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Distributed quantum sensing of multiple
phases with fewer photons

Dong-Hyun Kim1,2,10, Seongjin Hong 3,10, Yong-Su Kim 1,4, Yosep Kim 1,5,
Seung-Woo Lee 1, Raphael C. Pooser6, Kyunghwan Oh2, Su-Yong Lee7,8,
Changhyoup Lee9 & Hyang-Tag Lim 1,4

Distributed quantum metrology has drawn intense interest as it outperforms
the optimal classical counterparts in estimating multiple distributed para-
meters. However, most schemes so far have required entangled resources
consisting of photon numbers equal to or more than the parameter numbers,
which is a fairly demanding requirement as the number of nodes increases.
Here, we present a distributed quantum sensing scenario in which quantum-
enhanced sensitivity can be achieved with fewer photons than the number of
parameters. As an experimental demonstration, using a two-photon entangled
state, we estimate four phases distributed 3 km away from the central node,
resulting in a 2.2 dB sensitivity enhancement from the standard quantum limit.
Our results show that the Heisenberg scaling can be achieved evenwhen using
fewer photons than the number of parameters. We believe our scheme will
open a pathway to perform large-scale distributed quantum sensing with
currently available entangled sources.

Quantum metrology achieves enhanced sensitivity for estimating
unknownparameters beyond the standardquantum limit (SQL),which
is the sensitivity bound attainable by exploiting classical resources1–6.
Recently, developments in quantum metrology have been directed
toward distributed quantum sensing7–15. Unlike conventional quantum
sensing, which estimates single or multiple parameters at a single
location, the goal of distributed quantum sensing is to estimate the
linear combination of multiple unknown parameters distributed
among distant nodes7,8,16. Distributed quantum sensing can be used as
a quantum sensor network, and it has been known to be useful for
various applications such as local beam tracking, and global-scale
clock synchronization17,18. Numerous efforts have been thus made to
achieve quantum-enhanced sensitivity for distributed quantum sen-
sing by utilizing quantum resources19–22.

Various strategies have been proposed for distributed multiple-
phase sensing by using entangled probe states among distributed

sensors. In continuous-variable (CV) quantum metrology, it has been
reported that an entangled CV state can achieve sensitivity beyond
what is attainable with separable states19,20,23. On the other hand, in
discrete-variable (DV) quantummetrology, it was theoretically proven
that the Heisenberg scaling (HS) could be achieved by utilizing both
mode-entangled and particle-entangled (MePe) states16, and an
experimental demonstration of estimating an average of three
unknown phases was realized in ref. 21. Moreover, a demonstration of
estimating an average of two unknown phases over a fiber distance of
10 km was realized in ref. 22. However, in order to estimate multiple
unknown phases using the MePe states, the number of photons in the
MePe states should be equal to or larger than the number of unknown
phases. For example, to estimate the average of three phases, six-
photon MePe states were used in ref. 21, and two-photon MePe states
were used to estimate the average of two phases in ref. 22. Therefore,
the practical scalability of distributed quantum sensing to estimate
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multiple unknown phases has been limited by the difficulty associated
with generating multi-photon entangled states24.

In this work, we propose a distributed quantum sensing protocol
that achieves quantum-enhanced sensitivity even when the number of
photons used is less than the number of unknown phases to estimate.
We also experimentally demonstrate distributed quantum-enhanced
detection of the average of four phases located in distant nodes over
3 kmaway from the central nodewith two-photon entangled states. To
this end, we distribute the prepared two-photon entangled state
among four nodes. Then the probe states undergo phase encoding at
each node, which is separated by 3 km away from the central node
through optical fiber spools, and are measured by four local mea-
surements. We estimate an average of four unknown phases with the
maximum likelihood estimator (MLE), and achieved a sensitivity
beyond the SQL. We believe that our results provide a useful platform
to investigate a distributed quantum sensor network.

