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Structural dynamics of the CROPs domain
control stability and toxicity of
Paeniclostridium sordellii lethal toxin

Yao Zhou1,2,3,4,5, Xiechao Zhan 1,2,3,5 , Jianhua Luo 1,2,3,4, Diyin Li1,2,3,4,
Ruoyu Zhou1,2,3, Jiahao Zhang1,2,3, Zhenrui Pan1,2,3, Yuanyuan Zhang1,2,3,
Tianhui Jia1,2,3,4, Xiaofeng Zhang 1,2,3, Yanyan Li1,2,3 & Liang Tao 1,2,3,4

Paeniclostridium sordellii lethal toxin (TcsL) is a potent exotoxin that causes
lethal toxic shock syndrome associated with fulminant bacterial infections.
TcsL belongs to the large clostridial toxin (LCT) family. Here, we report that
TcsL with varied lengths of combined repetitive oligopeptides (CROPs)
deleted show increased autoproteolysis as well as higher cytotoxicity. We next
present cryo-EM structures of full-length TcsL, at neutral (pH 7.4) and acidic
(pH 5.0) conditions. The TcsL at neutral pH exhibits in the open conformation,
which resembles reported TcdB structures. Low pH induces the conforma-
tional change of partial TcsL to the closed form. Two intracellular interfaces
are observed in the closed conformation, which possibly locks the cysteine
protease domain and hinders the binding of the host receptor. Our findings
provide insights into the structure and function of TcsL and reveal mechan-
isms for CROPs-mediated modulation of autoproteolysis and cytotoxicity,
which could be common across the LCT family.

P aeniclostridium sordellii (also known as Clostridium sordellii) is a
gram-positive anaerobic bacterium commonly found in the envir-
onment and causes fatal infections in animals like cattle, sheep, and

horses1. In humans, P. sordellii infections are not often but very severe,
leading to life-threatening edema, gangrene, hypotension, and sepsis
with overall mortality rates approaching ~70%2,3. Approximately 3-4%
of women in theUnited States carry P. sordellii in the vaginal and rectal
tract; this number is further increased if a recent gynecologic proce-
dure exists4. Clinical reports showed that during gynecological pro-
cedures, such as childbirth, miscarriage, and abortion, women were
particularly at high risk for fulminant P. sordellii infections with a 100%
mortality5–8.

P. sordellii expresses lethal toxin TcsL (~270 kDa) and hemor-
rhagic toxin TcsH (~300 kDa). TcsL can cause major damage to
endothelial and epithelial cells, particularly in the lungs, and is
thought to be the primary cause of the high mortality for acute P.

sordellii infections9,10. Both TcsL and TcsH belong to the LCT family,
which also includes TcdA and TcdB in Clostridioides difficile, TpeL in
Clostridium perfringens, and Tcnα in Clostridium novyi. Among LCTs,
TcsL is most closely related to TcdB, with a sequence identity of
~75%11. LCT familymembers, including TcsL consist of four functional
domains: anN-terminal glucosyltransferase domain (GTD), a cysteine
protease domain (CPD) that mediates the autocleavage, an inter-
mingled domain responsible for both transmembrane delivery and
receptor-binding (DRBD), and a C-terminal combined repetitive oli-
gopeptides (CROPs) domain12,13. Once the toxins enter target cells via
receptor-mediated endocytosis, their GTD and CPD translocate from
the lumen of the endosomes to the outside upon low pH14–16. In the
cytosol, the release of the GTD depends on the protease activity of
the CPD triggered by the binding of inositol-hexakisphosphate
(InsP6)17. The activation of CPD results in autocleavage between
Leu543 and Gly544 in TcdB and TcsL18–20. The released GTD then
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glucosylates small GTPase proteins, leading to actin cytoskeleton
disruption and cell death21–26.

