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MAPS: pathologist-level cell type annotation
from tissue images through machine
learning

Muhammad Shaban1,2,3,4,10, Yunhao Bai5,10, Huaying Qiu6,10, Shulin Mao6,
Jason Yeung6, Yao Yu Yeo 6, Vignesh Shanmugam1,4, Han Chen5, Bokai Zhu5,
Jason L. Weirather3,7, Garry P. Nolan 5, Margaret A. Shipp 8, Scott J. Rodig1,8,
Sizun Jiang 4,6,9,11 & Faisal Mahmood 1,2,3,4,11

Highly multiplexed protein imaging is emerging as a potent technique for
analyzing protein distribution within cells and tissues in their native context.
However, existing cell annotation methods utilizing high-plex spatial pro-
teomics data are resource intensive and necessitate iterative expert input,
thereby constraining their scalability and practicality for extensive datasets.
We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial
biology), a machine learning approach facilitating rapid and precise cell type
identification with human-level accuracy from spatial proteomics data. Vali-
dated on multiple in-house and publicly available MIBI and CODEX datasets,
MAPS outperforms current annotation techniques in terms of speed and
accuracy, achieving pathologist-level precision even for typically challenging
cell types, including tumor cells of immune origin. By democratizing rapidly
deployable and scalable machine learning annotation, MAPS holds significant
potential to expedite advances in tissue biology and disease comprehension.

The precise delineation of cellular subtypes is crucial for elucidating
structural and functional intricacies of biological tissues, within their
native context. Compared to conventional low-plex imaging methods,
recent advances in high-plex spatial proteomics techniques, such as
MIBI, CODEX, cycIF, and IMC, allows for interrogation of 40–60 pro-
teomic markers within a single tissue section1–7. These approaches
offer invaluable insights into protein expression and distribution
within cellular and tissue architectures for phenotypic and functional
investigations, and are broadly applicable to fields such as cancer-
immune and host-pathogen interactions8–10. Iterative cyclicalmethods,

such asCODEX and cycIF, achievemultiplexity throughmultiple cycles
of staining, imaging, and bleaching/stripping of the labelingmolecules
using fluorescent microscopy methods and off-the-shelf reagents.
However, these approaches may face barriers related to tissue degra-
dation, difficulties in image registration, and epitopes loss during the
cycling process. Mass spectroscopy-based methods, such as MIBI and
IMC, are a different imaging modality requiring specialized instru-
ments and custom conjugation of antibodies with isotopes. In this
case, all the markers may be acquired simultaneously to directly
reconstruct multiplexed images for downstream analysis.
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While these highly multiplexed images may provide new insights
into biological processes, they also pose challenges in data processing,
including the need for automated pipelines to distill the information
from each single cell. For example, accurate cell type annotation pre-
sents formidable challenges, stemming primarily from constraints in
highly precise cell segmentation11, lateral spillover ofmarkers in tightly
packed tissues12, presence of tissue-level and patient-level variability,
and heterogeneous expression patterns9,10,13. Existing approaches for
cell annotation are contingent upon unsupervised clustering techni-
ques, necessitating subsequent manual curation and visual validation,
a process that can be markedly labor-intensive and requires domain-
specific expertise. Achieving higher annotation accuracies can thus be
an arduous process due to the iterative steps involved8. Therefore,
there is a need for scalable computationalmethods that can accurately
classify cells from spatial proteomics data. Promising automated
approaches developed recently include probabilistic inferential
approaches14,15, and convolutional neural networks16,17. Geuenich et al.
introduced ASTIR, an automated method for assigning cell identities
using single-cell multiplexed imaging data. ASTIR utilizes a probabil-
istic model that incorporates prior knowledge of marker proteins to
categorize cells into specific cell types. Amitay et al. introduced Cell-
Sighter, a cell classification pipeline based on deep learning. This
method exhibits promising classification performance. However, it is
noted for its shortcomings in computational efficiency due to its reli-
ance on an ensemble of ten ResNet50-based models with random
initializations, which can be computationally intensive and potentially
resource-consuming.

Therefore, a computationally lightweight and fast automated cell
classification method, while achieving human-level accuracy, is
required to improve the efficiency and scalability of spatial proteomics
data analysis. We present hereMAPS (Machine learning for Analysis of
Proteomics in Spatial biology), a machine learning package that
enables accurate and fast cell annotation with the highest in-class
performance when benchmarked across multiple spatial proteomics
platforms. MAPS can facilitate both the speed and quality of cell
annotation process so that researchers can allocate more downstream
efforts in unveiling novel biological processes in situ.

Results
Development of MAPS and initial application to an in-house
curated cHL MIBI dataset
Herein, we postulated that a feed-forward neural network would be an
efficient and robustmodel for rapid and accurate cell phenotyping. This
model, MAPS, predicts the cell class from a set of user-defined classes
using the expression of a cell for N markers, and its area in pixels
(Fig. 1A). MAPS employs four fully connected hidden layers with ReLU
activation function and dropout layers, followed by a classification layer
with softmax function. MAPS accurately predicted the cell phenotypes
in healthy and diseased tissues, as exemplified by a MIBI dataset of
classic Hodgkin Lymphoma (cHL) [1669853 cells, 13 cell types] (Fig. 1B,
Supplementary Fig. 1A). All ground truth annotation data was generated
through traditional iterative clustering and visual inspection, followed
by final inspection by a board certified pathologist (S.J.R.). All ques-
tionable clusters were subject to further clustering based on the key
markers that were present, and difficult cell types, such as Reed-
Sternberg tumor cells in cHL, were then subject tomanual annotation to
generate the “ground truth” reference (Supplementary Fig. 1B, further
expanded in METHODS). We next evaluated the performance of MAPS,
including precision, recall, and F1-scores in a stratified 5-fold cross
validation (Fig. 1C, D; see METHODS for more details). For each model
training, four folds were used for the training/validation set and the
remaining fold was used for the test set. The optimal model was chosen
based on a validation set. We ensured that data corresponding to a
specific case was exclusively part of either the training/validation or the
test set. Themean cell expressionmatrix of various phenotypicmarkers

for each cell type in the ground truth and predictions had high con-
cordance (Fig. 1E). MAPS thus demonstrated a consistently high accu-
racy in predicting the cell type from spatial proteomics datasets.

