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Programmable high-dimensional Hamilto-
nian in a photonic waveguide array

Yang Yang 1, Robert J. Chapman 1,2, Ben Haylock3,4, Francesco Lenzini3,5,
Yogesh N. Joglekar 6 , Mirko Lobino3,7,8 & Alberto Peruzzo 1,9

Waveguide lattices offer a compact and stable platform for a range of appli-
cations, including quantum walks, condensed matter system simulation, and
classical and quantum information processing. However, to date, waveguide
lattice devices have been static and designed for specific applications. We
present a programmable waveguide array in which the Hamiltonian terms can
be individually electro-optically tuned to implement various Hamiltonian
continuous-time evolutions on a single device. We used a single array with 11
waveguides in lithiumniobate, controlled via 22 electrodes, to performa range
of experiments that realized the Su-Schriffer-Heegermodel, the Aubrey-Andre
model, and Anderson localization, which is equivalent to over 2500 static
devices. Our architecture’s micron-scale local electric fields overcome the
cross-talk limitations of thermo-optic phase shifters in other platforms such as
silicon, silicon-nitride, and silica. Electro-optic control allows for ultra-fast and
more precise reconfigurability with lower power consumption, and with
quantum input states, our platform can enable the study of multiple con-
densed matter quantum dynamics with a single device.

Waveguide arrays1 are a powerful platform for the optical simulation of
condensed matter physics effects ranging from Bloch oscillations2 to
enhanced coherent transport via controllable decoherence3, adiabatic
passage4,5, Anderson localization6, and manymore7. Quantum walks in
waveguide arrays8,9 have been proposed for simulating particle
statistics10,11, boson sampling12,13, quantum state transfer14,15, quantum
state generation16,17, quantum search18,19, optical transformation20 and
could implement 1 and 2-qubit gates21,22 with the potential of imple-
menting universal unitaries23. Waveguide arrays have been used to
model topological band structures24,25 and their interplay through non-
Hermiticities generated by mode-selective gain and loss26. Exploiting
these features led to new ways of realizing optical isolators27,28,

generating and protecting quantum states29–31, and implementing
quantum circuits32,33.

While reconfigurability is a common feature of integrated
photonic devices34, the waveguide arrays used so far have had
static parameters, requiring the fabrication of one or more new,
specific samples for each experiment6. These devices actualize
either single-particle unitaries through cascaded, programmable
Mach-Zehnder interferometers (MZI)35–37 or a single-particle
Hamiltonian that is determined by the detailed configuration of
the waveguides. Exceptions, such as ref. 38, had some level of
thermo-optical reconfigurability but without the ability to inde-
pendently control the Hamiltonian parameters. Achieving such
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control is a key step toward versatile photonic processors, routers,
and simulators20–23,39–45.

Here, we report on an electro-optically controllable lithium nio-
bate waveguide array with up to 11 waveguides and 22 voltage control
inputs. We demonstrate precise control over independent Hamilto-
nian terms to realize continuous-time evolutions for several thousands
of Hamiltonian. We implemented the Aubry-André and Su-Schrieffer-
Heeger (SSH) models to show the independent control over the
diagonal and off-diagonal terms of the device Hamiltonian, respec-
tively, and show two types of Anderson localization on the reconfi-
gurable waveguide array (RWA). Overall, we realized more than 2500
Hamiltonians on a single device.