Results
Let us begin by introducing a general scenario of distributed quantum
sensing to estimate the spatially distributed d multiple phases as
shown in Fig. 18,16. There are d unknown phasesϕ = (ϕ1, ϕ2,…, ϕd), and
they are distributed in different locations. In a distributed quantum
sensing scenario, the goal is to estimate a linear global function of
ϕ̂=αTϕ, where α = (α1, α2, …, αd) and

Pd
j = 1 jαjj= 1. Then the unitary

phase evolution is given by ÛðϕÞ= expð�i
Pd

j = 1 ĤjϕjÞ= expð�iĤ �ϕÞ,
where Ĥ= ðĤ1, . . . ,ĤdÞ denotes the local Hamiltonians. The initial
probe state Ψj i interacts with phase encoding ÛðϕÞ and evolves into
ÛðϕÞ Ψj i. Finally, it is detected by a set of projectors fΠ̂lg, and it gives a
corresponding probability set {Pl} for a givenϕ. Then, we can estimate
ϕ̂est from {Pl} using a proper estimator, for instance, MLE21,22,25. Here,
the uncertainty bound for the estimation of ϕ̂ can be described as
follows:

Δ2ϕ̂ � hðϕ̂est � ϕ̂Þ2i≥ ðαTαÞ2
μαTFα

, ð1Þ

which is known as the weak form of Cramer-Rao bound (CRB), F
denotes the Fisher information matrix with elements F(j, k) =∑l(1/Pl)

(∂Pl/∂ϕj)(∂Pl/∂ϕk), and μ denotes the number of measurements16.
Hereafter, we will simplify the description with μ = 1 for all the
presented theoretical schemes.

To achieve the HS (Δ2ϕ̂= 1=N2), the MePe state, which was pro-
posed in refs. 16 and 21, has the form of

ΨMePe

�� �
=

1ffiffiffi
2

p �d
j = 1 Hj

���
E�N=d

+�d
j = 1 Vj

���
E�N=d

� �
, ð2Þ

where H(V) represents a horizontal (vertical) polarization, N denotes
the total number of photons, d denotes the number of unknown
phases (i.e., number of nodes), and N/d is the number of photons in
each node j = 1, 2, ..., d. In Eq. (2), the photon numberN should be equal
to or larger than the number of unknown phases d. The MePe state
requires the photonnumberN =m × d (m is a positive integer). Thus, to
achieve the HS using a MePe state in distributed sensing, at least d-
photon GHZ-like entangled states are required. However, a key
challenge in the approach is the difficulty in generating d-photon
MePe states for large d24.

Here, instead, we consider another probe state that can achieve
the HS without the constraint N ≥ d. The probe state we propose has
the form of

ΨN
d

���
E
=

1ffiffiffiffiffiffi
2d

p
Xd
j = 1

Hj

���
E�N=2

Hj + 1

���
E�N=2

+ Vj

���
E�N=2

Vj + 1

���
E�N=2

� �
, ð3Þ

where d + 1 ≡ 1 since node d is adjacent to node 1 as shown in Fig. 1, for
instance, Hd

�� �
Hd + 1

�� � � Hd

�� �
H1

�� �
. Equation (3) corresponds to a

coherent superposition of the N-photon two-mode polarization-
entangled states in which N/2 photons are distributed in two adjacent
nodes, respectively. In this strategy, the photon number in each node
is N/2, so the only condition of our probe state is that N is an even
number. It means that our probe state can be used to estimate d
unknown phases with N photons even though N < d. By adding a beam
splitter network (BSN) to multiplex the state, we are able to
simultaneously probe multiple paths. In our experiment, we consider
a two-photon probe state Ψ2

4

���
E
to estimate four unknown phases, i.e.,

N = 2 and d = 4.
For demonstration purposes, we experimentally estimate an

average of four spatially distributed phases ϕ̂=
P4

j = 1 ϕj=4 (see Fig. 2a),
and ϕj corresponds to the phase encoding at node j. Note that four
sensors are distributed 3 km away from the central node, respectively.
To this end, we prepared the two-photon polarization entangled
probe states in Eq. (3) with N = 2 and d = 4 distributed in four nodes as
shown in Fig. 2b. Firstly, the polarization Bell state Φa,b

�� �
=

ð HaHb

�� �
+ VaVb

�� �Þ= ffiffiffi
2

p
was generated via spontaneous parametric

down-conversion (SPDC) process from a 10-mm-thick type-II periodi-
cally-poled KTiOPO4 (PPKTP) crystal, which is located at the Sagnac-
interferometer26,27. Then, the generated Bell state was split to dis-
tribute the quantum states among four nodes by the BSN consisting of
two 50/50 beam splitters as shown in Fig. 2b. The process of preparing
Ψ2

