loss modulus E2 in
(7) and (8). The relaxation spectra of dimensionlessmoduli (7) and (8),
which are E1

E and E2
E , respectively, are in Fig. 10b as a function of

dimensionless frequency τω. Thesemoduli indicatewhether the elastic
(E1) or the viscous (E2) part of the viscoelastic material has the domi-
nant effect at the specific condition.

The above facilitates a mechanistic interpretation of blood coa-
gulation. Thrombin generation can be interpreted as a force and the
resultant stress σ that drives coagulation. Stopping thrombin genera-
tion leads to clot breakdown, a relaxation process. Hence, we can
expect that the relaxation time constant τ in a sample is driven by

coagulation factor concentrations, similar to parameters of models (1)
and (3). We hypothesize that loss modulus E2, which is the yellow
dashed line in Fig. 10b, represents clot strength effects from platelets.
This is becauseplatelets initially contribute to clot strength by forming
a weak platelet plug, i.e., primary hemostasis, which can be strength-
enedby attaching to the fibrinmesh formed fromcoagulation proteins
(crossed-linkmesh).However, this platelet plug is unstablewithout the
fibrin crossed-linkmesh, and breaks down over time. Storagemodulus
E1 can be associated with the fibrinmesh contribution to clot strength,
i.e., secondary hemostasis. Unsurprisingly, given the comparative
similarity of (5) to the generalizedMaxwell model, storagemodulus E1,
the green solid line in Fig. 10b, is comparable to clot strength from
coagulation factors in a plasma sample, Fig. 3b.

We compute the magnitude of the complex modulus E* as

kE*k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 + E

2
2

q
, the red dashed-dotted line in Fig. 10b. This result is

comparable to the whole blood clot strength, which is the product of
contribution from all blood components forming the crossed-link
fibrin mesh (platelets and fibrin), i.e., both primary and secondary
hemostasis. Thus, viscoelastic results in Fig. 10b mechanistically con-
nect to our phenomenological approach to determining the green,
yellow, and red blocks in Fig. 2c, and have the same respective colors.

Discussion
Toward realizing broadly applicable cybermedical coagulation con-
trol, which consists of point-of-care hemostasis testing, continuous
coagulationmonitoring, and personalized, timely therapeutic delivery
according to programmed knowledge and artificial intelligence, we
propose replacing time-consuming coagulation measurements with
model-based computational outputs. We have developed a phenom-
enological dynamical systems model of plasma sample visocelasticity
dynamics using only coagulation factor measurements, to capture the
role of plasma components in clot formation. We then expanded this
model as a whole blood viscoelastic model to capture the entirety of
coagulation: clot formation (including platelet contributions), stabili-
zation, and clot degradation (lysis). Our results showed that all model
parameters can be estimated using only quickly-measurable protein
concentrations and linear maps, which we confirmed and validated
using data from a mix of normal and abnormal clotting systems, the
latter from trauma patients. We also detailed how to simply and
speedily predict various individual clot strength contributions from
coagulation factors, fibrin, and activated platelets, which are currently
clinically evaluated using the TEG assays of Functional Fibrinogen,
Citrated Native, Platelet Mapping, and Rapid TEG. Importantly, we
demonstrated a mechanistic interpretation of our models using the
generalized Maxwell model of viscoelasticity.

These results provide direct actionable intelligence for trauma
patient care, and constitute a framework leveraging coagulation factor
concentrations that can be further developed into a bedside device.
Simultaneously, our results also provide important biological insights
into the post-injury coagulationmilieu. Therefore, our work has the dual
benefits of basic biological understanding aswell as decision support for
the burdened clinician who cares for the severely injured or ill patient.

It takes 5–10min to measure coagulation factor concentrations
using the STA Compact MaxⓇ, and the elapsed time for each individual
sample estimation averages 0.115 s using a contemporary desktop
runningMATLABR2021a on a quadcore Intel Core i7-4790 at 3.40GHz
with 16GB RAM. Together, the measurement and model run-times in
this article provide an outstanding reduction in clotting information
delivery time compared to TEG tests of 60min or more.