Benchmarking comparisons of MAPS against other methods
and on other spatial proteomics data
We sought next to demonstrate real worldpracticality ofMAPS, and its
performance against other state-of-the-art approaches, ASTIR14 and
CellSighter16. We collected and annotated in-house data from (1) MIBI
on cHL using a first cohort (cHL 1; 1669853 cells), (2)MIBI on cHL using
a second cohort (cHL 2; 192795 cells), and (3) CODEX on cHL (145161
cells). MAPS, ASTIR and CellSighter were trained on the same ground
truth data generated on the aforementioned datasets in the same
manner (seeMETHODS), and the resulting phenotypemaps visualized
(Fig. 2A and Supplementary Fig. 2A). To evaluate the performance on a
different disease type, we also trained, validated and tested all three
models on an externalMIBI dataset fromdiffuse large B cell lymphoma
(DLBCL) study18. The analysis of the precision, recall and F1 scores
indicated the consistently highest performance of MAPS across all
datasets, followed by CellSighter and ASTIR (Fig. 2B, Supplementary
Figs. 2B, 3, 4, and Supplementary Tables 4–15). All threemethods show
relatively small performance variance on cHL (CODEX) compared to
the other datasets (cHL 1 MIBI, cHL 2 MIBI, and DLBCL MIBI). We
postulated that this small performance variance could be attributed to
the different data-splitting strategies. The cHL (CODEX) dataset, con-
sisting of a large single tissue image from one patient, was split at the
cell level, which can lead tobias andoverfitting in themachine learning
model. This is because adjacent cells in the same imagemay have been
split between the training, validation, and test sets, potentially leading
to high overlap in the distribution of cells in training, validation and
test sets. This can artificially result in higher performance in the test set
that may not generalize well to new samples. In contrast, the other
three datasets consist of multiple regions and patient cases, and were
split at the case level, which prevents this issue of information leakage,
thus resulting in a more realistic real-world performance. Details of
these datasets are further elaborated in the METHODS.

Given the high performance of MAPS and CellSighter, we next
computed precision-recall curves and average precision per class to
gain further insights on the model differences (Supplementary Figs. 3,
4). MAPS demonstrated consistent performance across all datasets
and consistently outperformed CellSighter on all four datasets, with
averageprecision ranging from0.93 to0.99 forMAPS, and0.75 to0.97
for CellSighter.

The evaluation of MAPS counterparts on in-house datasets may
suffer from retraining bias. Therefore, we further benchmarked MAPS
on a public data set from a study on colorectal cancer (CRC) generated
withCODEX7 and compared its performancewithpreviously published
results of CellSighter (an ensemble of 10 randomly initialized Cell-
Sightermodels) on samedataset.MAPS continued to performrobustly
over CellSighter, also highlighting its compatibility with different tis-
sue types (Fig. 3A).

The generalizability of MAPS was next tested by applying the
model trained on cHL1 to predict cell phenotypes of cHL2. Its perfor-
mance was compared against the cross-dataset performance of ASTIR
andCellSighter (Fig. 3B). Overall, all threemodels showedadecrease in
performance, with the performance of MAPS and CellSighter still
acceptable formost of the cell types (F1-Scores vary between 0.5–0.6).
However, due to the heterogeneity among different datasets and the
lack of established baseline for proteomics data, which, in turn, causes
difficulties to adjust for the heterogeneity, a decrease in performance
was expected.

Data efficiency and computational resource usage
Since large and well-annotated datasets are not always readily
available and require tremendous efforts to produce, we tested
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the performance of MAPS on various differently sized data sets.
To do so, we randomly sampled 5%ð�n=48483Þ, 10%ð�n =96967Þ,
25%ð�n =242418Þ, 50%ð�n=484833Þ, 75%ð�n= 727247Þ, and
100%ð�n =969660Þ from the cHL 1 MIBI training set. Overall, MAPS
performed comparably well across all of the training sets with, as
expected, increasing performance as the size of the training set
increases (Fig. 4A). However, a diminishing return was observed
as the size of the training set increased, indicating that optimal

performance of MAPS can be achieved with moderately sized data
sets, as long as the annotated subsampled cells represent the
overall cell type populations.