Great efforts have been made to understand the toxin action
mechanisms of the LCTs through structural biological approaches21,27.
Recently, somehigh-resolution full-length or near-complete structures
for TcdA28–30 and TcdB31–33 were reported. In those structures, the
“core” domains (GTD, CPD, and DRBD) show a similar overall archi-
tecture, but theCROPs seem tobedynamic andhave at least twomajor
conformations: one curves upward around the GTD-CPD head and is
referred to as the “open” conformation, the other curves downward
alongside the DRBD and is referred to as the “closed” conformation.
TcdA is usually displayed in the closed conformation29,30,34. TcdB tends
to display the open conformation in either the crystal or cryogenic
electronmicroscopy (cryo-EM) structures31–33 while its closed form has
been detected using SAX or XL-MS analyses31,34. In previous studies,
small regions located at the N-terminal boundary of TcdA and TcdB
CROPs were defined as the “hinge”, which may be responsible for the
swing of the CROPs domains29,31. To our knowledge, no full-length
structures for other LCTs have ever been reported.

The CROPs are unique structural modules found in almost all
LCTs except for TpeL. These domains are composed of multiple
repeating units: 19- to 24-amino acid short repeats (SRs) interspersed
with 29- to 31-amino acid long repeats (LRs)27. The LCT CROPs
are variable in sequence and length, ranging from ~350 to ~900
amino acids, while TpeL is a natural CROP-less LCT35. For TcsL, the
CROPs domain is composed of four equivalent units (namely I-IV),
each unit contains five SRs and one LR. The CROPs were thought
to be the receptor-binding domains in LCTs mainly due to the
early studies on TcdA. It was shown that the CROPs domain of
TcdA was capable of binding the trisaccharide Gal-α1,3-Gal-β1,4-
GlcNAc and thus considered as a domain responsible for binding
carbohydrate moieties on cell surface36,37. In recent years, multiple

protein receptors for LCTs were identified, including low-density
lipoprotein receptor-related protein 1 (LRP1) for TpeL38, low-density
lipoprotein receptor (LDLR) family proteins for TcdA and Tcnα39–42,
chondroitin sulfate proteoglycan 4 (CSPG4), poliovirus receptor-
like 3 (PVRL3), Frizzled proteins (FZDs), and tissue factor pathway
inhibitor (TFPI) for TcdB33,43–46, Semaphorin 6 A and 6B (SEMA6A/6B)
for TcsL47,48, and transmembrane serine protease 2 (TMPRSS2) for
TcsH49. Many of them were structurally validated to bind LCTs
independent of the CROPs33,48,50,51, raising the speculation that the
CROPs in LCTs are not solely for host recognition but have unchar-
acterized functions.

Here, we found that the CROPs completely or partially removed
TcsL had remarkably increased autoproteolysis as well as cytotoxicity
compared to the full-length toxin. To investigate themolecularbasis of
such CROPs-dependent regulations, we further determined the archi-
tecture of full-length TcsL at both neutral and acidic conditions by
cryo-EM and captured two major conformations (open and closed).
Both functional and structural analysis revealed two regions in the
TcsL CROPs that are critical for the modulations: one closed to the
DRBD (partly overlapped with the hinge region) and the other at the
end of the CROPs domain. Lastly, we demonstrated that an integrated
CROPs domain is important to retain the in vivo toxicity of TcsL pre-
exposed to InsP6.

Results
The CROPs robustly inhibit the autoproteolytic activity of CPD
in TcsL
To investigate the potential roles of the CROPs domain in TcsL, we set
out to generate the full-length TcsL and a TcsL truncation (TcsL1–1808)
with its entire CROPs deleted (Fig. 1a). These toxin proteins (and other
LCTs thereafter) were C-terminal His-tagged and expressed in Bacillus
subtilis. Unexpectedly, we found that TcsL1–1808 but not full-length TcsL
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Fig. 1 | The CROPs domain protects TcsL from autoproteolysis. a A Schematic
drawing of the TcsL truncations designed for this study. b Purified full-length TcsL
and TcsL1–1808 were separated on a Coomassie-stained SDS-PAGE gel. TcsL1–1808 was
largely fractured, leaving a ~ 140 kDa fragment (light dotted box). c The large
fragment in (b) was analyzed by mass spectrometry. The black arrows indicate a
breaking point between Leu543 and Gly544. d Purified TcsL1–1808 and TcsL1-1808/C698S