We anticipate that model prediction errors will decrease with
more sample and TEG data. Because our models show high perfor-
mance after fivefold cross-validation and also on separate patient
datasets, our work can next be verified by clinical studies with a large
number of patients and their coagulation factor concentration

Fig. 10 | Model interpretation. a A schematic of the generalized Maxwell model,
which is represented by multiple pairs of a purely viscous damper and a purely
elastic spring connected in series. The i-th viscous damping coefficient is bi, and the
i-th spring constant is Ki. The stress is denoted by σ. Created with BioRender.com.
bMaxwell model moduli, with line colors corresponding to the green, yellow, and
red blocks in Fig. 2c. The dimensionless storage modulus and the dimensionless
loss modulus are the green solid and yellow dashed lines, respectively, and their
scaled vector sum is the red dashed-dotted line.
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measurements, in all settings where viscoelastic clotting measures are
insightful. In parallel, our models can be refined by incorporating the
effects of adding individual coagulation factor concentrations into
samples of normal and trauma patient plasma and whole blood, to
confirm model-predicted clotting outcomes and theoretically ground
previous literature observations37. Such work will also provide insight
into treatment feasibility and efficacy from any proposed additional
individual or combinatorial protein concentrations.

We envision implementing our advances in an automated,
cybermedical treatment device in future. Thus, the work in this article
represents a considerable step toward frequent, personalized, and
precision coagulation interventions. Given the pervasive importance
of thromboinflammation driving critical illness and injury, the results
of our work are relevant to other coagulation and inflammation dis-
orders as well, including hemophilia, von Willebrand disease, factor V
Leiden, pulmonary embolism, deep vein thrombosis, stroke, sickle cell
disease, cancer, and COVID-19.

Methods
Coagulation factor concentration measurements
Coagulation factor concentrations were measured using the STA
Compact MaxⓇ as percent activity, which is with respect to the normal
coagulation factor concentration in a healthy person. A normal range
for coagulation factor concentrations is typically 60–140% activity57,58.
Plasma samples were removed from −80 °C storage and thawed at
room temperature. Reagents were prepared with DiH2O and left to
stabilize for 30–60min, as specified by the package insert. Owren-
Koller diluent was used for patient samples, STA-Unicalibrator reagent
was used to calibrate the system by measuring/defining ranges of new
reagent lots (performed monthly), STA-System Control N+P and STA-
Coag Control N+ABN were control reagents measured every 4 h and
8 h, respectively, and STA-Deficient reagent was used to measure the
activity of a coagulation factor, e.g., STA-Deficient V was used for
measuring factor V. The test automatically started after loading sample
and reagents into the instrument. Given that quality control was
repeated every four hours, coagulation factor concentration mea-
surements were performed once for each sample.

Thromboelastography
We obtained PPP by centrifuging each whole blood sample at
12,500 g for 10 min, and then at 15,000 g for another 15min. Clot
strength, functional fibrinogen, and platelet mapping were obtained
using Thromboelastography, TEG 5000® (Haemonetics Corporation,
Boston, Massachusetts, US). We followed the protocol for each assay
in the user manual. At the beginning of each day, we checked the
machine to ensure that it was on a flat level surface, and then performed
quality control levels I and II. For the citrated native test, following blood
sample collection, we pipetted 20μL of CaCl2, then pipetted 340μL of
whole blood into the bottom of the test cup. We placed the cup in the
machine, locked the lever in the test position, and started the test from
software.

Model parameter fitting to experimental data
Model parameters were fit to experimental data using MATLAB SDO
toolbox version 3.9.1. The input was defined as the CAT measurement
for the plasma viscoelastic model, and as an impulse input with the
desired magnitude, e.g., 5 pM of TF, in the case of the whole blood
viscoelastic model. The output that was fit was individual TEG profile
experimental data. Solver tolerance was set to 10−9. Starting from an
initial parameter guess, the MATLAB SDO toolbox optimized para-
meter values of a transfer function model by minimizing the least
square error between prediction and actual data using a trust region
reflective algorithm. Following convergence, the finalized transfer
function model parameters for each experimental sample were
recorded.

Data
This studywas based on normal and trauma patient data arranged into
11 datasets as shown in Supplementary Fig. 1. Normal data was
obtained from a set of blood samples from healthy individuals, with
their CAT, TEG, and coagulation factor concentration measurements
characterized according to standard laboratory protocols as explained
above. These samples werepurchased fromcommercial suppliers who
are Institutional Review Board (IRB) exempt.

