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Towards a transferable fermionic neural
wavefunction for molecules

Michael Scherbela1,4, Leon Gerard2,4 & Philipp Grohs 1,2,3

Deep neural networks have become a highly accurate and powerful wave-
function ansatz in combination with variational Monte Carlo methods for
solving the electronic Schrödinger equation. However, despite their success
and favorable scaling, these methods are still computationally too costly for
wide adoption. A significant obstacle is the requirement to optimize the
wavefunction from scratch for each new system, thus requiring long optimi-
zation. In this work, we propose a neural network ansatz, which effectively
maps uncorrelated, computationally cheap Hartree-Fock orbitals, to corre-
lated, high-accuracy neural network orbitals. This ansatz is inherently capable
of learning a single wavefunction acrossmultiple compounds and geometries,
as we demonstrate by successfully transferring a wavefunction model pre-
trained on smaller fragments to larger compounds. Furthermore, we provide
ample experimental evidence to support the idea that extensive pre-trainingof
such a generalized wavefunction model across different compounds and
geometries could lead to a foundation wavefunction model. Such a model
could yield high-accuracy ab-initio energies using onlyminimal computational
effort for fine-tuning and evaluation of observables.

Accurate predictions of quantummechanical properties formolecules
is of utmost importance for the development of new compounds, such
as catalysts, or pharmaceuticals. For eachmolecule the solution to the
Schrödinger equation yields the wavefunction and electron density,
and thus in principle gives complete access to its chemical properties.
However, due to the curse of dimensionality, computing accurate
approximations to the Schrödinger equation quickly becomes com-
putationally intractable with increasing number of particles. Recently,
deep-learning-based Variational Monte Carlo (DL-VMC) methods have
emerged as a high-accuracy approach with favorable scaling OðN4Þ in
the number of particles N1. These methods use a deep neural network
as ansatz for the high-dimensional wavefunction, and minimize the
energy of this ansatz to obtain the ground-state wavefunction. Based
on two major architectures for the treatment of molecules in first
quantization, PauliNet1 and FermiNet2, several improvements and
applications have emerged. On the one hand, enhancements of
architecture, optimizationandoverall approachhave led to substantial

improvements in accuracy or computational cost3–7. On the other
hand, these methods have been adapted to many different systems
and observables: model systems of solids8,9, real solids10, energies and
properties of individual molecules1,2,5,11, forces12,13, excited states14 and
potential energy surfaces13,15,16. Furthermore, similar methods have
been developed and successfully applied to Hamiltonians in second
quantization17,18.

We want to emphasize that DL-VMC is an ab-initio method, that
does not require any input beyond the Hamiltonian, which is defined
by the molecular geometry. This differentiates it from surrogate
models, which are trained on results from ab-initio methods to either
predict wavefunctions19,20 or observables21.

Despite the improvements in DL-VMC, it has not yet been widely
adopted, in part due to the high computational cost. While DL-VMC
offers favorable scaling, the method suffers from a large prefactor,
caused by an expensive optimization with potentially slow con-
vergence towards accurate approximations. Furthermore this
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optimization needs to be repeated for every new system, leading to
prohibitively high computational cost for large-scale use. This can be
partially overcome by sharing a single ansatz with identical parameters
across different geometries of a compound, allowing more efficient
computation of Potential Energy Surfaces (PES)13,15,16. However, these
approaches have been limited to different geometries of a single
compound and do not allow successful transfer to new compounds. A
key reason for this limitation is that current architectures explicitly
depend on the number of orbitals (and thus electrons) in a molecule.
Besides potential generalization issues, this prevents a transfer of
weights between different compounds already by the fact that the
shapes of weight matrices are different for compounds of differ-
ent size.

In this work we propose a neural network ansatz, which does not
depend explicitly on the number of particles, allowing to optimize
wavefunctions across multiple non-periodic, gas-phase compounds
with multiple different geometric conformations. We find, that our
model exhibits strong generalization when transferring weights from
small molecules to larger, similar molecules. In particular we find that
our method achieves high accuracy for the important task of relative
energies. Our approach is inspired by the success of foundation
models in language22 or vision23,24, where models are extensively pre-
trained and then applied to new tasks—either without any subsequent
training (referred to as zero-shot evaluation) or after small amount of
training on the new task (referred to as fine-tuning). Zhang et al.25 have
shown that this paradigm can be successfully applied to wavefunc-
tions, in their case for model Hamiltonians in second quantization.

In this work, we pre-train a first base-model for neural network
wavefunctions infirst quantization, and evaluate thepre-trainedmodel
by performing predictions on chemically similar molecules (in-dis-
tribution) and disparate molecules (out-of-distribution). We find that
our ansatz outperforms conventional high-accuracy methods such as
CCSD(T)-ccpVTZ and that fine-tuning our pre-trained model reaches
this accuracy ≈ 20x faster, than optimizing a new model from scratch.
When analyzing the accuracy as a function of pre-training resources,
we find that results systematically and substantially improve by scaling
up either the model size, data size or number of pre-training steps.
These results could pave the way towards a foundation wavefunction
model, to obtain high-accuracy ab-initio results of quantum mechan-
ical properties using onlyminimal computational effort for fine-tuning
and evaluation of observables.

Additionally we compare our results to GLOBE, a concurrent
work26, which proposes reparameterization of the wavefunction based
on machine-learned, localized molecular orbitals. We find that for the
investigated setting of re-using pre-trained weights our method in
comparison achieves lower (and thus more accurate) absolute ener-
gies, higher accuracy of relative energies and is better able to gen-
eralize across chemically different compounds.