4

���
E
can be described as follows:

Φa,b

�� �
=

1ffiffiffi
2

p ð HaHb

�� �
+ VaVb

�� �Þ

�!BSN Ψ2
4

���
E
=
1
2
ð Φ1,2

�� �
+ Φ2,3

�� �
+ Φ3,4

�� �
+ Φ4,1

�� �Þ

�!ϕ ÛðϕÞ Ψ2
4

���
E
=
1
2

ð H1H2

�� �
+ eiðϕ1 +ϕ2Þ V 1V 2

�� �Þ�

+ ð H2H3

�� �
+ eiðϕ2 +ϕ3Þ V 2V3

�� �Þ
+ ð H3H4

�� �
+ eiðϕ3 +ϕ4Þ V 3V4

�� �Þ
+ ð H4H1

�� �
+ eiðϕ4 +ϕ1Þ V4V 1

�� �Þ�,

ð4Þ
Fig. 1 | Scheme for estimating spatially distributed multiple phases.Multiple
unknown phases ϕ = {ϕ1, ϕ2, …, ϕd} are located in each node. The goal of dis-
tributed sensing is to estimate the linear combination of the multiple unknown
phases, ϕ̂, with a quantum-enhanced sensitivity.
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where the subscript denotes the node, for example, jΦj,ki denotes the
Bell states ðjHjHki+ jVjVkiÞ=

ffiffiffi
2

p
between the node j and the node k.

Then, Ψ2
4

���
E
can be interpreted as a superposition of four Bell states

between the two adjacent nodes such as jΦ1,2i, jΦ2,3i, Φ3,4

�� �
, and

Φ4,1

�� �
. Then, the probe state jΨ2

4i evolved into ÛðϕÞjΨ2
4i after the

phase encoding. The phase encoding was realized by a set of quarter
waveplate (QWP), half waveplate (HWP), and QWP located at each
node, as shown in Fig. 2a26,27.

Then ÛðϕÞ Ψ2
4

���
E
wasmeasured by projective measurement on the

σx basis at each node21,22. The σx measurement was performed with a
combination of an HWP at 22.5∘ from the optic axis and a polarizing
beam splitter (PBS), and the coincidence measurement in the σx basis
was performed in each node. Then, it gives a corresponding prob-
ability set {Pl}, and there are sixteen probabilities of
fP + +

jk ,P +�
jk ,P�+

jk ,P��
jk g where the superscripts of + and − correspond to

the outcomes of the σx measurement, and jk denotes the nodes and
depending on ϕj and ϕk, i.e., {jk} = {12, 23, 34, 41}. For example, P +�

12

denotes the outcome probability of two-photon coincidence events
between + in node 1 and − in node 2. The outcome probabilities in our
experiment can be written as

P + +
jk = P��

jk =
1 + V± ±

jk cosðϕj +ϕkÞ
16

,

P +�
jk = P�+

jk =
1� V ±∓

jk cosðϕj +ϕkÞ
16

,

ð5Þ

where V ± ±
jk (V ±∓

jk ) is the visibility of P ± ±
jk (P ±∓

jk ). The sensitivity bound
of our probe state can be calculated using Eq. (5) and reach the HS
beyond the SQL. See Methods for the detailed calculation.

Our experimental results on fP + +
12 ,P +�

12 ,P�+
12 ,P��

12 g by scanning ϕ1

and ϕ2 are shown in Fig. 3, and their averaged visibilities are obtained
to be0.955, 0.981, 0.970, and0.945, respectively. Note that P12, P23, P34
and P41 are the outcome probabilities with respect to {ϕ1, ϕ2}, {ϕ2, ϕ3},
{ϕ3,ϕ4}, and {ϕ4,ϕ1}, respectively.Weprovideour experimental results
on other probabilities in Supplementary Notes. Then, we estimate an
average of unknown four phases, i.e., ϕ̂, using MLE21,22. To obtain the
sensitivity for estimating ϕ̂, we calculated the standarddeviationof the
estimated average of four phases, i.e., Δϕ̂est. To this end, the sixteen
probabilities {Pl} were obtained by scanningϕ1 whenϕ2,ϕ3, andϕ4 are
fixed at ϕ2≃π/2 and ϕ3≃ϕ4≃0. The experimental probabilities were
calculated from the measured post-selected coincidence events with
μ≃ 367 as shown in Fig. 4a, b. In addition, the expected limit was