Given how neural network models can be resource intensive,
we next quantified the level of computational resource usage
between MAPS and CellSighter. Here, we used the cHL (CODEX)
dataset due to its relatively small size yet diverse number of cell
type representations. We observed comparable total run time and
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Fig. 1 | Overview of MAPS architecture and its performance on cHL1 (MIBI)
dataset across 5-folds cross validation. A Schematic of MAPS for machine
learning based cell phenotyping. MAPS takes a multiplex image as input and con-
verts it into a cell expression matrix after preprocessing, which is then fed into a
feedforward neural network for cell type prediction from a predefined list of
classes. B A representative FOV of a multiplexed image used for cell phenotyping.
Cell phenotype maps generated via manual annotation (Ground Truth) and MAPS
(MAPS Prediction) are shown for visual comparison. For each dataset, the imaging

was performed once on all FOVs. Source data are provided as a Source Data file.
C Confusion matrix of MAPS predictions. Numbers in parentheses indicate the
percentage of cells with respect to total cells in the corresponding row/class.
D Average precision, recall, and F1-score of MAPS predictions across five folds.
Error bars represent ± 1 standard deviation centered around themean. Source data
are provided as a SourceData file. EAverage cellmarker expressionmatrix for each
cell type generated using ground truth labels (left) and MAPS prediction (right).
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GPU memory utilization between MAPS and ASTIR, with sub-
stantially higher values for CellSighter. Memory utilization was
similar between MAPS and CellSighter, with lower values for
ASTIR (Fig. 4B). Our results highlight the well-balanced compu-
tational efficiency and rapid performance of MAPS, relative to its
top-in-class accuracy for cell type annotation.

Discussion
In this study, we introducedMAPS, for pathologist-level accuracy in cell
annotation from spatial proteomics data. Our comprehensive evalua-
tion demonstrates that MAPS outperforms its counterparts, ASTIR and
CellSighter, in terms of both accuracy and computational efficiency,
thus establishing it as a robust tool for precise cell type prediction.
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Fig. 2 | Visual and quantitative comparison of MAPS performance with its
counterparts. A Comparison of MAPS and CellSighter performances across three
multiplex image datasets. The last column indicates differences in cell predictions
between these two methods. Row 1: Representative cHL FOV from a cHL patient
cohort (cHL 1) acquired via the MIBI. Row 2: Representative cHL FOV from another
cHL patient cohort (cHL 2) acquired via the MIBI. Row 3: Representative cHL FOV
from a separate cHL tissue acquired via the CODEX. For each dataset, the imaging

was performed once on all FOVs. Source data are provided as a Source Data file.
B Comparisons of precision, recall, and F1 score among ASTIR, CellSighter, and
MAPS, across three in-house datasets (cHL1 MIBI, cHL2 MIBI, cHL CODEX) and an
external dataset DLBCL MIBI. Error bars represent ± 1 standard deviation centered
around the mean. For cHL1 (MIBI), n = 1669853 cells. For cHL2 (MIBI) n = 230895
cells. For cHL (CODEX), n = 145161 cells. For DLBCL (MIBI), n = 338798 cells. Source
data are provided as a Source Data file.
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MAPS exhibits superior performance metrics compared to exist-
ing state-of-the-art methods. Specifically, it achieves significantly
higher F1-scores, precision, and recall, showcasing its remarkable
ability to accurately discern cell types from spatial proteomics data
(Fig. 2B). This heightened performance is a testament to the effec-
tiveness of the feed-forward neural network architecture employed in
MAPS. This architecture enables the efficient processing of spatial
proteomics data, allowing for the capture of intricate relationships
between input features and cell types. The incorporation of ReLU
activation functions introduces non-linearity, further enhancing the
model’s capacity to discern complex cellular patterns. The integration
of dropout layers during training mitigates overfitting, bolstering the
model’s generalization capabilities.

The strength of MAPS lies in its consistently high performance
across diverse biological contexts (Figs. 2B, 3A). It demonstrates pro-
ficiency in handling various disease models such as classical Hodgkin
lymphoma (cHL), diffuse large B cell lymphoma (DLBCL), and color-
ectal cancer (CRC). This adaptability underscores the versatility of
MAPS, positioning it as a reliable tool for awide range of biological and
biomedical research applications. Furthermore, MAPS exhibits

exceptional cross-platformcompatibility, performingconsistentlywell
on both MIBI and CODEX datasets (Figs. 2B, 3A). This feature is of
paramount importance, as it ensures the applicability of MAPS in
diverse experimental settings. In addition, a reasonable level of gen-
eralizability across datasets further solidifies the position of MAPS as a
leadingmethod for cell annotation in spatial proteomics data (Fig. 3B).

In term of data efficiency, MAPS shows consistent performance
when trained with limited training data (Fig. 4A) in addition to its
exceptional performance in well-sampled scenarios. This capability
enables accurate cell type annotation even in situations where data
availabilitymaybe constrained. The optimal performance ofMAPS can
be achieved with moderately sized dataset, as long as the annotated
cells represent their respective populations well.

Finally, MAPS not only surpasses its counterparts in terms of
accuracy but also stands out for its computational efficiency (Fig. 4B).
Its training time is orders of magnitude faster than existing supervised
methods, a crucial advantage in the analysis of large-scale spatial
proteomics data. This efficiency is a pivotal feature, particularly in
scenarios where rapid processing of extensive datasets is imperative.
By integrating MAPS into current spatial proteomics workflows, it can
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expedite the annotation process from smaller, curated “ground truth"
datasets, exemplifying its potential to streamline research endeavors
in the field (Supplementary Fig. 1B).

In conclusion, the combination of superior performance, simple
model architecture, fast training and inference, cross-platform com-
patibility, and adaptability to different tissue types and diseasemodels
firmly establishesMAPS as a powerful tool for cell annotation in spatial
proteomics data. The release of theMAPSpackage and associated data
resources on GitHub (https://github.com/mahmoodlab/MAPS) marks
a significant contribution to the scientific community, providing
researchers with a valuable resource to advance the field of tissue
spatial-omics and accelerate discoveries in cellular biology across
diverse biological contexts.