We use the following notation throughout this work: All vectors,
matrices and tensors are denoted in bold letters, including functions
with vectorial output. The i-th electron position for i∈ {1,…, nel} is
denoted as ri 2 R3. The set fr1, . . . ,rn"

g of all electrons with spin up is
abbreviated with {r↑}, the set frn" + 1

, . . . ,rnel
g of all spin-down electrons

as {r↓}. Similarly, the nuclear positions and charges of a molecule are
denoted by RI 2 R3 and ZI 2 N, I = 1,…,Natoms, with the set of all
nuclear positions and their corresponding charges denoted as {(R,Z)}.
Indices i, k∈ {1,…, nel} correspond to electrons and orbitals respec-
tively, whereas I, J∈ {1,…,Natoms} correspond to nuclei. By 〈 ⋅ , ⋅ 〉 the
dot product is denoted.

Results
In the following, we briefly outline our approach and how it extends
existing work (A multi-compound wavefunction ansatz). We show the
fundamental properties of our ansatz such as extensivity and equiv-
ariance with respect to the sign of reference orbitals. We demonstrate

the transferability of the ansatz when pre-training on small molecules
and re-using it on larger, chemically similar molecules. We also com-
pare its performance against GLOBE, a concurrent work26. Lastly, we
present a first wavefunction base model pre-trained on a large diverse
dataset of 360 geometries and evaluate its downstream performance.

A multi-compound wavefunction ansatz
Existing high-accuracy ansätze for neural network wavefunctions ψ all
exhibit the following structure:

hi =hθðri,fr"g,fr#g,fðR,ZÞgÞ
hi 2 RDemb , i= 1 . . .nel

ð1Þ

Φd
ik =φ

d
k ðriÞhFd

k ,hii
φd

k ðriÞ : R3 ! R, Fd
k 2 RDemb

i,k = 1 . . .nel, d = 1 . . .Ndet

ð2Þ

ψ=
XNdet

d = 1

det Φd
ik

h i
i,k = 1...nel

ð3Þ

The neural network hθ in eq. (1) computes a Demb-dimensional
embedding hi of electron i, by taking in information of all other par-
ticles, e.g., by using attention or message passing. Eq. (2) maps these
high-dimensional embeddings onto nel ×Ndet orbitals (indexed by k),
using trainable backflow matrices Fd and typically trainable envelope
functions φd

k : R3 ! R. Eq. (3) evaluates the final wavefunction ψ as a
sum of (Slater-)determinants of these orbitals, to ensure anti-
symmetry with respect to permutation of electrons.

By considering the interaction of all particles, in particular with
the sets {r↑} and {r↓}, the functions in Eq. (2) account for the inter-
particle correlation and therefore are able to better represent the true
ground-state wavefunction. If the orbitalsΦd

ik would only depend on ri
(instead of the many-body embedding hi), they would correspond to
single-particle functions, e.g. Hartree-Fock orbitals. Existing methods,
as proposed in Pfau et al.2 or Hermann et al.1, differ in the way the
embedding hi and the envelope functions φd

k are built. A popular
choice for the embedding function hθ are continuous convolutions

1,5,26

or an attention mechanism4. For the envelope functions Hermann
et al.1 proposed to use orbitals obtained from a Hartree-Fock calcula-
tion, whereas Pfau et al.2 relied on exponentially decaying envelopes,
(i.e., φkðrÞ= expð�αkI jr� RjÞ with trainable parameter αkI 2 R), to
ensure the boundary conditions far away from the nuclei. In our
architecture, we mainly focus on the matrix
Fd = ½Fd

1 , . . . ,F
d
nel
� 2 Rnel ×Demb . While the mapping by Fd works well for

the wavefunction of a single compound, it is fundamentally unsuited
to represent wavefunctions for multiple different compounds at once,
since its dimension nel ×Demb depends explicitly on the number of
electrons. There are several potential options, how this challenge
could be overcome. A naïve approach would be to generate a fixed
number of Norb ≥ nel orbitals and truncate the output to the required
number of orbitals nel, which may differ across molecules. While sim-
ple to implement, this approach is however fundamentally limited to
moleculeswithnel ≤Norb. Another approach is to use separatematrices
Fd
G for each molecule or geometry G, as was done in13, but also this

approach can fundamentally not represent wavefunctions for mole-
cules that are larger than the ones found in the training set. A third
approach would be to not generate all orbitals in a single pass, but
generate the orbitals sequentially in an auto-regressive manner, by
conditioning each orbital on the previously generated orbitals. While
this approach has been successful in other domains such as language
processing, it suffers from inherently poor parallelization due to its
sequential nature. A final approach—chosen in this work—is to replace
the tensor F with a trainable function foθðcIkÞ, which computes the
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backflows based on some descriptor cIk 2 RNbasis of the orbital k to be
generated:

φd
θ ðri,RI ,cIkÞ= exp �jri � RI j ge,d

θ ðcIkÞ
� �

ð4Þ

Φd
ik =

XNatoms

I = 1

φd
θ ðri,RI ,cIkÞ fo,dθ ðcIkÞ,hi

D E
ð5Þ

Similar to foθ , the trainable function ge,d
θ alsomaps somedescriptors to

scalar values for each orbital. While there are several potential
descriptors cIk for orbitals, one particularly natural choice is to use
outputs of computationally cheap, conventional quantum chemistry
methods such as Density Functional Theory or Hartree-Fock. We
compute orbital features based on the expansion coefficients of a
Hartree-Fock calculation, by using orbital localization and a graph
convolutional network (GCN), as outlined in the methods sec-
tion “Obtaining orbital descriptors from Hartree-Fock”. We then map
these features to orbitals Φd

ik , which we call in the following
transferable atomic orbitals (TAOs), using odd and even functions foθ
and ge

θ as illustrated in Fig. 1.

Properties of our ansatz
These TAOs fulfill many properties, which are desirable for a wave-
function ansatz:

• Constant parameter count: In principle, the number of para-
meters in the ansatz is independent of system size. While it
might still be necessary to increase the parameter count to
maintain uniform accuracy for systems of increasing size, TAOs
have no explicit relationship between parameter count and
system size. This is in contrast to previous approaches1,2,13 where
the number of parameters grows explicitly with the number of
particles, making it impossible to use a single ansatz across
systems of different sizes. In particular, backflows and envelope
exponents have typically been chosen as trainable parameters of
shape ½Norb ×Ndet�. In our ansatz the backflows F are instead
computed by a single function fθ from multiple inputs cIk.