obtained by calculating Eq. (1) using the sixteen probabilities with
experimentally obtained non-ideal visibilities, and the SQL and the HS
are also drawn by calculating 1=ð

ffiffiffiffiffiffiffi
μN

p
Þ and 1=ð ffiffiffi

μ
p

NÞ, respectively, with
μ≃ 367 in Fig. 4c. See Methods for error analysis on our experimental
results. Note that the error bars on the standard deviation in Fig. 4c lie
below the HS. It is mainly from the mismatch between experimental
results and theoretically calculated probability functions in Figs. 4a, b,
and we attribute this to fluctuation on phases due to a few km long
optical fibers (~3 km) and the fact that the limited number of samples
are used for estimation (μ≃ 367)22. Our experimental results clearly
show that our strategy can achieve sensitivity beyond the SQL, and this
can be further improved up to theHSwith better visibility.We can also
see that the obtained standard deviations are close to the HS in Fig. 4c.

In our experiment, weused a post-selection technique anddid not
include experimental imperfections such as photonic losses and lack
of high-efficiency photon number resolving detectors. However, ver-
ifying the proof-of-concept of quantum enhancement is not affected
by the post-selection technique, which has been used in most experi-
ments for quantum-enhanced parametermetrology21,25–29. Moreover, it
is possible to achieve sensitivity beyond the SQL by using state-of-the-
art high-efficiency photon number resolving detectors22,30,31. See Sup-
plementary Note for an analysis that takes into account all losses in our
experiment setup.

We now consider a generalization of our schemewith Eq. (3) toN-
photon and d unknown phases to estimate an average phase
ϕ̂=

Pd
j = 1 ϕj=d as shown in Fig. 5. The extended probe state in Eq. (3)

can be described differently as follows:

ΨN
d

���
E
=

1ffiffiffi
d

p ΦN
1,2

���
E
+ ΦN

2,3

���
E
+ . . . + ΦN

d�1,d

���
E
+ ΦN

d,1

���
E	 


: ð6Þ

For example, ΦN
1,2

���
E

denotes the N-photon two-mode polarization-
entangled states between node 1 and node 2, i.e.,
ΦN

1,2

���
E
= ð H1

�� ��N=2 H2

�� ��N=2
+ V 1

�� ��N=2 V 2

�� ��N=2Þ=
ffiffiffi
2

p
, meaning that N/2

photons are sent to each node, respectively32,33. Here, N is assumed to
be even. Then one cancalculate the Fisher informationmatrix for ΨN

d

���
E

as follows:

F ðj,kÞ =

N2

2d if j = k
N2

4d if j = k ± 1

0 otherwise :

8>><
>>:

ð7Þ

Fig. 2 | Experimental scheme. a Experimental setup for demonstrating our dis-
tributed quantum sensing scenario. The entangled probe state Ψ2

4

���
E
at the central

node is sent to each node via 3 km fiber spools. Then, Ψ2
4

���
E
undergoes phase shifts

at each node with a combination of two QWPs, and a HWP. In each node, σx mea-
surement is performed using a set of a HWP with an optic axis angle of 22.5∘ and a
PBS. Then, the two-photon coincidence counts are measured using super-
conducting nanowire single-photon detectors (SNSPDs). b A polarization

entangled state Φa,b

�� �
is generated from a Sagnac-interferometer-based Bell

source26,27. Then, Ψ2
4

���
E
is prepared by using a BSN consisting of two FBSs. QWP:

quarterwaveplate;HWP: halfwaveplate; PBS: polarizingbeamsplitter;DM:dichroic
mirror; DWP: dual wavelength PBS; DWM: dual wavelength mirror; DWH: dual
wavelength HWP; PPKTP: periodically-poled KTiOPO; BSN: beam splitter network;
FBS: 50/50 fiber beam splitter. The detailed information on our experimental setup
is provided in Supplementary Note.
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Then the sensitivity bound can be calculated from Eq. (7) as
Δ2ϕ̂= 1=N2, which is the HS of N photons. We note that the HS of N
photons can be described using the average number of photons per
mode, denoted asn =N/d, i.e.,Δ2ϕ̂= 1=N2 = 1=ðn2 ×d2Þ. It is noteworthy
that our proposed protocol implies the HS for both the average pho-
ton number, n, and the number of unknown phases, d, which is
desirable for distributed quantum sensing16,19. Moreover, note that in
our scenario, it does not require the photonnumberN to be equal to or
larger than the number of unknown phases d. It means that one can
estimate the average of d unknown phases with N photons even for
N < d. See Supplementary Note for detailed calculation on the gen-
eralization of our scheme.