were separated on a Coomassie-stained SDS-PAGE gel. e Purified TcsL, TcsL1–2260,

TcsL1–1977, TcsL1–1921, TcsL1–1893, and TcsL1–1808 were separated on a coomassie-stained
SDS-PAGE gel, only TcsL1–1808 showed overt autoproteolysis. f The autocleavage of
TcsL, TcsL1–2260, TcsL1–1921, and TcsL1–1893 was induced by the gradient concentrations
of InsP6 for 3 hours. The percentage of cleavage was measured and plotted on the
chart. g Purified full-length TcsL, TcsLΔ1848-1869, and TcsLΔ1848-1869/C698S were separated
on a coomassie-stained SDS-PAGE gel. Source data are provided as a Source
Data file.
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was largely fractured after the purification, leaving a ~ 140 kDa
C-terminal fragment (Fig. 1b).

Mass spectral (MS) analysis of the ~140 kDa fragment showed that
the breakage happened between Leu543 and Gly544 (Fig. 1c), which is
the reported cleavage site for CPD18,20. We then mutated Cysteine at
position 698 to Serine, which abolishes the proteolytic activity of the
CPD52,53, in TcsL1–1808. Unlike TcsL1–1808, TcsL1-1808/C698S was purified as an
intact polypeptide (Fig. 1d), demonstrating that the breakage in
TcsL1–1808 is due to excessive autocleavage by its own CPD.

The CROPs suppress the autoproteolysis of TcsL in twomanners
To determine how much the CROPs were required to prohibit the
autoproteolysis of TcsL, we next generated several C-terminally trun-
cated TcsL with partial CROPs remained, including TcsL1–2260, TcsL1–1977,
TcsL1–1921, and TcsL1–1893. None of them showed obvious autoproteo-
lysis,which is similar to the full-length TcsLbut not TcsL1–1808 (Fig. 1e, f),
indicating that the region between residues 1809 and 1893 tightly
controls the autoproteolytic activity of the CPD. In addition, a TcsL
mutant with 19 residues (residues 1848 to 1867) deleted also had
substantial CPD-mediated autocleavage (Fig. 1g), further supporting
that this small region is critical for inhibiting the autoproteolysis
in TcsL.

We then quantitatively measured the rates of autoproteolysis for
TcsL, TcsL1–2260, TcsL1–1921, and TcsL1–1893 in the presence of exogenous
InsP6. The full-length TcsL is resistant to InsP6-induced autoproteo-
lysis, which is consistent with a previous report54. Although these
truncations are generally stable upon production, they showed varied
autoprocessing rates when exposed to gradient concentrations of
InsP6: TcsL derivates with shorter CROPs remaining could be induced
by InsP6 more easily (Fig. 1f, Supplementary Fig. 1).

The C-terminus of CROPs affects the cytotoxicity of TcsL
To examine the cytotoxicity of these TcsL truncates, we performed the
cytopathic cell-rounding assays on HeLa and A549 cells. To our sur-
prise, the C-terminal truncated TcsL, including TcsL1–2260, TcsL1–1977,
TcsL1–1921, and TcsL1–1893, were more potent than full-length TcsL in the
tested cells (Fig. 2a). Albeit A549 cells aremore susceptible to TcsL due
to the differed expression of SEMA6A/6B47,48, a similar pattern was
observed in both HeLa and A549 cells: the truncated toxins showed
close toxicity to each other and had ~30-fold increased cytotoxicity
compared to full-length TcsL (Fig. 2b). Previous studies reported that
CROPs-truncated TcdA, TcdB, and TcsHusually had similar or reduced
(in varying degrees) cytotoxicity compared to the full-length toxins,
due to the weakened binding to target cells42,45,49,55,56.