• Equivariant to sign of HF-orbital: Orbitals of a HF-calculation
are obtained as eigenvectors of a matrix and are thus
determined only up to their sign (or their phase in the case of
complex eigenvectors). We enforce that the functions foθ , g

e
θ are

odd and even with respect to cIk. Therefore our orbitalsΦd
ik are

equivariant to a flip in the sign of the HF-orbitals used as inputs:
Φ(−cIk) = −Φ(cIk). Therefore during supervised pre-training, the
undetermined sign of the reference orbitals becomes irrelevant,

leading to faster convergence as demonstrated in “Equivariance
with respect to HF-phase”.

• Approximate locality: When using localized HF-orbitals as
input, the resulting TAOs are typically also localized. Localized
HF-orbitals are orbitals which have non-zero orbital coefficientseαIk only on some subset of atoms. Using our architecture
outlined in “Obtaining orbital descriptors from Hartree-Fock”,
this typically translates into local orbital features cIk. Since we
enforce the backflow foθ to be odd (and thus foθð0Þ=0), the
resulting TAOs have zero contribution from atoms I with cIk =0.
While the true wavefunction might not be fully decomposable
intopurely local contributions,many relevant chemical concepts
—such as core electrons, bonds, lone pairs, or chemical groups—
are intrinsically local concepts and locality has been successfully
used as prior in many applications, for example in Neural
Network Potentials27,28. This hints at the prior of using local
orbitals to compose many-body wavefunctions, which in turn
can still contain non-local electron-electron correlations cap-
tured via the fully connected, non-local electron embedding hi.

• High expressivity: We empirically find that our ansatz is suffi-
ciently expressive to model ground-state wavefunctions to high
accuracy. We demonstrate this both empirically (c.f. SI 1, 1 mHa
energy deviation against PsiFormer for NH3) and theoretically
(c.f. SI 2) in the supplementary information. This stands in
contrast to previous approaches based on incorporating ab-
initioorbitals1, which couldnot reach chemical accuracyeven for
small molecules.

Size consistency of the ansatz
One design goal of the ansatz is to allow transfer of weights from small
systems to larger systems. In particular, if a large system consists of
many small previously seen fragments, one would hope to obtain an
energy which corresponds approximately to the sum of the fragment
energies. One simple test case, are chains of equally spaced Hydrogen
atoms of increasing lengths. These systems have been studied exten-
sively using high-accuracy methods29, because they are small systems
which already show strong correlation and are thus challenging to
solve. We test our method by pre-training our ansatz on chains of
length 6 and 10, and then evaluating the model (with and without
subsequent fine-tuning) for chain lengths between 2 and 28. Figure 2a
shows that our ansatz achieves very high zero-shot-accuracy in the
interpolation regime (Natoms = 8) and for extrapolation to slightly lar-
ger or slightly smaller chains (Natoms = 4, 12). Even when extrapolating
to systems of twice the size (Natom = 20), our method still outperforms
aHartree-Fock calculation and eventually converges to an energy close
to the Hartree-Fock solution.

e⁻
1s
2s
px
py

pz

1s
2s
px
py

pz

1s

1s

1s

1s

ca b

Fig. 1 | Illustration of the Transferable Atomic Orbitals, demonstrated on the
C=C-bond of Ethene. a The input for each orbital are localized Hartree-Fock basis
expansion coefficients eαI , corresponding to every atom I. b We learn a repre-
sentation cIof the orbital on every atomusing a GraphNeural Network, exchanging

information across atoms. c The orbital ϕ is evaluated for electron i by combining
the electron-embedding hi with the functions of the orbital representation fθ(cI)
and gθ(cI).
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To reach the accuracy of other correlated methods, we need a
few fine-tuning steps for each new system. In Fig. 2b, c, we compare
our results after 500 and 4000 fine-tuning steps against all high-
accuracy methods from Motta et al.29, which can obtain energies
extrapolated to the thermodynamic limit (TDL).We compare for the
two system sizes, investigated in ref. 29: 10 atoms in Fig. 2b, and
extrapolation to Natoms =∞ in Fig. 2c. For H10, our method is in near
perfect agreement with their reference method AFQMC, deviating
only by 0.1 mHa, nearly independent of the number of fine-tuning
steps. This high-accuracy result is expected, since our model has
also been pre-trained on chains of length 10 (albeit with different
inter-atomic distances), and DL-VMC has previously been shown to
achieve very high-accuracy on this system1. When extrapolating to
the TDL, our zero-shot energies are not competitive with high-
accuracy methods, but instead yield energy errors comparable to
Hartree-Fock, as seen in Fig. 2a. However, fine-tuning the ansatz for
only 500 steps, yields energies that already outperform most
methods studied in ref. 29 and fine-tuning for 4000 steps yields a
deviation of 0.6 mH/atom vs. AFQMC, on par with specialized
methods such as LR-DMC.

This good performance stands in stark contrast to other approa-
ches such as GLOBE+ FermiNet or GLOBE+Moon, studied in ref. 26:
Both GLOBE-variants yield 5-6x higher errors in the interpolation
regime and both converge to much higher energies for larger chains.
While our approach yields Hartree-Fock-like energies for very long
chains, GLOBE+FermiNet and GLOBE+Moon yield results that are
outperformed even by assuming a chain of non-interacting H-atoms,
which would yield an energy per atom of -0.5 Ha. For modest extra-
polations (Natoms = 12 to Natoms = 20) our zero-shot results yield 3–20x
lower errors than GLOBE+Moon.