Discussion
In summary, we experimentally demonstrated the distributed quan-
tum phase sensing among four nodes with 2.2 dB sensitivity
enhancement over the SQL. In our work, we estimated an average of
four unknown phases located in distant nodes, which are separated
by 3 km away from the central node. We theoretically showed that in
our proposed scheme, one can achieve the HS even when the num-
ber of photons is less than the number of unknown phases. More-
over, we proposed a generalization of our scheme for estimating
spatially distributed d phases using N photons with sensitivity of the
HS. In addition, by utilizing the multiple passes of the phase shifter,

our proposed scheme can estimate a linear global function of the
distributed phases with the HS21,22,34. We believe that our results can
provide helpful guidelines for a practical demonstration of spatially
distributed quantum sensing by increasing the number of nodes
consisting of the distributed sensor network. In addition, by
exploiting the state-of-the-art long-distance entanglement distribu-
tion technique through deployed optical fiber networks35–37, our
distributed quantum sensing scheme can be demonstrated in
deployed optical fiber networks. It is also intriguing to combine
distributed quantum sensing with simultaneous estimation of mul-
tiple parameters at a single location26–29,38–40 by considering a sce-
nario in which one finds an optimal strategy for estimating spatially

Fig. 3 | Experimental results on interference fringesbetween the node 1 and the
node 2.The distance between the two nodes is 6 km (fiber spool). a, b Two-photon
coincidence counts are obtainedwhen the phase encoding ϕ̂ 2 ½0,2π�. Each surface
represents a theoretical model P + +

12 ,P +�
12 ,P�+

12 , and P��
12 in Eq. (5), respectively, and

dots correspond toour experimental data. Note that the error bars are smaller than
the markers. See Supplementary Note for the experimental interference fringe
results that are obtained by scanning all phases.

Fig. 4 | Experimental results on the estimated phase ϕ̂est and the standard
deviation Δϕ̂est. a, b Experimentally obtained interference fringes of sixteen
detection probabilities versus ϕ̂. Error bars are smaller than the markers. c The
purple solid line represents the corresponding weak formof CRB value. The purple
shaded area corresponds to 95% confidence regions, which are obtained from the
standard deviation of fitting parameters. Cyan and red dashed lines correspond to
the SQL and the HS, respectively. The error bars represent the standard deviation
with s = 100 groups. See Methods. Detailed information on ϕ̂est and Δϕ̂est is pro-
vided in Supplementary Note.
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distributed multiple parameters when each node has more than a
single parameter to be estimated.

Methods
Theoretical calculation of quantum Fisher information matrix
and Δ2ϕ̂
We theoretically analyzed the ideal sensitivity limit of our scheme by
calculating the weak form of CRB. By taking into account {Pl}, one can
obtain the sensitivity bound from the Fisher information matrix F,
which can be calculated as follows:

F=

1=2 1=4 0 1=4

1=4 1=2 1=4 0

0 1=4 1=2 1=4

1=4 0 1=4 1=2

0
BBB@

1
CCCA: ð8Þ

Here, we can see the non-zero off-diagonal terms between the two
adjacent nodes. Then the uncertainty bound of ϕ̂ can be calculated to
be Δ2ϕ̂= 1=4 by using Eq. (1) with α = (1/4, 1/4, 1/4, 1/4). Note that the
sensitivity bound of 1/4 is equal to the HS 1/N2 when N=2, and here the
SQL is defined as 1/N = 1/2.

Error analysis
The standard deviation of estimated phase ϕ̂est was obtained from
experimentally obtained {Pl} with μ measurements s times using MLE.
In our experiments, about 36,700 coincidence counts are divided into
100 groups for each phase shift. The error bar of standard deviation is
obtained from an approximation δðΔϕ̂Þ=Δϕ̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs � 1Þ

p
with s = 100

groups21,22.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The code used to generate the figures within this paper and other
findings of this study are available from the corresponding author
upon request.
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