Since TcsL is sequentially close to TcdB, including the CROPs
(Supplementary Fig. 2), we then replaced the last 104 amino acids
(residues 2261 to 2364) with the homologous sequence from TcdB
(more precisely, TcdB111). This newly built chimeric toxin was named
TcsL2261B (Fig. 2c). TcsL2261B also showed similar cytotoxicity to TcsL
truncates and was more potent than the full-length TcsL (Fig. 2d). In
addition, TcsL2261B showed stronger InsP6-induced autocleavage
(Fig. 2e, Supplementary Fig. 3), which resembled the TcsL truncates
but not TcsL. These results indicate that the TcsL CROPs unit-IV can
specifically suppress the cytotoxicity and InsP6-induced autoproteo-
lysis of TcsL with sequence specificity to a certain extent.

Cryo-EM structure of the full-length TcsL
To characterize the potential molecular mechanisms of CROPs-
mediated modulations on autoproteolysis and cytotoxicity of TcsL,
we managed to determine the structure of the full-length TcsL at
neutral pH using single particle cryo-EM. The two-dimensional class
averages of TcsL at neutral pH exhibited clear structural features, and
the final reconstruction of the full-length TcsL generated an EMmap at
2.9 Å resolution (Supplementary Fig. 4).

The cryo-EM structure of TcsL reveals the four major domains of
the toxin as previously described (Fig. 3a). The GTD and CPD domains
constitute the central core modules of the toxin, interacting with the
DRBD and CROPs domains. The DRBD extended and pointed away
from theGTD and CPD. The CROPs domain emerges from the junction
and curves upward around the core region like a hook, which forms a
typical open conformation (Fig. 3a). The overall architecture of TcsL
closely resembled that of previously reported structures of TcdB var-
iants as determined by either crystallization or cryo-EM31–33.

Low pH induces conformation change of TcsL
Wenext looked at the configuration of the full-length TcsL in a lowered
pH (pH 5.0) using the single particle cryo-EM. Interestingly, we
observed that TcsL at pH 5.0 simultaneously exhibits both open
(~71.8%) and closed (~28.2%) conformations (Fig. 3b, Supplementary
Fig. 5). The EMmaps of the full-length TcsL at pH 5.0 were resolved at
2.9 Å (closed conformation) and 2.5 Å (open conformation) (Supple-
mentary Fig. 6). The open conformation is close to the one obtained at
neutral pH with a root-mean-square-deviation (RMSD) of 1.4 Å over
1856 Cα atoms (Fig. 3c, Supplementary Fig. 7a). In the closed con-
formation, the CROPs extend from the hinge region, curve around the
section of the DRBD, and interact with the “tip” of the DRBD (Fig. 3d).

When superimposed the cryo-EM structures of TcsL at acidic pH
in the open and closed conformations, with anRMSDof 5.1 Å over 1728
Cα atoms, the core domains, including GTD, CPD, and DRBD, are
relatively identical, but a near-180° rotation of the entire CROPs
domain were observed (Fig. 4a, Supplementary Fig. 7b). A major
allosteric transition upon low pH inductionwas observed for the hinge
region (residues 1792-1834) and the first SR swing for ~60Å. As a result,
the entire CROPs rotated for ~180° and the CROPs unit-IV touched the
“tip” part of the DRBD (Fig. 4b, Supplementary Movie 1).

In the closed-form structure of TcsL, the CROPs domain poten-
tially interacts with the DRBD through two intra-molecular interfaces
(Fig. 4b, c). Interface I is formed between the Hinge region and the
DRBD, while interface II is formed between the CROPs unit-IV and the
middle part (residues 1176-1277) of the DRBD (Fig. 4b, c). Thus, low pH
induces a conformational switch of TcsL from open to closed state,
which is also in part supported by a previous XL-MS analysis for TcdB31.