Results
Waveguide array overview and modeling
The array of continuously coupled optical waveguides is schema-
tically shown in Fig. 1 and was fabricated using the annealed
proton-exchange technique46 on an x-cut lithium niobate sub-
strate. Gold micro-electrodes are patterned on top of a silica buf-
fer above the waveguides, as shown in Fig. 1b. To avoid voltage
breakdown through air and glass, the electrodes must be pat-
terned at sufficient separation. This is possible because the large
cross-section of the mode in a proton-exchange waveguide leads
to substantial coupling between waveguides more than 10 μm
apart. To implement the control, the conventional thermo-optic
effect employed in most integrated photonic circuits reported so
far cannot be used since, with such a small gap between the elec-
trodes, thermal cross-talk would be unavoidable47. In this device,
the high electro-optic coefficient of lithium niobate allows ultra-
high modulation speed with almost no cross-talk and power
dissipation48. This assumption is based on the exceptional con-
finement of the electric field within the material due to the
shielding effect from neighboring electrodes, thereby preventing
cross-talk with other waveguides in the array. In addition to the
reconfigurable section, fan-in and fan-out regions separate the
waveguides to a 127 μmpitch for the coupling of light in and out of
the chip by fiber arrays. The light source used in this work is a fiber-
coupled polarized 808 nm laser diode. More details on the device
design and fabrication can be found in “Methods”.

TheRWA ismodeled, underfirst-order approximation, by the real-
valued, symmetric, tridiagonal Hamiltonian1
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where v!= V 1,V 2,::V 2N

� �
is the set of voltages applied to the electrodes

of the N waveguides that tune the values of Ca,b, the coupling coeffi-
cient between waveguides a and b, and βn, the propagation coefficient
of waveguide n. This Hermitian Hamiltonian generates a unitary
transformation

Uð v!Þ= e�iHð v!ÞL: ð2Þ

where L, the length of the effective coupled waveguide, deter-
mines the duration of the time evolution driven by the Hamilto-
nian. The parameters ofHð v!Þ are controlled by voltages applied to
the 22 electrodes in our device. Each waveguide (labeled from 1 to
11) has two electrodes applied, and the relationship between the
electrode voltages (labeled from 1 to 22) and the parameters of the

waveguide array is given by

βnðV Þ = β0 +ΔβnV 2n�1,2n ð3Þ

Cn,n + 1ðV Þ=C0 +ΔC1V2n,2n+ 1 +ΔC2ðV2n�1,2n +V 2n+ 1,2n+ 2Þ ð4Þ

wheren is thewaveguide index,β0 is the static propagationcoefficient,
Δβn is the voltage sensitivity of propagation coefficient and
Va,b =Va −Vb is the potential difference between electrodes a and b. C0

is the static coupling coefficient that encodes the bandwidth of the
uniform array, ΔC1 and ΔC2 are the voltage and mode difference sen-
sitivity of the coupling betweenwaveguiden andn + 149.We assume β0,
Δβn, C0, ΔC1and ΔC2 are consistent across the whole array in simula-
tions. The model described by Eqs. (1)–(4) was used to fit the data of
the Aubry-André and SSH experiments, as discussed in “Methods”.

Aubry-André model
The Aubry-André model describes condensed matter systems with a
quasiperiodic potential that leads to a localization transition in the
absence of disorder50,51. For a one-dimensional waveguide array, its
Hamiltonian is given by a constant coupling Cn,n+1 =C and

βn = β0 +Λ cosð2πnχÞ ð5Þ

where 1/χ is the modulation wavelength and Λ is the modulation
amplitude. Analysis of this model predicts that when χ is an irrational
(Diophantine) number, all its eigenstates become localized when the
modulation amplitude exceeds the threshold Λ/C = 252. In our experi-
ments, we chose the golden mean, χ = ð

ffiffiffi
5

p
+ 1Þ=2, meaning the mod-

ulation wavelength is 1=χ = ð
ffiffiffi
5

p
� 1Þ=2≈0:618.

From the model of our device, we have Λ cosð2πnχÞ=ΔβnV 2n�1,2n

and C=C0. To keep the coupling constant fixed, we control the elec-
trode in pairs between adjacent waveguides (i.e., V2n,2n+1 = 0). We cal-
culated the propagation constants change for each waveguide
according to the Aubry-Andrémodel at differentmodulation amplitude
Λ (Fig. 2a). To ensure the voltage amplitude does not go beyond 10 V to
protect the chip from damage, we set a reference voltage on the first
electrode before adapting the change in the propagation constant
across all waveguides by tuning the voltages across each waveguide V2n
−1,2n according to the calculation based on the Aubry-André model. An
example of the voltage setting is shown in Fig. 2b for Λ/C= 37.4.