Methods
Section 1: dataset acquisition
Ethical statement. Formalin-fixed paraffin-embedded (FFPE) exci-
sional biopsies from 23 patients with newly diagnosed cHL, and one
reactive lymph node were retrieved from the archives of Brigham and
Women’s Hospital (Boston, MA) with institutional review board
approval (IRB# 2010P002736) and patient wavier of consent. Sex and

gender were not considered in the study design due to the proof-of-
concept nature of this methodological study. All tumor regions were
annotated by V.S. and S.J.R.

Antibody conjugation and panel. Lanthanides conjugated antibodies
for MIBI were acquired as previously described19 using the Maxpar X8
Multimetal Labeling Kit (Fluidigm, 201300) and Ionpath Conjugation
Kits (Ionpath, 600XXX) with slight modifications to manufacturer
protocols. In short, 100μg BSA-free antibodywas firstwashedwith the
conjugation buffer, then reduced using 4 mumol L−1 (final concentra-
tion) of TCEP (Thermo Fisher Scientific, 77720) to reduce the thiol
groups for 30min in a 37 °C water bath. The reduced antibody was
mixed and incubatedwith Lanthanide-loaded polymers for 90min in a
37 °C water bath, then washed for 5 times with an Amicon Ultra filter
(Millipore Sigma, UFC505096). Resulting conjugated antibodies were
then buffered with at least 30% v/v Candor Antibody Stabilizer
(Thermo Fisher Scientific, NC0414486) including 0.02%w/v of sodium
azide, and stored at 4 °C until usage.

Oligo conjugation to antibodies for CODEX was performed as
previously described13. In short, 100μg BSA-free antibodywas reduced
using 2.5mmol L−1 of TCEP at RT for 30min to reduce the thiol groups.
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Maleimide-labeled oligos are resuspended in High-salt Buffer C (1mol
L−1 NaCl) and incubated with the reduced antibodies at RT for 2 h. The
resulting conjugated antibodies are then washed for 3 times in high
salt PBS (0.9mol L−1 NaCl) in a 50 kDa centrifugal column (Sigma,
UFC505096), bufferedwith at least 30%v/vCandorAntibodyStabilizer
(Thermo Fisher Scientific, NC0414486) supplemented with 0.02% w/v
of sodium azide, and stored at 4 °C.

The antibody panels can be found in Supplementary Table 1.

Gold slide preparation. The protocol of preparing gold slides has
been described previously5,6,20. In short, Superfrost Plus glass slides
(Thermo Fisher Scientific, 12-550-15) were first soaked and briefly
supersonicated in a ddH2O diluted with dish detergent, cleaned by
usingMicrofiber Cleaning Cloths (Care Touch, BD11945) then rinsed in
flowingwater to remove any remaining detergent. After that, the slides
were air-dried with a constant stream of air in the fume hood. The
coating of 30 nm of Tantalum followed by 100nm of Gold was per-
formed by the Microfab Shop of Stanford Nano Shared Facility (SNSF)
and New Wave Thin Films (Newark, CA).

Coverslip and slides vectabonding. To introducepositive charges for
better adhesion of tissue sections onto the surface, pre-cleaned 22x22
mm glass coverslips (VWR, 48366-067) or the e-beam coated gold
slides were silanized by VECTABONDReagent (Vector Labs, SP-1800-7)
per the protocol from themanufacturer. The slideswere first soaked in
neat acetone for 5min, then transferred into 1:50 diluted VECTABOND
Reagent in acetone and incubated for 10 min. After that, slides were
quickly dipped in ddH2O to quench and remove remaining reagents,
then tapped on Kimwipe to remove remaining water, the resulting
slides were air-dried then stored at room temperature.

MIBI retrieval and staining protocol. The procedure of a generalMIBI
staining is similar to previously described5,8,21. The FFPE block was
sectioned onto Vectabond-treated gold slides by 5μm thickness. The
sections then went through a standard deparaffinization and antigen
retrieval process. In brief, slides with FFPE sections were first baked in
an oven (VWR, 10055-006) for 1 h at 70 °C, then were transferred into
neat xylene and incubated for 2x 10 min. Standard deparaffinization
was performed with a linear stainer (Leica Biosystems, ST4020) in the
following sequence: 3x neat xylene, 3x 100% EtOH, 2x 95% EtOH, 1x
80% EtOH, 1x 70% EtOH, 3x ddH2O, 180 s each step with constant
dipping, then rest in ddH2O. Antigen retrieval was then performed at
97 °C for 10min with Target Retrieval Solution (Agilent, S236784-2) on
a PT Module (Thermo Fisher Scientific, A80400012).

After PT Module processing, the cassette with slides and solution
was left on the benchtop until it reached room temperature. After a
quick 1x PBS rinse for 5min, the sections were blocked by BBDG (5%
NDS, 0.05% sodium azide in 1x TBS IHC wash buffer with Tween 20),
then stained at 4 °C in an antibody cocktail for overnight (Supple-
mentary Table 1). Subsequently, the samples were quickly rinsed with
1x PBS, then fixed by the Post-fixation buffer (4% PFA + 2%GA in 1x PBS
buffer) for 10min, then quenchedwith 100mMTrisHCl pH 7.5, before
undergoing a series of dehydration steps on the linear stainer (3x 100
mMTris pH 7.5, 3x ddH2O, 1x 70% EtOH, 1x 80% EtOH, 2x 95% EtOH, 3x
100% EtOH, 60 s for each step), before store in a vacuum desiccator
until acquisition.