CROPs retain the in vivo toxicity of TcsL upon exposure to InsP6
As an exotoxin, TcsL is naturally secreted by P. sordellii into its residing
niches and exposed to environmental substances. Soils and feces,
where P. sordellii normally resides, occasionally contain considerable
amounts of InsP657. We pre-exposed TcsL and TcsL1–1808 with and
without InsP6, followed by intraperitoneally (IP) injecting into mice.
This procedure mimics the exposure of TcsL to extracellular InsP6
before entering the host cells. TcsL can induce toxic shock syndrome
with similar vascular permeability and massive edema observed in
lungs when intraperitoneally injected into mice9,47,48. Both TcsL and
TcsL1–1808 induced strong lung tissue damage at similar levels by eval-
uating both accumulated thoracic fluid (Fig. 5a, b) and hematoxylin
and eosin (H&E) stained histological lung sections (Fig. 5c, d), sug-
gesting that CROP-less TcsL is near-equally potent to TcsL once
directly enter the host circulation system. Then we pre-mixed the
toxins with InsP6 and then IP injected them into the mice. This serves
as a simulation that the tested exotoxins are first exposed to envir-
onmental circumstances and then reach the host target. TcsL pre-
incubated with or without InsP6 for 30minutes induced similar thor-
acic fluid accumulation (Fig. 5a, b) and lung damage inmice (Fig. 5c, d),
suggesting that the full-length TcsL is tolerant to environmental InsP6
to a certain extent. In contrast, TcsL1–1808 preincubated with InsP6 for
only five minutes showed drastically reduced capability in inducing
tissue damage, while TcsL1–1808 exposed to InsP6 for 30minutes was
nearly avirulent in vivo (Fig. 5a-d). These results demonstrated that
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CROPs-dependent autoproteolysis inhibition could be functionally
important for maintaining the toxicity of TcsL before host invasion.

CROPs-mediated regulation on autoproteolysis is common for
other LCTs
Next, we managed to investigate whether the CROPs-mediated inhi-
bition on autoproteolysis is general across the LCT family. For this
purpose, we produced the full-length toxins of other LCTs, including
TcdA, TcdB, TcsH, and Tcnα, and their CROP-less versions (TcdA1–1834,
TcdB1–1805, TcsH1–1832, and Tcnα1–1801). These toxins were exposed to
100μM InsP6 to test their autocleavage efficiency. Similar to TcsL, all
tested LCTs in the full-length form showed weaker InsP6-induced
autoproteolysis when compared to their CROP-less versions (Fig. 6a,
Supplementary Fig. 8).

Finally, we simulated the situations in which TcdA and TcdB
were pre-exposed to environmental InsP6 and then intoxicated the
mice. TcdA, TcdA1–1834, TcdB, and TcdB1–1805 were pre-incubated with
orwithout 100 μM InsP6 for 30minutes and IP injected into themice.
InsP6-treated TcdA and TcdB could effectively kill the mice (Fig. 6b,

c), indicating that these full-length toxins are resistant to extra-
cellular InsP6 with their toxicity largely retained. In contrast, InsP6-
treated CROP-less TcdA and TcdB quickly lost their toxicity and
became much less potent to mice (Fig. 6b, c), suggesting that the
CROPs prevent the autoproteolysis of TcdA and TcdB induced by the
extracellular InsP6.

Discussion
As exotoxins, LCTs, including TcsL are secreted from the bacteria into
their living niches and required to be structurally stable before
reaching their target cells. Notably, InsP6 is sometimes distributed in
various environments such as soil58 and human gastrointestinal tract59

where pathogenic clostridial species including P. sordellii and C. diffi-
cile colonize. To maintain the toxin function, LCTs need to prevent
environmental factors (such as InsP6)-induced autoproteolysis and
degradation. Our findings indicate that a brief five-minute pre-incu-
bation of TcsL1–1808 with InsP6 significantly reduced the majority of
toxin activity in a mouse model. Conversely, the toxicity of full-length
TcsL persisted unaltered 30minutes after exposure to InsP6. Similar

HeLa A549

GTD CPD DRBD CROPs

2261

TcsL

TcsB

TcsL2261B

0

20

40

60

80

100

0

20

40

60

80

100
TcsL

TcsL1-2260

TcsL1-1977

TcsL1-1921

TcsL1-1893

TcsL1-1808
C

el
l R

ou
nd

in
g 

(%
)

C
el

l R
ou

nd
in

g 
(%

)