Fig. 1 | Schematic of the 11-RWA and principle of programming Hamiltonian.
aTheRWAhas 11waveguides (black) and 22electrodes (orange) across the coupled
region. The electrodes are controlled by multi-channel arbitrary waveform gen-
erators (Supplementary Fig. 1). b Cross-section of the 11-RWA device. The black
regions indicate the mode shapes of the annealed proton-exchange waveguides.
c The Hamiltonian parameters can be individually controlled with high precision.

Article https://doi.org/10.1038/s41467-023-44185-z

Nature Communications |           (2024) 15:50 2



We injected light in the middle waveguide and measured the
power at the output facet of the waveguide array for different
potential strengths Λ/C, which is shown in Fig. 2c. As predicted by
the Aubrey-André model, the sharp localization transition is
observed around Λ/C = 2. We use the participation ratio (PR) to
quantify the degree of localization53. It is given by PR = 1/∑∣Pi∣2, where
Pi is the normalized output power at waveguide i, i.e., ∑i Pi = 1. The
measured (and simulated) PR, Fig. 2d, changes from PR ~N, indicat-
ing extended states, to PR ~ 1, indicating all localized states. The
fidelity with the theoretical model is 0.949 ± 0.009 (Supplemen-
tary Fig. 3).

Su-Schrieffer-Heeger model
>The SSH model, first used to model soliton formation in trans-poly-
acetylene, is a minimal model with a topologically nontrivial band
structure. Its dynamics can be described by the Hamiltonian54 with
βn = β0 and

C2n�1,2n = T 1,

C2n,2n+ 1 = T2:
ð6Þ

T1 and T2 denote the intra-cell and inter-cell coupling coefficients,
where unit cells are formed by A and B sublattices consisting of odd-
and even-numbered waveguides, respectively. Our device, with 11
waveguides, is terminated at one end with an extra A waveguide and
has a zero-energy edge state that is localized near the last waveguide
when T1 > T2. For the experiments performed with our device, we have
T1 =C0 + t and T2 =C0 − t, as shown in Fig. 3a, where the dimerization
strengthδ = ∣T1 − T2∣ = ∣2t∣ is limitedby themaximumvoltage amplitude
we applied to the electrodes.

The propagation constant is fixed by connecting two electrodes
on top of each waveguide (i.e., V2n−1,2n = 0). We applied voltages to
electrodes across the two waveguides within each cell, which can
modulate the strength of dimerization δ by tuning the voltage ampli-
tude, as shown in Fig. 3b. We injected light in the last waveguide and
measured the power distribution at the output facet of the waveguide
array (Fig. 3c) at each dimerization strength. The edge state can be
clearly observed when the applied voltage amplitude is around 6.1 V
(δ = γ ∗ V = 75.6 m−1). The dimerization coefficient γ(V) ≈ 12.4 m−1V−1 is
given by our simulation. The fidelity with the theoretical model is
0.904 ± 0.001 (Supplementary Fig. 3). In Fig. 3d, we report the

Fig. 2 | Implementation of the Aubry-André model in an N = 11 array. a The
propagation constants are modulated based on Eq. (5) where βn are offset from β0.
The red dashed line shows the quasiperiodic potential profile withwavelength 1/χ ≈
0.618.bA sampleof the voltage configurationused to implement themodulation is
shown in (a), corresponding toΛ/C = 37.4.cOutputpowerdistributionasa function
of potential strength Λ/C. Each vertical slice of the 38 shown here is the measure-
ment for a different Hamiltonian, actualized via voltage control. The black dashed
line indicates the phase transition at Λ/C = 2. d Measured (and simulated) partici-
pation ratio (PR) showing the transition to a localized regime.