CODEX retrieval and staining protocol. The procedure for CODEX
staining is similar to previously described22. A cHL FFPE section was
mounted on a No.1 glass coverslip pre-treated with VECTABOND
Reagent (Vector laboratories, SP-1800-7) as described above, and
deparaffinized by heating at 70 °C for 1 h, followedby two 15-min soaks
in a xylene bath. The tissue was then manually rehydrated in 6-well
plates by incubating in 2x 100% EtOH, 2x 95% EtOH, 1x 80% EtOH, 1x
70% EtOH, and 3x ddH2O, for 3min each with gentle rocking. Heat-

induced antigen retrieval (HIER) was performed in a coverslip jar
containing 1xDakopH9AntigenRetrieval Buffer (Agilent, S2375)while
using a PT module filled with 1x PBS; the PT module was set to pre-
warm to 75 °C, heat to 97 °C for 20min, before cooling to 65 °C. After
HIER, the tissue was washed in CODEX hydration buffer (Akoya Bios-
ciences, 232105) 2x for 2 min and incubated in CODEX staining buffer
(Akoya Biosciences, 232106) for 20min. The tissue was then trans-
ferred to a humidity chamber to block with 200μL of BBDG while
being photobleachedwith a custom LED array for 2 h (see below), then
stained at 4 °C in an antibody cocktail overnight.

The blocking buffer was prepared by combining 180μL of BBDG
block, 10μL of oligo block, and 10μL of sheared salmon sperm DNA.
TheBBDGblockwaspreparedbymixing 5%donkey serum,0.1%Triton
X-100, and 0.05% sodium azide in 1x TBS IHCWash buffer with Tween
20 (Cell Marque, 935B-09). The oligo block was prepared bymixing 57
different custom oligos (IDT) to create a master mix with a final con-
centration of 0.5mumol L−1 per oligo. The sheared salmon sperm DNA
was used directly from its original 10 mg/mL stock (ThermoFisher,
AM9680). To create a humidity chamber, an empty pipette tip boxwas
filled with ddH2O and wet paper towels and then placed on top of a
cool box (Corning, 432021) containing an ice block. Two happy lights
(Best Buy, 6460231) were leaned against either side of the humidity
chamber, and an LED grow light (Amazon, B07C68N7PC) was posi-
tioned above. Staining antibodies (Supplementary Table 2) were pre-
pared while blocking.

After overnight antibody staining, the tissue was washed 2x in
CODEX staining buffer for 2min each. Subsequently, it was fixedwith
1.6% paraformaldehyde (PFA) with gentle rocking for 10min; the PFA
solution was made by diluting 16% PFA with CODEX storage buffer
(Akoya Biosciences, 232107). The tissuewas thenwashed 3x in 1x PBS,
incubated in cold 100% methanol for 5 min on ice, and washed 3x
with 1x PBS again. All steps except the methanol incubation were
performed in 6 well plates with gentle rocking. The tissue was then
fixed with CODEX final fixative for 20 min at RT in a humidity
chamber; the final fixative was prepared by mixing 20 μL of CODEX
final fixative (Akoya Biosciences, 232112) in 1000μL of 1x PBS. Finally,
the tissue was rinsed 3x in 1x PBS and stored in 1x PBS at 4° until
CODEX image acquisition.

MIBI-TOF imaging. Datasets were acquired on a commercially avail-
able MIBIscopeTM System from Ionpath (Production) equipped with a
Xenon ion source (Hyperion, Oregon Physics). The typical running
parameters on instruments are listed as following:

• Pixel dwell time: 2ms
• Pixel dwell time: 2ms
• Image area: 400 × 400μm
• Image size: 512 × 512 pixels
• Probe size: 400 nm
• Primary ion current: 4.9 nA on a builtin Faraday cup (or the

“Fine” imaging mode)
• Number of depths: 1 depth

After acquisition, images were extracted with the toffy package
(toffy notebook 3b). Detailed pre-processing is mentioned in the
sections below.

CODEX imaging. A black flat bottom 96-well plate (Corning, 07-200-
762) was used for the reporter plate, where each well represented an
imaging cycle. Each well was filled with 240μL of plate master mix,
containing DAPI nuclear stain (7000003, Akoya) (1:600) and CODEX
assay reagent (Akoya Biosciences, 7000002) (0.5mg/mL), as well as
two fluorescent oligonucleotides (5μL each) on the Cy3 and Cy5
channels. Blank channels were also included in the first and last wells,
with plate master mix substituted for fluorescent oligonucleotides.
The plate was then sealed with aluminum film and stored at 4 °C until
CODEX image acquisition.
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Prior to CODEX image acquisition, the tissue coverslip and
reporter plate were placed into the CODEX microfluidics instrument.
The coverslip was stained with 750μL nuclear stain solution for 3min
before being washed by the fluidics device; the nuclear stain solution
was prepared by mixing 1μL of DAPI nuclear stain in 1500μL of 1x
CODEX buffer. CODEX imaging was operated under a 20x/0.75
objective (CFI Plan Apo λ, Nikon)mounted to an inverted fluorescence
microscope (Keyence, BZ-X810) connected to the CODEX micro-
fluidics instrument and CODEX driver software, and the DAPI stain was
used to set up imaging areas and z planes. Each imaging cycle con-
tained three channels - DAPI, Cy3, Cy5—and images taken on the first
and last cycles were used as blanks for background correction. Multi-
plexed images were stitched and background corrected using the
Singer software (v1.0.7) from Akoya.