Equivariance with respect to HF-phase
Due to using even and odd functions for the TAOs, our orbitals are
equivariant with respect to a change of sign of the Hartree Fock
orbitals. Therefore, a sign change of the HF-orbitals during HF-pre-
training has no effect on the optimization of the wavefunction. One
test case to assure this behavior is the rotation of a H2O molecule,
where we consider a set of 20 rotations of the same geometry,
leading to a change of sign in the p-orbitals of the Oxygen atom (cf.
Fig. 3). We evaluate our proposed architecture and compare it
against a naïve approach, where we use a standard backflow matrix
F, instead of a trainable, odd function foθ . In Fig. 3 we can see a clear
spike in the HF-pre-training loss at the position of the sign flip for
the standard backflow-type architecture, causing slower con-
vergence during the subsequent variational optimization. After 16k
optimization steps the effect diminishes and no substantial
improvement on the accuracy can be observed. Although in this
specific instance the orbital sign problem could also be overcome
without our approach by correcting the phase of each orbital to
align them across geometries, phase alignment is not possible in all
circumstances. For example, there are geometry trajectories,
where the Berry phase prevents such solutions30.

Transfer to larger, chemically similar compounds
To test the generalization and transferability of our approach, we
perform the following experiment: First, we train our ansatz on a
dataset of multiple geometries of a single, small compound (e.g. 20
distorted geometries of Methane). For this training, we follow the
usual procedure of supervised HF-pre-training and subsequent
variational optimization as outlined in the methods section “Varia-
tional Monte Carlo”. After 64k variational optimization steps, we

Fig. 2 | Transferability of the ansatz to chemically similar, larger systems,
demonstrated on the example of hydrogen-chains. a Energy per atom as a
function of chain-length. While GLOBE cannot successfully transfer to larger
chains, our ansatz successfully predicts zero-shot energies (i.e. without fine-tuning)
for up to 2x longer chains. b, c Comparison of our energies per atom after 500 and
4000 fine-tuning steps vs. high-accuracymethods fromMotta et al.29. Themethods
compared in this work include: SC-NEVPT2, the strongly contracted variant of the
nel electron valence state second-order pertubation theory; VMC (LDA), variational

Monte Carlo (local density approximation); UCCSD, couple cluster theory with full
treatment of singles and doubles excitations; RCCSD and RCCSD(T), couple cluster
theory with full treatment of singles and doubles and perturbative treatment of
triple excitations using restricted Hartree-Fock as a reference state; DMET density-
matrix embedding theory, LR-DMC (LDA) lattice-regularized diffusionMonte Carlo
(local density approximation). b for the Hydrogen Chain with number of atoms
Natoms = 10 (c) for chain lengths extrapolated to the thermodynamic limit
(Natoms→∞).
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then re-use the weights for different geometries of a larger com-
pound (e.g. distorted geometries of Ethene). We fine-tune the
model on this new geometry dataset for a variable number of steps
and plot the resulting energy errors in Fig. 4. We do not require
supervised HF-pre-training on the new, larger dataset. We perform
this experiment for 3 pairs of test systems: Transferring from geo-
metries of Hydrogen-chains with 6 atoms each, to chains with 10
atoms each, transferring from Methane to Ethene, and transferring
from Ethene to Cyclobutadiene. These test systems are of interst,
because they show strong correlation, despite being relatively small
and computationally cheap systems. For example, even CCSD(T)
overestimates the energy barriers of the Ethene- and
Cyclobutadiene-PES by ≈10mHa13,31.

We compare our results to the earlier DeepErwin approach13,
which only partially reused weights, and GLOBE, a concurrent work26

which reuses all weights. To measure accuracy we compare two
important metrics: First, the mean energy error (averaged across all
geometries g of the test dataset) 1

N

P
g ðEg � Eref

g Þ, which reflects the
method’s accuracy for absolute energies (cf. Fig. 4a). Second, the
deviation of the relative energy between the highest and lowest point
of the PES, i.e. ΔE � ΔEref = ðEmax � EminÞ � ðEref

max � Eref
minÞ, plotted in

Fig. 4b. Since different studies use different batch-sizes and different

definitions of an epoch, we plot all results against the number of
samples used for the energy estimation during variational optimiza-
tion, which is very closely linked to computational cost.

Compared to other approaches, we find that our method yields
substantially lower and more consistent energies. On the toy pro-
blem of H6 to H10 our approach and GLOBE reach the same accu-
racy, while DeepErwin converges to higher energies. For the real-
world molecules Ethene (C2H4) and Cyclobutadiene (C4H4) our
approach reaches substantially lower (and thus more accurate)
energies andmuchmore consistent potential energy surfaces. After
64mio. fine-tuning samples, ourmean absolute energies are 16mHa
and 17 mHa lower than GLOBE, and our relative energies are 39mHa
and 20 mHa closer to the reference calculation. When inspecting
the resulting Potential Energy Surface for Ethene (Fig. 4c), we find
that we obtain qualitatively similar results as DeepErwin and MRCI,
but obtain energies that are ≈ 6 mHa lower (and thus more accu-
rate). GLOBE on the other hand does not yield the correct PES for
this electronically challenging problem, since it overestimates the
energy barrier at 90∘ twist angle by ≈50 mHa. We observe similar
results on the Cyclobutadiene geometries, where our approach
yields relative energies that are in close agreement to the reference
method, while the GLOBE-results overestimate the energy differ-
ence by ≈20mHa.

Towards a first foundation model for neural network
wavefunctions
While the experiments in the previous section demonstrate the
ability to pre-train our model and fine-tune it on a new system, the
resulting pre-trainedmodels are of little practical use, since they are
only pre-trained on a single compound each and can thus not be
expected to generalize to chemically different systems. To obtain a
more diverse pre-training dataset, we compiled a dataset of 360
distorted geometries, spread across 18 different compounds. The
dataset effectively enumerates all chemically plausible molecules
with up to 18 electrons containing the elements H, C, N, and O. For
details on the data generation see “"Dataset used for pre-training of
multi-compound model”. We pre-train a base-model for
500,000 steps on this diverse dataset and subsequently evaluate its
performance, when computing Potential Energy Surfaces. We
evaluate its error against CCSD(T) (extrapolated to the complete
basis set limit) both for compounds that were in the pre-training
dataset (with different geometries), as well as for new, larger, out-
of-distribution compounds which were not present in the pre-
training dataset. We compare the results against a baseline model,
which uses the same architecture, but is trained from scratch.
Instead of re-using the pre-trained weights, this baseline initializes
its weights using the default method of supervised HF-pre-training
for each specific molecule2.