Fig. 3 | Implementation of the SSH model. a The coupling constants are modu-
lated based on Eq. (6), where t is the offset from C0 (gray dashed line). b Voltages
are applied across electrodes within each unit cell, alternating V to 0 V to imple-
ment the coupling constants modulation in (a). c We plot the output power dis-
tribution as a function of the dimerization strength. Each vertical slice of the 20
presented is the measurement with a different Hamiltonian, with the correspond-
ing δ shown. d Measured (and simulated) PR shows the edge state localized at
waveguide 11.
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simulated and measured PR, which also shows the emergence of an
edge state localized near the last waveguide.

Anderson localization
In 1958 Anderson showed that in low dimensions, arbitrary disorder in
a crystal localizes any wavefunction55, thereby elucidating a universal
property of disorderedwave systems.We can simulate these dynamics
in a waveguide array starting from the Hamiltonian in Eqs. (1) with
voltage-controlled propagation and coupling coefficients according to
Eqs. (3) and (4). The eigenmodes of the Hamiltonian become more
localized with the increase of the disorder induced in the lattice. To
simulate these dynamics, we performed two sets of measurements,
one randomizing only the propagation constants βn with Cn,n+1 =C0

and one randomizing the coupling constants Cn,n+1 while keeping
βn = β0 for every n (diagonal disorder and off-diagonal disorder). For
both cases, light is launched into the central waveguide, correspond-
ing towaveguidenumber 6. The valuesofβnorCn,n+1 arefixedby short-
circuiting the corresponding electrodes, i.e., V2n−1,2n =0 or V2n,2n+1 = 0,
respectively (Supplementary Fig. 4).

The strength of the disorder depends on the maximum voltage
Vmax used to change the values of βn and Cn,n+1. The dimensionless
measure of the disorder can be defined as the ratio of the disorder
modulation to the zero-disorder bandwidth, i.e., ΔβVmax=C0 or
ΔCVmax=C0

56. To carry out the averaging over different, disordered
Hamiltonians, we create 250 samples (Fig. 4c) for each disorder
strength with uniformly randomized voltage in the range of �Vmax to
+Vmax and plot the average output power distributions of those
samples with the input light in the middle waveguide in Fig. 4a, b.
Hence, this experiment corresponds to a total of 2500 static devices.
The estimated diagonal and off-diagonal disorder strengths in the
chip, given by fitting the measurements, are Δβ/C0 ≈ 3.4V−1 and
ΔC/C0 ≈0.07V−1, respectively. The corresponding PR as a function of
maximumvoltage is shown in Fig. 4d. Since the off-diagonal disorder is
fifty timesweaker than the diagonal disorder, the reduction in the PR is
correspondingly smaller.

Discussion
Reconfigurable waveguide arrays are a powerful tool for optical signal
routing, implementing time-evolution Hamiltonians to simulate
quantum materials and phenomena, and can be cascaded57 to realize

arbitrary unitaries. The use of the electro-optic effect for controlling
the Hamiltonian coefficients offers key advantages in terms of speed
and suppressed cross-talk when compared to thermal shifters. By
simulating the Aubry-André, SSH, and Anderson Hamiltonians, we
have shown how one reconfigurable device can replace the fabrication
of thousands of static devices with a high level of control of the
independent parameters.

In our experiments, we limited the maximum voltage amplitude
to 10 V to protect the device fromdamage. However, as seen in Fig. 4b,
the amount of off-diagonal disorder it induced is insufficient to
observe strong localization. This can be improved by optimizing the
electrode design (such as decreasing the distance between
electrodes).