Section 2: dataset pre-processing
Channel crosstalk removal. Similar to fluorescence imaging, mass-
spectrometry imaging such as MIBI also has channel crosstalk due to
the formation of adducts6 or isotopic impurity of the elemental labels
used. Thus, Rosetta algorithm was applied to extracted raw images to
remove noise from channel crosstalk in a manner similar to flow-
cytometry data (toffy notebook 4a). In addition to that, as background
signals from bare slides and organic fragments can be partially
reflected by gold and “Noodle” background channels, those counts
were also removed with a fine-tuned coefficient matrix along with
channel crosstalk. This step was performed with a local implementa-
tion of toffy package with minor modification.

Image denoising. Image noise in multiplex images is a well-known
issue caused by various factors such as instrumentation, tissue quality,
and non-specific binding of antibodies. To tackle this challenge, a deep
learning-based method is proposed that poses image denoising as a
background-foreground segmentation problem. In this approach, the
real signal is considered as foreground,while the noise is considered as
background. The proposed method uses a supervised deep learning-
based segmentation model, UNET23, to segment the foreground from
the given image. To train themodel, ground truth is generated using a
semi-supervised kNN-based clustering method24. The kNN-based
clustering method helps to generate reliable ground truth for the
model training. Once themodel is trained, it is applied to allmarkers in
all images to obtain predicted foreground segmentation maps. These
segmentationmaps are thenmultiplied with the original images to get
rid of noise and obtain clean images.

Cell segmentation. Cell segmentation of the MIBI cHL datasets was
performed with a local implementation of deepcell-tf 0.6.0 as
described11,25. Histone H3 channel was used for the nucleus, while the
summation of HLA-DR, HLA1, Na-K-ATPase, CD45RA, CD11c, CD3,
CD20, and CD68 was used as the membrane feature. Signals from
these channels were first capped at the 99.7th percentile before input
into the model.

Cell segmentationof theCODEXcHLdatasetwasperformedusing
a local implementation of deepcell-tf 0.12.2. Segmentation was done
usingDAPI as the nuclear channel and a summationof CD4, CD7, CD15,
CD30, CD11b, CD20, CD45RA, CD45RO, CD31, Podoplanin, and HLA-
DR as the membrane features to ensure ideal segmentation of all cell
types in the singular field of view.

The deepcell-tf version used to generate the final segmentation
mask, along with the detailed parameters for cell segmentation are
summarized in Supplementary Table 3.

Image intensity normalization. Due to instrumental limitation, the
FOV that MIBI routinely acquired is only 400 × 400μm size, stitching
to achieve large tissue acquisition, and thus the across FOV difference
is unavoidable. To compensate for the inter FOV difference, a set of

scripts were developed and integrated into the data processing pipe-
line. Briefly, in a stitched run, the average Histone H3 counts under cell
segmentation masks of each FOV were calculated, then, all FOVs His-
tone H3 counts were normalized towards the highest counts, while
other channels were multiplied by the same coefficient. Additional
flattening based on the Histone H3 counts were also used to avoid
boundary effects and image biases. The code and parameters used are
available in the analysis pipeline section.

Image to cell expressionmatrix and across-runs normalization. The
counts of each channel inside each cell segmentedmaskwere summed
up and then divided by the cell size to create the cell expressionmatrix
based on normalized stitched TIFs along with their segmentation
mask. To avoid the across-runs derivation, themedian value of per cell
Histone H3 of each run was calculated, then all runs medians of His-
toneH3, alongwith all other channels countswerenormalized towards
the highest Histone H3 median value of that MIBI dataset. The code
and parameters used are available in the analysis pipeline section.

Generation of cell phenotyping ground truth. Cell phenotyping on
the cHL MIBI datasets was accomplished through an iterative cluster-
ing and annotating process. The clustering was performed with
FlowSOM26 on the cHL 1 dataset and Leiden27 on the cHL 2 dataset. The
cHL 1 dataset was initially clustered with CD11c, CD14, CD15, CD153,
CD16, CD163, CD20, CD3, CD30, CD4, CD56, CD57, CD68, CD8, FoxP3,
GATA3, Granzyme B, and Pax-5 to capture most of the cell types pre-
sent in the data. The resulting clusters were then manually annotated
by examining the predominantly enriched markers of each cluster,
which was done by plotting Z-score and mean expression heatmaps
across all clusters and the phenotypic markers used. Clusters with a
clear enrichment pattern were annotated. Next, with Mantis Viewer28,
the assigned annotation was confirmed by mapping the annotation to
each cell and overlaying the raw images of the enriched markers for
visual inspection. Due to noise in the data, there were certain clusters
with unclear enrichment patterns. These clusters were assessed based
on the phenotype marker enrichment patterns and subjected to fur-
ther clustering and visual inspection. This interactive process was
repeated until no useful information could be further extracted, and
the remaining cells with no clear enrichment pattern were assigned as
“Others”. For the cHL 1 dataset, 1538433 out of 1669853 cells (92.2%)
were assigned a final annotation.

Cell phenotyping on the cHL CODEX dataset was performed
through an iterative process using Rphenoannoy (R implementation of
PhenoGraph) and FlowSOM26,27 to cluster on CD30, CD20, CD2, CD7,
CD8, CD57, CD4, Granzyme B, CD56, FoxP3, CD11c, CD16, CD206,
CD163, CD68, CD15, CD11b, Cytokeratin, Podoplanin, CD31, MCT, and
a-SMA. The resulting stratified cell clusters and corresponding enri-
ched phenotypic markers were then visualized with Z-score and mean
expression heatmaps. Cells were then individuallymapped back to the
original tissue images in QuPath 0.2.0-m1 to validate marker enrich-
ment. Clusters with clear enrichment patterns for a particular cell type
were annotated accordingly. Clusters with unclear or partially correct
enrichment patternswere further clustered using FlowSOMbased on a
curated subset of phenotypic markers present on these unclear
populations. Multiple iterations of clustering and annotation were
performed until signal-noise ratio was too low to confidently distin-
guish the phenotype of the remaining cells, which were assigned as
“Others”. 140,053 out of 145,161 cells (96.5%) were assigned a final
annotation.