Figure 5 shows that fine-tuning our pre-trained model yields
substantially lower energies than the usual optimization from a HF-
pre-trained model. For example, for new large compounds, it only
takes 1k fine-tuning steps of the pre-trained model, to reach the
same accuracy as CCSD(T) with a 3Z basis set. The non-pretrained
model has a 60x higher energy error after 1k optimization steps, and
requires 20x more steps to reach this accuracy. As expected, the
gains from pre-training diminish for long subsequent optimization,
but after 32k optimization steps, the pre-trained model still
demonstrates 3x lower energy errors than the model being trained
from scratch.

To assess the accuracy of our method for relative energies, we
use the pre-trained model to compute a potential energy surface
of a carbon dimer. Figure 6 compares our energies (with and and
without fine-tuning) against other state-of-the art conventional
and deep-learning-based methods. We compare against CCSD(T)
extrapolated to the complete basis-set limit, an FCI-QMC study of

Fig. 3 | Accuracy when Hartree-Fock-pre-training against rotated H2O mole-
cules, which contain a change of sign in the Hartree-Fock-p-orbitals of the
Oxygen atom (a). Comparing a shared optimization of a backflow-based neural
network wavefunction (Standard backflow) against transferable atomic orbitals
(Our work). a Hartree-Fock-pre-training loss of the last the last 100 Monte Carlo
samples for 20 rotated geometries (b): Mean energy error vs. couple cluster
reference calculations (ECCSD(T)), averaged across all geometries.
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the C2-dimer by Booth et al.32 and PsiFormer4, the currently most
accurate deep-learning based ansatz for absolute energies. We
find that our approach without any fine-tuning steps correctly
identifies the energy minimum at d = 2.35 bohr and even yields
equilibrium energies that are lower than FCIQMC (cf. Fig. 6a).
While the carbon dimer itself is not part of the pre-training dataset,
several molecules with C = C bonds are, which explains the rela-
tively high accuracy in this regime. When stretching the bond, our
zero-shot energies overestimate the resulting energy by roughly
250mHa (cf. Fig. 6b), clearly highlighting this failure case in a
regime of lacking pre-training data. However, after just 1k fine-
tuning steps of our pre-trained base-model, we obtain the quali-
tatively correct PES. In particular in the electronically most chal-
lenging regime around d = 3 bohr, FCIQMC and CCSD(T) both
systematically overestimate the relative energy by 20-30 mHa
compared to PsiFormer, wheres our method only overestimates
the energy by ca. 10mHa (cf. Fig. 6c). We note that our approach
uses only 1k optimization steps per geometry, compared to 100k
(and twice the batch size) for PsiFormer, thus requiring GPU-hours
instead of GPU-days.

Scaling behavior
In many domains, increasing the amount of pre-training, has led to
substantially better results, even without qualitative changes to the
architecture33. To investigate the scalability of our approach, we vary
the three key choices, along which one could increase the scale of pre-

training: The size of the wavefunction model, the number of com-
pounds and geometries present in the pre-training-dataset, and the
number of pre-training steps. Starting from a large model, trained on
18x20 geometries, for 256k pre-training steps, we independently vary
each parameter. We test 3 different architectures sizes, with decreas-
ing layer width and depth for the networks fθ, gθ, and GCNθ (Compu-
tational settings). We test 3 different training sets, with decreasing
number of compounds in the training set, with 20 geometries each
(Dataset used for pre-training of foundationmodel). Finally, we evalu-
ate model-checkpoints at different amounts of pre-training, ranging
from64k steps to 512k steps. Figure 7 depicts the accuracy obtainedby
subsequently fine-tuning the resulting model for just 4000 steps on
the evaluation set. In each case, increasing the scale of pre-training
clearly improves evaluation results—both for the small in-distribution
compounds, as well as the larger out-of-distribution compounds. We
find a strong dependence of the accuracy on the model size and
number of compounds in the pre-training dataset, and a weaker
dependency on the number of pre-training steps. While our compu-
tational resources, currently prohibit us from training at larger scale,
the results indicate that our approachmay already be sufficient to train
an accurate multi-compound, multi-geometry foundation model for
wavefunctions.

Discussion
This work presents an ansatz for deep-learning-based VMC, which
can in principle be applied to molecules of arbitrary size. We

Fig. 4 | Accuracywhenpre-training themodelonsmall compounds and reusing
it for larger compounds. Boxplots show the 25-75th percentile of energy devia-
tions, connecting lines showmeanenergy deviations, whiskers span the non-outlier
range (1.5 interquartile ranges above and below the boxes), energy deviations
beyond the whiskers are plotted individually. a Mean energy vs reference energy

Eref, averaged across all geometries of the test set. b Deviation of relative energies.
c Final Potential Energy Surface (PES) for the Ethenemolecule for eachmethod. For
the H-chains and C2H4 we use MRCI results from13 as reference energy, for Cyclo-
butadiene we use FermiNet results from16 as reference.
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demonstrate the favorable properties of our ansatz, such as
extensivity, zero-shot prediction of wavefunctions for similar
molecules (Size consistency of the ansatz), invariance to the phase
of orbitals (Equivariance with respect to HF-phase) and fast fine-
tuning for larger, new molecules (Transfer to larger, chemically
similar compounds). Most importantly, “Towards a first foundation
model for neuralnetwork wavefunctions” is, to our knowledge, the
first successful demonstration of a wavefunction, which is trans-
ferable across compounds and has successfully been trained on a
diverse dataset of compounds and geometries. We demonstrate
that the dominating deep-learning paradigm of the last years—pre-

training on large data and fine-tuning on specific problems—can also
be applied to the difficult problem of wavefunctions. While previous
attempts13,26 have failed to obtain high-accuracy energies from pre-
trained neural network wavefunctions, we find that our approach
yields accurate energies and does so at a fraction of the cost needed
without pre-training. A typical inference run (batch-size 2048, one
compute node with 2 GPUs) for amolecule with 3 heavy atoms takes
~30min for zero-shot evaluation, or 1.5h for 1k fine-tuning steps and
subsequent evaluation. A CCSD(T)-4Z calculation on a compute-
node with 128 CPUs took ~30min. Given that the per-iteration cost
of DL-VMC scales as Oðnel