1 10 102 103 10410-110-2 1 10 10210-310-4 10-110-2

[Toxin] (pM) [Toxin] (pM)

b

0

20

40

60

80

100

C
el

l R
ou

nd
in

g 
(%

) TcsL

TcsL2261B

1 10 102 103 10410-1 105

[Toxin] (pM)

TcsL1-2260

c d

No toxin TcsL TcsL1-2260 TcsL1-1977 TcsL1-1921 TcsL1-1893 TcsL1-1808

H
eL

a
A

54
9

a

e

0

20

40

60

80 TcsL
TcsL2261B

1 10 102 103 104

[InsP6] (μM)

A
ut

oc
le

av
ag

e 
(%

)

Fig. 2 | The C-terminus of CROPs affects the cytotoxicity of TcsL. a HeLa and
A549 cells were incubated with TcsL, TcsL1–2260, TcsL1–1977, TcsL1–1921, TcsL1–1893, or
TcsL1–1808 (37 pM for HeLa, 0.05 pM for A549) for 24 hours. Representative images
are shown. The scale bar represents 50 μm. b The sensitivities of HeLa and A549
cells to TcsL, TcsL1–2260, TcsL1–1977, TcsL1–1921, TcsL1–1893, TcsL1–1808 weremeasured using
cytopathic cell-rounding experiments. Error bars indicate mean ± SD, n = 6 biolo-
gically independent samples. c The schematic illustration of designed chimeric

toxin TcsL2261B based on TcsL and TcdB. d The sensitivities of HeLa cells to TcsL,
TcsL1–2260, andTcsL2261B weremeasured using cytopathic cell-rounding experiments.
Error bars indicate mean ± SD, n = 6 biologically independent samples. e The
autocleavage of TcsL2261B was induced by the gradient concentrations of InsP6 for
3 hours. The percentage of cleavage was measured and plotted on the chart. Error
bars indicate mean± SD, n = 3 independent experiments. Source data are provided
as a Source Data file.
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results were obtained for other LCTs like TcdA and TcdB as well. Thus,
there is a compelling necessity for LCTs, such as TcsL, to develop an
extensive CROPs domain to stabilize the toxin. The only exception is
TpeL, which is naturally CROP-less. How TpeL stabilizes itself in the
complex environment is unclear. On the other hand, the activity of
TpeL CPD was reported to be low60,61 and TpeL is known to be least
toxic in mice among LCTs27.

It has been reported that the CROPs-truncated TcdA and TcdB
underwent moderately increased InsP6-induced autocleavage com-
pared to the full-length toxins31,62. The deletion of amino acids 1769-
1787 caused spontaneous autocleavage of subtype 2 TcdB in the

absence of InsP663. Here we demonstrate that the integrated CROPs
domain forcibly protects TcsL from autoproteolysis by at least two
mechanisms: the N-terminus of TcsL CROPs strongly restrains the
autoproteolysis while longer CROPs further reduce the InsP6-induced
autocleavage.

The cryo-EM structure of TcsL at neutral pH is an open con-
formation and similar to the previously reported structures of TcdB
variants31–33. Given the high sequential consensus between TcsL and
TcdB, this result is somewhat expected. Intriguingly, cryo-EM struc-
tures of the full-length TcsL in both the open and closed conforma-
tions were captured in high resolution at pH 5.0.
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The zinc atom is shown as a green sphere.
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Consistent with a previous report, the full-length TcsL is highly
resistant to InsP6-induced proteolysis54. Two intramolecular inter-
faces between the CROPs and DRBD were observed in the closed-
form structure of TcsL. The existence of the interface I may restrain
theCPD andexplainwhy the region located between residues 1808 to
1893 is important to prevent autocleavage of TcsL. The deletion of 19
residues (1848-1867) within this region would abolish the interac-
tions of interface I. As expected, TcsLΔ1848-1867 was simultaneously
auto-cleaved during the protein expression. The emergence of