All final annotations were assessed by S.J. and S.J.R (a board cer-
tified hematopathologist).

Section 3: datasets overview
Our study utilized five different datasets, including three in-house
datasets, for cell phenotyping in cHL, DLBCL, and CRC. The cHL 1, cHL
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2, and DLBCL18 datasets were acquired using Multiplexed Ion Beam
Imaging (MIBI) and contained cells from 13, 12, and 9 different phe-
notypes, respectively. The cHL CODEX andCRCCODEX7 datasets were
acquired using Co-detection by Indexing (CODEX) and contained cells
from 16 and 14 different phenotypes, respectively. The datasets had
varying numbers of cells, protein/functional markers, and levels of
class imbalance, andwere splitted into five-folds where four folds were
used as training/validation (80%/20%) sets and the remaining fold was
used as the test set, iteratively.

cHL 1 and cHL 2 (MIBI) dataset. The cHL 1 and cHL 2 (MIBI) Datasets
are two in-house datasets used in our study for cell phenotyping in
cHL. Both sets of samples were stained with the same batch of anti-
body cocktail (Supplementary Table 1) with 46 protein/functional
markers, and acquired using Multiplexed Ion Beam Imaging (MIBI).
cHL 1 Dataset contains 166,9853 cells from 18 cHL patients and 1
control rLN, while cHL 2Dataset has over 230,895 cells from six FOVs—
five from cHL patients and one from a control rLN. When training the
proposedmethod, 5markers from the cHL 1 datasetwere droppeddue
to poor staining quality, while all 46 markers remained in the training
set of cHL 2. To evaluate the performance of our proposed method,
both datasets were split into 5 folds for multi-fold training and testing
of the proposed method, and under both cases, the FOVs of the con-
trol cases were part of the training set in each fold.

cHL (CODEX) dataset. The cHL (CODEX) dataset is another in-house
dataset that was acquired using Co-Detection by Indexing (CODEX), a
multiplex imaging technique that allows for simultaneous detection of
over 50markers. The dataset consists of a single large FOV containing
over 145,161 cells. The cells in the cHL (CODEX) dataset are classified
into 16 different cell phenotypes, and each class has an average of
8000+ cells. The multiplex FOV in this dataset consists of 49 markers,
which include different markers than those used in the cHL 1 (MIBI)
and cHL 2 (MIBI) datasets (see Supplementary Table 2 for more
details). To evaluate the performance of MAPS, we randomly split the
cells in the cHL (CODEX) dataset into five folds using stratified sam-
pling to ensure a balanced number of cells in each fold for each class.

CRC CODEX dataset. The CRC CODEX dataset (DOI: 10.17632/
mpjzbtfgfr.1) is a public dataset that we used in our study to evaluate
our proposedmethod for cell phenotyping7. It consists of 258,385 cells
from 14 different classes, with a large variation in the number of cells
per class, ranging from as low as 323 cells to as high as >47,000 cells.
For our study, we used the same markers and classes as described in
the CellSighter paper to ensure a fair head-to-head comparison with
MAPS. Since there was no information available about the training and
validation split in the dataset, we adopted the five-fold cross-validation
approach.

DLBCL MIBI dataset. The DLBCL MIBI dataset used in this paper is
from a previous publication with participation of some of coauthors18.
It consists of 338,798 cells from 143 FOVs of DLBCL TMA cores of 51
patients, alongwith 8 FOVs from reactive lymph nodes. In the previous
study, those cells were clustered into 9 types by the 10 lineage-
associated markers out of the 22-plex image deck. To evaluate the
performance of our proposed method, the dataset was split into 5
folds for multi-fold training and testing where FOVs of the control
cases were part of the training set in each fold.

Section 4: MAPS model, training and evaluation
Model architecture. The proposed cell phenotyping method used a
feed-forward neural network to predict the cell class from a set of
predefined classes (K). Let x 2 RN + 1 be the input data, which consists
of the expression of a cell for N markers and its area in pixels. The
neural network processes this input data to generate a predicted cell

class y. The neural network used in the proposed method consists of
four fully connected hidden layers, denoted by h1, h2, h3, and h4. Each
hidden layer is followed by a ReLU activation function and a dropout
layer, denoted by g1, g2, g3, and g4. The output of the last hidden layer,
h4, is fed into the classification layer, which generates the predicted
cell class y. The classification layer uses a softmax function to convert
the output of the neural network into a probability distribution
over the predefined classes. Let Wi and bi denote the weights and
biases of the ith layer of the neural network, respectively. Then the
output hi of the ith hidden layer can be written as:

hi = giðWihi�1 +biÞ ð1Þ

where hi�1 2 R512 is the output of the (i−1)th hidden layer or the input x
for i = 1, and gi is the activation function for the ith layer, which is the
ReLU function in this case. The dropout layers are not included in this
equation, as they only modify the output of the hidden layers during
training, and do not affect the final output of the neural network. The
classification layer computes the predicted cell class y as follows:

y= argmax
k

softmaxðWch4 +bcÞk ð2Þ

whereWc and bc are the weights and biases of the classification layer,
and softmax is the softmax function that converts the kth output into a
probability distribution over the predefined classes (K). The predicted
cell class y is the class with the highest probability.