4Þ vs. the Oðnel
7Þ cost of CCSD(T), we

expect our model to become competitive once pre-trained and
applied to sufficiently large molecules. We furthermore demon-
strate in “Scaling behavior” that results can be improved system-
atically by scaling up any aspect of the pre-training: Model size,
data-size, or pre-training-steps.

Despite these promising results, there are many open ques-
tions and limitations which should be addressed in future work.
First, we find that our ansatz currently does not fully match the
accuracy of state-of-the-art single-geometry DL-VMC ansätze. While
our approach consistently outperforms conventional variational
methods such as MRCI or CCSD at finite basis set, larger, compu-
tationally more expensive DL-VMC models can reach even lower
energies. For example, PsiFormer optimized for 100k steps on the
carbon dimer, reaches ≈20mHa lower absolute energies than our
approach fine-tuned for 1k steps. Exchanging our message-passing-
based electron-embedding, with recent attention based
approaches4 should lead to higher accuracy. Furthermore we have
made several deliberate design choices, which each trade-off
expressivity (and thus potentially accuracy) for computational
cost: We do not exchange information across orbitals and we base
our orbitals on computationally cheap HF-calculations. Including
attention or message passing across orbitals (e.g. similar to ref. 26),
and substituting HF for a trainable, deep-learning-based model
should further increase expressivity. While we currently use HF-
orbitals due to their widespread use and low computational cost,
our method does not rely on a specific orbital descriptor. We could
substitute HF for a separatemodel such as PhisNet20 or SchnOrb34 to
compute orbital descriptors cIk, leading to a fully end-to-end
machine-learned wavefunction. Second, while we include useful
physical priors such as locality, we do not yet currently use the
invariance of the Hamiltonian with respect to rotations, inversions
or spin-flip. E3-equivariant networks have been highly successful for
neural network force-fields, but have not yet been applied to

Fig. 5 | Fine-tuning of variationally pre-trained base-model (solid lines) vs.
training a model from scratch (dashed lines) for 70 different geometries.
Boxplots show the 25-75th percentile of energy deviations, connecting lines show
mean energy deviations, whiskers span the non-outlier range (1.5 interquartile
ranges above and below the boxes), energy deviations beyond the whiskers are
plotted individually. Small compounds are in-distribution, with geometries similar
to geometries in pre-training dataset. Larger compounds are out-of-distribution
and are not present in the pre-training dataset.

Fig. 6 | Potential energy surface ofC2. aAbsolute energies, (b) Energies of eachmethod relative to the energyminimumatd = 2.35 bohr, (c) Deviation of relative energies
from the relative energies obtained by PsiFormer (ψF).
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wavefunctions due to the hitherto unsolved problem of symmetry
breaking15. Using HF-orbitals as symmetry breakers, could open a
direct avenue towards E3-equivariant neural network wavefunc-
tions. Third, while we use locality of our orbitals as a useful prior, we
do not yet use it to reduce computational cost. By enforcing sparsity
of the localized HF-coefficients, one could limit the evaluation of
orbitals to a few participating atoms, instead of all atoms in the
molecule. While the concurrent GLOBE approach enforces its
orbitals to be localized at a single position, our approach naturally
lends itself to force localization at a given number of atoms,
allowing for a deliberate trade-off of accuracy vs. computational
cost. Lastly, we observe that our method performs substantially
better, when dedicating more computational resources to the pre-
training, which makes it likely that future work will be able to scale
up our approach. To facilitate this effort we open source our code,
dataset as well as model parameters.

Methods
Variational Monte Carlo
Considering the Born-Oppenheimer approximation, a molecule with
nel electrons and Natoms nuclei can be described by the time-
independent Schrödinger equation

Ĥψ= Eψ ð6Þ

with the Hamiltonian

Ĥ = � 1
2

X
i

∇2
ri
+
X
i>j

1
jri � rj j

+
X
I>J

Z IZ J

jRI � RJ j
�
X
i,I

Z I

jri � RI j

ð7Þ

By r= ðr1, . . . ,rn"
, . . . ,rnel

Þ 2 R3 ×nel we denote the set of electron
positions divided into n↑ spin-up and n↓ = nel − n↑ spin-down
electrons. The solution to the electronic Schrödinger equation ψ
needs to fulfill the anti-symmetry property, i.e. ψðPrÞ= � ψðrÞ for

any permutation P of two electrons of the same spin. Finding the
groundstate wavefunction of a system corresponds to finding the
solution to Eq. (6), with the lowest eigenvalue E0. Using the
Rayleigh-Ritz principle, an approximate solution can be found
through minimization of the loss

LðψθÞ=Er∼ψ2
θðrÞ

ðĤψθÞðrÞ
ψθðrÞ

" #
≥ E0, ð8Þ

using a parameterized trial wavefunction ψθ. The expectation value in
Eq. (8) is computed by drawing samples r from the unnormalized
probability distribution ψ2

θðrÞ using Markov Chain Monte Carlo
(MCMC). The application of the Hamiltonian to the wavefunction can
be computed using automatic differentiation and the loss isminimized
using gradient basedminimization. A full calculation typically consists
of three steps:

(i) Supervised HF-pre-training: Minimization of the difference
between the neural network ansatz and a reference wavefunc-
tion (e.g. a Hartree-Fock calculation) ∣∣ψθ − ψHF∣∣. This is the only
part of the procedure which requires reference data, and
ensures that the initial wavefunction roughly resembles the
true groundstate. While this step is in principle not required, it
substantially improves the stability of the subsequent varia-
tional optimization.