interface II (between DRBD and CROPs unit IV) in the closed con-
formation may further lock the CPD and CROPs domain, as
C-terminally truncated TcsL showed increased InsP6-induced
autoproteolysis compared to the TcsL. Functional analyses on the
chimeric toxin TcsL2261B provide us with stronger evidence to
demonstrate the role of interface II. TcsL2261B contains a TcdB CROPs
unit IV thus interactions in interface II are affected. As a result,
TcsL2261B showed stronger InsP6-induced autocleavage compared to
the WT toxin.
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In the closed conformation, the CROPs domain of TcsL may
sterically hinder the binding of the toxin receptor SEMA6A/6B (Sup-
plementary Fig. 9). This could in part explain why TcsL has reduced
cytotoxicity than C-terminal truncated TcsL in A549 cells. However,
TcsL1–2260 and TcsL2261B are alsomore potent than the full-length TcsL to
HeLa cells, which express little to no SEMA6A/6B48, implying TcsL
might have additional uncharacterized receptor(s).

Based on these findings, we propose a CROPs-mediated self-sta-
bilizing strategy for TcsL and likely other LCTs in complex extracellular
environments. The closed conformation toxin could be tighter and
more resistant to autoproteolysis and degradation, as additional
interactions between the DRBD and CROPs were observed. The open
conformation TcsL is more suitable to attack the host cells as its
receptor binding region for SEMA6A/B is fully exposed. After endo-
cytosed by the target cells, the CPD is translocated to the cytosol while
the CROPs stay in the lumen of the acidic endosome. In this case, the
CROPs and CPD are located on either side of the endosomal mem-
brane; and InsP6-induced and CPD-mediated autoproteolysis would
conduct normally (Fig. 7). Taken together, our study renovates the
current understanding of the intrinsic functions of the CROPs domain
and intramolecular regulatorymechanisms of TcsL. The structural and

functional insights into the CROPs-dependent autoproteolysis inhibi-
tion also expose vulnerabilities of TcsL (and possibly other LCTs),
which can be utilized to develop potential therapeutic avenues against
LCT-related diseases.

Methods
Ethics statement
All procedures were conducted following the guidelines approved by
the Institutional Animal Care and Use Committee at Westlake Uni-
versity (IACUC Protocols #19-010-TL and #22-018-TL-5). To minimize
the pain and distress, mice were monitored every hour after the toxin
injection. Animals with signs such as labored breathing, inability to
move after gentle stimulation, or disorientation were euthanized
immediately. This method was approved by the IACUC andmonitored
by a qualified veterinarian.

Materials
HeLa (H1, CRL-1958) and A549 (CCL-185) cells were originally obtained
fromATCC. Theywere tested negative formycoplasma contamination
and authenticated via STR profiling (Shanghai Biowing Biotechnology
Co. LTD, Shanghai, China). Cells were cultured in DMEMmedium plus
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Fig. 5 | CROPs retain toxicity of TcsL onmouse lung tissues. a TcsL or TcsL1–1808

was pre-incubated with InsP6 for the indicated time (in parentheses) and then IP-
injected into themice. After four hours, fluidwas collected from themice’s thoracic
cavity. The representative fluid accumulations are shown. b The volume of fluid
collected from each mouse was measured and plotted. Error bars indicate
mean ± SEM, n = 10 mice per group, two-tailed Mann-Whitney test. c H&E staining

showing the lung tissue sections frommice injected with 0.8μg/kg TcsL or 0.6μg/
kg TcsL1–1808 pre-incubated with or without 100μM InsP6. The scale bar represents
200 μm. d Histopathological scores for (c) were assessed based on indicated
pathological features. Error bars indicate mean ± SEM, n = 10 mice per group, two-
tailed Mann-Whitney test. Source data are provided as a Source Data file.
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10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in a
humidified atmosphere of 95% air and 5% CO2 at 37°C. InsP6 (#S3793)
was purchased from Selleck.

Mice
BALB/cmice (6-8weeks,male, specific-pathogen-free) were purchased
from the Laboratory Animal Resources Center at Westlake University
(Hangzhou, China). Mice were housed with food and water without
limitation and monitored under the care of full-time staff.