Training details. For the training of the proposedmethod, a batch size
of 128 and a dropout probability of 0.25 were used for all datasets. The
number of training epochs varied for each dataset due to the varying
sizes of the datasets. For larger datasets (cHL 1 MIBI), the number of
epochs is set lower, as more training steps are performed within each
epoch. Conversely, for smaller datasets (cHL 2 MIBI and cHL CODEX),
we utilize a higher number of epochs to ensure an adequate number of
training steps. Specifically, the model was trained for 100 epochs on
the cHL 1 (MIBI) dataset, and for 500 epochs on all other datasets.
Additionally, we implement two essential hyperparameters, namely
minimum epoch and patience, specifically designed to address the
issue of overfitting. The minimum epoch ensures that the model
undergoes a minimum number of training epochs, and the patience
parameter enables early stopping if the validation performance does
not improve, thus mitigating the risk of overfitting. The model with
lowest validation loss was selected as the best model for evaluation on
test sets and inference on new data.

Section 5: evaluation across methods
To evaluate the performance of the proposed method, we employed
several evaluation methods. Firstly, we used the confusion matrix to
visualize the performance of themodel. The confusionmatrix displays
the number of true positive, false positive, true negative, and false
negative predictions made by the model. From the confusion matrix,
we calculated the precision, recall, and F1-score metrics. Precision
measures the proportion of true positive predictions made by the
model out of all the positive predictions made, while recall measures
the proportion of true positive predictions made out of all the actual
positive instances in the dataset. The F1-score is the harmonicmean of
precision and recall and is a balanced measure of both metrics.

Additionally, we used the average precision metric, which mea-
sures the area under the precision-recall curve. This metric is parti-
cularly useful for imbalanced datasets, where there are more negative
instances than positive ones. The average precision metric takes into
account the precision and recall values at various thresholds and
provides a summary of the model’s overall performance.
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Finally, we also used the mean cell expression matrix to visualize
the expression levels of different markers in the different cell types
predicted by the model. This matrix provides a summary of the mean
expression levels of each marker in each cell type and can help to
identify differences in marker expression between different cell types
when compared with the cell expression matrix generated using
ground truth labels.

Comparisons with other methods. We compared our proposed
method with two existing cell phenotyping methods, namely ASTIR
and CellSighter. The code for both ASTIR and CellSighter methods is
publicly available for reproducibility and comparison purposes.

ASTIR. ASTIR is a probabilistic model for cell phenotyping that uses
deep recognition neural networks to predict cell types without
requiring labels for each cell14. Instead, ASTIR only requires a list of
protein markers for each expected cell type within a dataset. The
method is based on the assumption that each cell type can be char-
acterized by a unique combination of protein markers, and that the
expression levels of these markers can be used to classify cells into
their respective types. We reported results of the ASTIR method on
three in-house datasets. For each dataset, our experts defined the list
of protein markers for each cell type. We evaluated the results using
five-fold cross-validation, using exactly the same folds as in the pro-
posed method, for a fair head-to-head comparison.

CellSighter. The CellSighter is a deep learning based supervised cell
classificationmethod16. Unlike ASTIR and the proposedmethod which
works on cell expression matrices, CellSighter takes image, cell seg-
mentation mask, and cell to class mapping as input. To evaluate the
performanceofCellSighter,we re-trained it on the same three in-house
datasets using the same5-fold cross validation splits as in theproposed
method. This ensures a fair comparison between the methods. We
obtained the CellSighter results on the publicly available CRC CODEX
dataset from the paper to avoid any re-training bias while comparing it
with the MAPS results on the same dataset.

Computation resource evaluation across methods. To evaluate the
computation resource usage of each method, we ran the three meth-
ods on a Linux platform (2x Intel Xeon 6334 “Ice Lake-SP” 3.6 GHz
8-core 10 nm CPUs; 4x NVIDIA “Ampere” RTX A5000 PCI-E+NVLink
24GB ECC GPU Accelerator/Graphics Cards; 1TB DDR4 memory @
3200MHz) using the cHL (CODEX) dataset. Duringmodel training and
cell type inference of each method, we tracked their CPU, GPU, and
memory (RAM) usage using “top”, “ps -ef”, and “nvidia-smi” com-
mands. For the parallelmethods, we recorded the resourceusage of all
its processes andmultiplied it by the number of cores used in parallel.

Statistics and reproducibility. We employed data from every acces-
sible sample within each dataset and no statistical methodwas used to
predetermine sample size. Furthermore, in our study design, we
incorporated all available markers from in-house datasets, selectively
choosing markers from public datasets to harmonize with prior
research. Similarly, we restricted our analysis to cell types utilized in
previous studies for public datasets. However, for in-house datasets,
we only excluded cell types with insufficient sample count. For each
dataset, we randomly partitioned the data into five folds for cross-
validation. The code, featuring a fixed seed value, is provided to ensure
the reproducibility of our results.

Data visualization. Single channel and multi-color images were
assembled and visually inspected with either ImageJ29, Qupath30, and
Mantis Viewer28. Visualizations of the analysis results were either pro-
duced using Excel, or R packages “ggplot2” and “pheatmap”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data described in this work and Source Data, including channel
images and segmentationmasks can be accessed at the Zenodo under
accession code DOI: 10.5281/zenodo.1006700931.

Code availability
The code for prediction and data visualization can be downloaded at
https://github.com/mahmoodlab/MAPS32.
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