Dataset (7) consisted of ten normal 1mL PPP samples (Precision
BioLogic, Dartmouth, Nova Scotia, Canada). The plasma was not col-
lected directly from donors but was instead obtained from FDA-
regulated plasmapheresis centers for further manufacture into com-
pany products. Donors provided consent via a form that included the
statement: “I, the undersigned, am donating blood to be used by
[company] as they decide.”

Dataset (8) consisted of five normal 10 mL whole blood samples
(Innovative Research, Novi, Michigan, US) from which PPP was
also obtained. Samples were obtained through Cedarlane Labs
USA Inc., PO# 036950, Single Donor Human Whole Blood Na Citrate
10 mL, product code IWB1NAC10ml, from consented donors. Each
participant provided consent before donation. All donors participated
at will with full knowledge of donation usage. All donors were required
to be over the age of 18 at the time of donation. Participant identity is
kept confidential, and all samples were de-identified and assigned a
number. Specifically, each donor was assigned an individual “donor
number,” which is not released to the public. Each time a sample was
taken, the sample was given a unique “draw number” that was placed
on the sample and stored for reference. Only the donors’ age, sex, and
race are provided. All donations were tested for the FDA-required viral
markers.

Trauma patient data came from two studies. The Activation of
Coagulation and Inflammation in Trauma study59 was a single-center
prospective cohort study that followed severely injured trauma
patients from emergency department admission through discharge
from hospitalization or death. Between February 2005 and May 2016,
1671 trauma patients (1367 male (81.45%), age 41.0 ± 18.6, ISS
17.7 ± 15.6) meeting criteria for highest triage activation level were
enrolled into the study. Subsets of this dataset are used for various
parts of this study, as indicated in the main text and Supplementary
Fig. 1. Patient characteristics are in Supplementary Fig. 2. Exclusion
criteria included patient age less than 15 years, pregnancy, incarcera-
tion, and transfer from outside hospital. This study was carried out
with the approval of theUniversity of California IRB (referencenumber
10-04417) under an IRB-approved delay and/or waiver of consent.
Since it is not generally possible to consent a patient immediately after
severe injury, and it is unethical even if possible due to the severely
injured natureof thepatients, awaiver of consent from the IRB allowed
blood collection. Study coordinators then made multiple attempts to
consent the patient or a surrogate.Written consent was obtained from
enrolled patients or their families or, rarely, in certain circumstances
where these could not be obtained, awaiver of consentwas utilized for
patients who could not consent due to their injuries and for whom a
legally authorized representative could not be found despite docu-
mented attempts. Data were collected at admission, 6, 12, and 24 h
after injury. Patient samples were kept and used if the patient or a
surrogate consented, if the patient died, or if consent was unable to be
obtained aftermultiple attempts to consent the patient or a surrogate.
Samples and data were destroyed if patients or surrogates were con-
tacted and refused consent.

The Control of Major Bleeding After Trauma (COMBAT) study60,
ClinicalTrials.gov number NCT01838863, was a single-center pro-
spective randomized controlled trial on regulating hemorrhage
after injury that evaluated the survival benefit of administering plasma
prehospital during rapid ground transport to an urban Level I trauma
center. Between April 2014 and March 2017, 144 trauma patients
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were enrolled into the study, with as-treated analyses for 125 trauma
patients (103 male (82.4%), age 36.5 ± 13.9, NISS 27.0 ± 19.4). Subsets of
this dataset are used for various parts of this study, as indicated in the
main text and Supplementary Fig. 1. Patient characteristics are in Sup-
plementary Fig. 2. Exclusion criteria included patient age less than 18
years, pregnancy, incarceration, and lack of consent. The study was
conducted under Exemption from Informed Consent as part of a larger
prospective clinical trial, and therefore exempted from needing written
informed consent by the Colorado Multiple IRB (reference number 12-
1349). Data were collected at admission, 2, 4, 6, 12, and 24 hours after
injury.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this article. Datasets are available at:
https://github.com/SYBORGS-Lab/Viscoelastic-Clot-Model Source
data are provided with this paper.

Code availability
TheMATLAB code anddata it uses are available at: https://github.com/
SYBORGS-Lab/Viscoelastic-Clot-Model. The patent pending algorithm
code is available solely for noncommercial use. The code is subject to
the following patent application number 63/498,624, copyright: ©

Copyright 2023 University of Florida Research Foundation, Inc. All
commercial rights reserved by the University of Florida Research
Foundation, Inc.
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