The accuracy of the theoretical model used for fitting the data is
limited by the tridiagonal real-valued Hamiltonian approximation.
Many experimental factors also affect the model fidelity. Firstly, fab-
rication errors in the waveguides, such as the waveguide width and
separation, can cause β0 and C0 to be not identical across the array.
Secondly, the dimensions, position, and quality of the fabricated
electrodes can vary, making Δ βn and ΔCn,n+1 site-dependent. This
could explain the difference in fidelities between the Aubry-André and
SSH experiments. Since the two experiments rely on different elec-
trode configurations, deviations such as misalignment of electrodes
mask and non-uniform electrode resistance might cause different
performance and therefore fidelity. To improve themodel fidelity, one
can utilize machine-learning-based solutions proposed and demon-
strated in58,59 and implement more accurate identification and control
of the device.

Additionally, using more advanced fabrication methods, particu-
larly for the electrodes, will also help improve performance and scal-
ability. In particular, the z-cut thin film lithium niobate platform may
allow reducing the footprint–enabling the fabrication of cascaded
RWAs–while keeping the advantage of electro-optic performance,
including spacing the electrodes, high-speed operations and low
driving voltage60,61. Moreover, it offers enhanced nonlinearity62, the
possibility of integrating single-photon sources63,64 and detectors65 on
chips, cryogenic compatible operations, increasing the scalability and
reducing the coupling losses.

Increasing scalability, performance and efficiency are the prime
focus in advanced integrated photonic systems. In theory, thousands

Fig. 4 | Anderson localization with site and bond disorder. Each vertical slice is
the averaged power distribution measured at the output facet corresponding to a
disorder strength indicated by the voltage range. a The disorder is applied to the

propagation coefficients βn. b The disorder is applied to the propagation coeffi-
cients Cn,n+1. c Each averaged power distribution comes from 250 random Hamil-
tonians. d Measured PR of Anderson localization.
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of waveguides at a coupling distance of 10 μm can be patterned on a
6-inch lithium niobate wafer. Even with the electrical wiring and fan-in
fan-out of the waveguide tomatchfiber arrays, it is feasible to produce
a device with hundreds of waveguides. Despite the capability of
femtosecond-laser-written waveguides66 to implement arbitrary or
time-dependent Hamiltonians, they are generally limited to static
devices. Furthermore, although large circuits incorporating MZIs as
fundamental reconfigurable units have been extensively
demonstrated36,37, the scalability ofMZIs is impededby their sensitivity
to fabrication errors and their susceptibility to significant bending
losses67,68. Compared with the scheme by Clements et al.69, the wave-
guide array-based scheme23 incurs lower bending losses due to the half
number of bending sections the photons will experience.

The wave equation in the paraxial and scalar approximations is
similar to the Schrodinger equation, where the refractive index profile
plays the role of a potential. This is why waveguide array structures
have been used to simulate solid-state quantumphenomenawith laser
light10. Furthermore, laser light characterization of the Hamiltonian
completely predicts the quantum process of linear photonic
devices70,71, and a small spectral difference between laser light and
single-photon sources will give a negligible change in the device
Hamiltonian. Therefore, with the ability to independently and accu-
rately control the propagation and coupling parameters of a wave-
guide array, this new structure canbe used for a variety of applications,
ranging from simulating complex physics systems41–43 to processing
quantum information20,22,23,44,45 aswell as continuous simulation of time
for complex time-evolution dynamics of arbitrary Hamiltonians.

Methods
Details of the device
The device is fabricated using annealed and reverse proton-exchange
technology with x-cut bulk lithium niobate46,59,72. The length of the
continuously coupled region of the device is 24 mm. The propagation
constant β0 is given by

β0 =
2π
λ

n0 ð7Þ

where n0 = 2.1753 is the effective refractive index of the designed
waveguide, λ is the light wavelength. We used the model described in
themain text to fit the static chip characterization data and the Aubry-
André and SSH model measurements. The fitting parameters after
optimization areΔβ(V) = 290.6m−1V −1,C0 = 84.8m−1,ΔC1(V) = 6.2m−1V −1

and ΔC2(V) = −8.5 m−1V −1. In the fitting, we only fit the model with real
values. Hence we assumed Cn,n+1 =Cn+1,n.