(ii) Variational optimization: Minimization of the energy (Eq. (8)) by
drawing samples from the wavefunction using MCMC, and opti-
mizing the parameters θ of the ansatz using gradient based
optimization.

(iii) Evaluation: Evaluation of the energy by evaluating Eq. (8) without
updating the parameters θ, to obtain unbiased estimates of the
energy.

To obtain a single wavefunction for a dataset of multiple geo-
metries or compounds, only minimal changes are required. During
supervised and variational optimization, for each gradient step we
pick one geometry from the dataset. We pick geometries either in a

Fig. 7 | Errorwhenfine-tuning thepre-trainedmodel for 4000stepsonsmall in-
distribution geometries and larger out-of-distribution geometries. Boxplots
show the 25-75th percentile of energy deviations, connecting lines show mean
energy deviations, whiskers span the non-outlier range (1.5 interquartile ranges
above and below the boxes), energy deviations beyond the whiskers are plotted
individually. a The energy error for increasing the model size of the transferable
atomic orbitals. The small model uses no hidden layers and no graph convolutional

network. Themedium-sizedmodel uses one hidden layer ofwidth 64 and 128 for gθ
and for fθ respectively, and one iteration of the graph convolutional network. The
large model uses two iterations of the graph convolutional network, fθ and gθ with
hidden dimension 256 and 128. b The energy error when using a pre-trainedmodel
on a dataset with either 3, 9 or 18 compounds. c The energy error with increasing
number of pretraining steps.
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round-robin fashion, or based on the last computed energy variance
for that geometry. We run the Metropolis Hastings algorithm35 for
that geometry to draw electron positions r and then evaluate
energies and gradients. For each geometry we keep a distinct set of
electron samples r.

Obtaining orbital descriptors from Hartree-Fock
As discussed in “A multi-compound wavefunction ansatz”, our
ansatz effectively maps uncorrelated, low-accuracy Hartree-Fock
orbitals, to correlated, high-accuracy neural network orbitals. The
first step in this approach is to obtain orbital descriptors ck for each
orbital k, based on a Hartree-Fock calculation.

The Hartree-Fock method uses a single determinant as ansatz,
composed of single-particle orbitals ϕHF

k :

ψHFðr1, . . . ,rnel
Þ= det ΦHF

ik

h i
i,k = 1...nel

ð9Þ

ΦHF
ik :=ϕHF

k ðriÞ ð10Þ

For molecules, these orbitals are typically expanded in atom-
centered basis-functions μ(r), withNbasis functions centered on each
atom I:

ϕHF
k ðrÞ=

XNatoms

I = 1

XNbasis

b= 1

αIk,b μbðr� RI Þ, ð11Þ

The coefficients αIk 2 RNbasis and the corresponding orbitals ϕHF
k ðrÞ

are obtained as solutions of an eigenvalue problem and are typically
delocalized, i.e. they have non-zero contributions from many
atoms. However, since det½UΦ�= det½U�det½Φ�, the wavefunction
is invariant under linear combination of orbitals by a matrix U with
det½U�= 1. One can thus choose localized orbital expansion
coefficients

eαIk,b =
XNorb

k0 = 1

αIk,bUkk0 ð12Þ

corresponding to orbitals which are maximally localized according to
some metric. We stress that such a transformation from canonical to
localized orbitals is lossless: The localized orbitals represent exactly
the same wavefunction as the canonical orbitals and thus the proce-
dure involves no approximation.We localize orbitals purely to simplify
the learning problem for the subsequent trainable functions f, and g,
which map orbital descriptors to backflows and exponents. If the
orbitals for typical molecules can be composed of recurring local
motives (which empirically holds true), this substantially simplifies the
generalization of f and g to larger molecules, since their inputs will
mostly consist of orbital coefficients already seen in smallermolecules.
Several different metrics and corresponding localization schemes,
such as Foster-Boys36 or Pipek-Mezey37, have been proposed to find the
optimal transformation matrix U and are easily available as computa-
tionally cheap post-processing options in quantum chemistry codes.
We use the Foster-Boys method as implemented in pySCF38.

Due to the fundamentally local nature of atom-wise orbital coef-
ficients eαIk , which can be insufficient to distinguish orbitals, we use a
fully connected graph convolutional neural network (GCN) to add
context about the surrounding atoms. We interpret each atom as a
node (with node features eαIk) and use the set of all 3D inter-atomic
distance vectors {RIJ} as edge features:

cIk =GCNθ,I feαJkgJ = 1...Natoms
,fRJJ0 g

� �
,

J,J0 = 1 . . .Natoms

We embed the edge features using a Kronecker product of Gaussian
basis functions (of means μ 2 RDedge and widths σ 2 RDedge ) of the
inter-atomic distance RIJ and the concatenation of the 3D-distance
vector with the constant 1. The embedded edge features are then
mapped to a high-dimensional feature space with a multi-layer
perceptron (MLP):

eeIJ = exp � ðRIJ � μÞ2
2σ2

 !
� 1jRIJ

� � ð13Þ

eIJ = MLP ðeeIJÞ ð14Þ

c0Ik = eαIkeeIJ 2 R4Dedge , c0Ik 2 RNbasis
ð15Þ

Each layer l of the GCN consist of the following update rules

ul
Ik =

X
J

clJk � We
leIJ

� �
, ð16Þ

cl + 1Ik = σ Wc
lclIk +Wu

lul
Ik

� �
, ð17Þ

with trainable weight matrices We
l , Wc

l , Wu
l and the SiLU activation

function σ39. After L iterations we use the final outputs as orbitals
features:

cIk := cLIk ð18Þ

Mapping orbital descriptors to wavefunctions
To obtain entries Φik of the Slater determinant, we combine a high-
dimensional electron embedding hi with a function of the orbital
descriptor cIk:

hi =hθðri,fr"g,fr#g,fðR,ZÞgÞ ð19Þ

φd
θ ðri,RI ,cIkÞ= exp �jri � RI j ge,d

θ ðcIkÞ
� �

ð20Þ

Φd
ik =

XNatoms

I = 1

φd
θ ðri,RI ,cIkÞ fo,dθ ðcIkÞ,hi

D E
ð21Þ

The functions GCNo
θ , f

o
θ , and ge

θ are trainable functions, which are
enforced to be odd and even with respect to change in sign of their
argument c:

Even ge
θ :

ge
θðcÞ := gθðcÞ+ gθð�cÞ ð22Þ

Odd foθ :

foθðcÞ := fθðcÞ � fθð�cÞ ð23Þ

Odd GCNo
θ :

GCNo
θðα,RÞ :=GCNθðα,RÞ � GCNθð�α,RÞ ð24Þ

To obtain electron embeddings hi we use the message-passing
architecture outlined in5, which is invariant with respect to permuta-
tionof electrons of the same spin, or thepermutationof ions.Note that
during training, all samples in a batch come from the same geometry,
and thus have the same values for R, Z, and eα. While the embedding

Article https://doi.org/10.1038/s41467-023-44216-9

Nature Communications |          (2024) 15:120 9



network hembed
θ , needs to be re-evaluated for every sample, the

networks GCNθ, fθ, and gθ only need to be evaluated once per batch,
substantially reducing their impact on computational cost.

Dataset used for pre-training of multi-compound model
We use RDKit40 to generate all valid SMILES of molecules contain-
ing 1-3 atoms of the elements C, N, O. For each bond between atoms
we allow single, double, and triple bonds. After saturating the
molecules with Hydrogen, we perform force-field based geometry
relaxation using RDKit. We obtain 18 compounds with 10-18 elec-
trons, which we use for pre-training (cf. Fig. 8) and 35 compounds
with 20-24 electrons, of which we use some for evaluation. Con-
trary to other datasets of small molecules such as GDB-7, our
dataset also includes compounds which do not contain Carbon,
such as the nitrogen dimer N2 or hydrogen peroxide H2O2. To
obtain a more diverse dataset we perturb each equilibrium geo-
metry by applying Gaussian noise to the 3D coordinates. Since this
can generate nonphysical geometries, we keep only geometries in
which the perturbed inter-atomic distances are between 90–140%
of the unperturbed distances.

Reference energies
Reference energies for H2O in Fig. 3 were computed using DL-VMC
for 100,000 steps5. Reference energies for H10 and C2H4 in Fig. 4
were computed using MRCI-F12(Q)13. Reference energies for C4H4

in Fig. 4 were computed using DL-VMC16. To compute reference
energies for our multi-compound dastaset used in Fig. 5 and Fig. 7,
we used pySCF38 to perform CCSD(T) calculations using the cc-

pCVXZ basis sets. We computed Hartree-Fock energies EHFX using

basis-sets of valence X = {2, 3, 4} and CCSD(T) energies ECCSDðTÞ
X

using valence X = {2, 3}. To extrapolate to the complete-basis-set-

limit, we followed2 and fitted the following functions with free

parameters EHF
CBS ,E

corr
CBS ,a,b,c:

EHF
X = EHF

CBS +ae�bX

Ecorr
X : = EHF

X � ECCSDðTÞ
X = Ecorr

CBS + cX
�3

ECCSDðTÞ
CBS = EHF

CBS + Ecorr
CBS

We note that neither CCSD itself, nor the perturbative (T) treatment,
nor the CBS extrapolation are variational methods. The computed
reference energies are therefore not variational and may under-
estimate the true groundstate energy.

Computational settings
For a more detailed summary and explanation of the high-
dimensional embedding structure we refer to the original work5.
In all experiments we relied on the second order optimizer
K-FAC41,42. Key hyperparameters used in this work are summarized
in Table 1. For the base model in “Towards a first foundation model
for neural network wavefunctions” we increased the initial damp-
ing by 10x and ramped it down to 1 × 10−3 with an inverse scheduler.
All runs reusing pre-trained weights, offset the learning rate sche-
duler by o = 32, 000 steps, i.e. lr(t) = lr0(1+(t+o)/6000)−1. This leads
to a 5x lower initial learning rate. All pre-training runs in “Transfer
to larger, chemically similar compounds“ used 64, 000 optimiza-
tion steps. The base model in “Towards a first foundationmodel for
neural network wavefunctions” used 512, 000 optimization steps
due to the larger and more diverse training corpus.

The small- and medium-sized model for our ablation study in
Fig. 7 differ from the large model by the number of hidden layers
for fθ and gθ, the number of neurons per layer, and the number of
iterations of the GCNθ: The small model uses no hidden layers and

a) Training set

b) In-distribution test set c) Out-of-distribution test test

Small dataset Medium dataset

Fig. 8 | Compounds used for pre-training and evaluation of our model. Atom
colors follow theusual conventionofH =white,C = gray,N = blue,O = red.aThe full
training set, containing 18 compounds, each with 20 randomly distorted geome-
tries. The small and medium sized training sets are subsets of this full training set,

containing 3 and 9 compounds respectively. b The in-distribution test set consists
of 3 compounds with 10 distorted geometries each. c The out-of-distribution test
set consists of 4 compounds with 10 distortions each.
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no graph convolutional network. The medium-sized model uses
one hidden layer of width 64 for gθ and 128 for fθ, and one iteration
of the graph convolutional network. The small, medium and large
models respectively have 0.8 mio, 1.2 mio. and 2.0 mio
parameters.

Data availability
All geometry- and energy-data is available on GitHub under https://
github.com/mdsunivie/deeperwin. Model weights are available on
figshare under https://doi.org/10.6084/m9.figshare.23585358.
v143. Source data are provided with this paper.

Code availability
All code is available on GitHub under https://github.com/mdsunivie/
deeperwin and Zenodo (https://doi.org/10.5281/zenodo.10081846)44.
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