Device measurement and control
A schematic of the experimental setup is shown in Supplementary
Fig. 1. A polarized 808 nm laser and multi-channel fiber-coupled high-
speed optical power meter were used for the output measurements.
Polarization-maintaining fiber (PMF) arrays with 127 um pitch were
used for butt-coupling to the chip at the input and output sides with a
coupling loss of 4.9 dB per facet (68%), caused by fiber-waveguide
mode mismatch. A total power loss, including the fiber-to-chip cou-
pling and propagation loss, of 9.8 dB (90%) was measured. This is
sufficient for two-photon quantum experiments, as demonstrated in
the first two-photon quantum walk in a static waveguide array9. To
enhance the total transmission of the device, for example, for experi-
ments usingmore than two photons, the insertion loss can be reduced
by various technologies, ranging from on-chip components to engi-
neered fibers, such as high-index fibers that reduce the mode field
diameter of the fiber73–77. Additionally, losses can be mitigated by
improving the fabrication process and/or working at telecom wave-
length where propagation and coupling losses are lower2,46.

Lithium niobate suffers from electric charges accumulating in the
SiO2 buffer layer under the control electrodes, which results in a drift
of the optical output when a voltage is applied. Tomitigate the output
optical drift, 1.66 s non-biased square pulses were applied in order to
achieveunbiased control, i.e., each target voltage is followedby apulse
of the same magnitude and opposite sign (Supplementary Fig. 2a).
Each electrodewas connected to an independent output channel of an
arbitrary waveform generator (AWG), and multiple AWGs were syn-
chronized with an external trigger. To reset the chip state, a 20 s gap
between each measurement is applied78. In Supplementary Fig. 2b, we
report the chip response of the pulsing scheme used to reset the chip
to the initial state (where the Hamiltonian is not affected by the vol-
tage). The data for eachmeasurement is taken from the average of the
output power in the first half of the non-biased square pulse after the
rising time (~0.22 s), which is limited by the built-in low-pass filter of
the multi-channel power meter. We characterized the rise time as less
than 0.2 ms based on optical response with fast photodiodes, and
optical outputs keep drifting due to electric charging after the rise
time. The measurements can be sped up by using modulated square
pulses with a higher frequency79.

Simulation of the voltage-controlled output distribution for the
Aubry-André and SSH Hamiltonians
The simulations shown in Supplementary Fig. 3 are performed by
numerical optimization based on the theoretical model of the device
and assumptions described in the main text. The fidelity between
simulated and measured output distributions is calculated as

F = 1
N

PN
n= 1 Fn, where N is the total number of measurements,

Fn =
P

i

ffiffiffiffiffiffiffiffiffiffiffiffi
PS
i P

M
i

q
is thefidelity for eachpreparedoutput distribution and

PS
i ðPM

i Þ is the normalized simulated (measured) power distribution at
the output waveguide i. The fidelity for the Aubry-André and SSH
models is 0.949 ± 0.009 and 0.904 ±0.001, respectively. The static
Hamiltonians fitting fidelity is 0.878 ±0.001 with parameters fitted
from Aubry-André and SSH model measurements.

Anderson localization experiments controlling scheme
In Supplementary Fig. 4, we show how we controlled the Hamiltonian
parameters through electrodes. The pink dashed line indicates β0 and
C0 as zero-disorder level. The bars in Supplementary Fig. 4a, c indicate
a randomized change in the Hamiltonian parameters. The voltage
amplitude of every electrode is randomized in a limited range to rea-
lize different disorder levels. A larger voltage range indicates a higher
disorder level. Themaximumvoltage rangewe set is from −10V to 10V
to protect the device.

Data availability
The authors declare that the fitting parameters and data supporting
the findings of this study are available within the paper and its Sup-
plementary Information. The raw data in this study have been depos-
ited in the Figshare database under the accession code https://doi.org/
10.6084/m9.figshare.24587775. They are also available from the cor-
responding author upon request.
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