Cloning, expression, and purification of recombinant proteins
DNA fragments encoding TcsL (reference sequence: P. sordellii 9048),
TcdB1 (reference sequence:C. difficile 630), Tcnα (reference sequence:
C. novyi GD211209) were codon-optimized, synthesized by Genscript
(Nanjing, China). DNA fragments encoding the full-length and trun-
cated toxins were PCR amplified and cloned into a modified pHT01
vector. Point mutations and deletion were performed using a Quick-
change II Site-Directed Mutagenesis Kit (#200523, Agilent Technolo-
gies) following the manufacturer’s instructions. C-terminal His-tagged
recombinant proteins, including TcsL, TcsL1–1808, TcsL1–1893, TcsL1–1921,
TcsL1–1977, TcsLΔ1848-1867, TcsL1-1808/C698S, TcsLΔ1848-1867/C698S, TcsL2261B, TcdB,
TcdB1–1805, Tcnα, and Tcnα1–1801 were expressed and purified from
Bacillus subtilis strain SL401. B. subtilis cells were cultured at 37 °C till
OD600 reached 0.6 and then induced with 1mM isopropyl-β-D-
thiogalactoside at 25 °C for 20 hours. All recombinant proteins were
purified by Ni-affinity chromatography, followed by size-exclusion
chromatography (GE Healthcare). The purified TcsL was further
applied to the size-exclusion chromatography at a neutral pHusing the
buffer (20mM tris-Cl pH 7.4, 150mMNaCl) or at an acidic pH using the
buffer (20mM sodium acetate pH 5.0, 150mM NaCl) and the peak
fractions were applied to the cryo-EM sample preparation.

Cryo-sample preparation and EM data collection
Each four μL aliquots of the purified TcsL at pH 7.4 and pH 5.0 were
applied onto Holey carbon grids (Quantifoil, Au, 300-mesh, R1.2/1.3),

whichwere glow-discharged in the Plasma Cleaner (HARRICK PLASMA
Company). The grids were then blotted for 3.5 seconds and quickly
plunged into liquid ethane cooled by liquid nitrogen using Vitrobot
Mark IV (Thermo Fisher) at 8 °C and 100% humidity.

The cryo-grids were transferred to a 300-kV Titan Krios electron
microscope (Thermo Fisher Scientific) equipped with a Gatan K3
detector and GIF Quantum energy filter (slit width 20 eV). The micro-
graphs with the preset defocus range from −1.5 to −2.0 μm were col-
lected at a normalmagnification of 81,000× in super-resolutionmode.
Each stack with 32 frames was exposed for 2.56 s with a total dose of
~50 e-/Å2 using EPU (Thermo Fisher Scientific). The movies are aligned
and summedusingMotionCor2with abinning factor of 2, resulting in a
pixel size of 1.087Å64. Doseweightingwasperformedconcurrently and
the defocus value for each image was determined by Gctf65 (Supple-
mentary Table S1).

Cryo-EM data processing
The cryo-EM data processing procedures for the TcsL at pH 7.4
were mainly carried out in RELION 3.066 except that is specially
mentioned. First, 1,217,203 particles were auto-picked from 1,862
images using Gautomatch (developed by Kai Zhang, https://www2.
mrc-lmb.cam.ac.uk/download/gautomatch-053/). We then performed
the 2D classifications on the total particles and used part of the good
particles to generate the initial models. After 2D selection, 637,210
particles were further applied to 3D classifications. Finally, we gener-
ated the reconstruction of TcsL at pH 7.4 at an average resolu-
tion of 2.9Å.

The cryo-EM data processing procedures for the TcsL at pH 5.0
were mainly carried out in cryoSPARC67. A total of 12,265 micrographs
were collected using the same condition as that of TcsL at neutral pH.
About 12 million particles were generated from 11,464 manually
selected micrographs. After 2D classifications, about 3.3 million par-
ticleswere selected and twodistinct featureswereobserved. Following
the initial model generation, the Heterogeneous refinement was
applied to the remaining particles. The two conformations of the
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Fig. 6 | CROPs-mediated inhibition on autoproteolysis of TcdA and TcdB. a In
the presence of 100μM InsP6, the time course cleavage revealed increased
autoproteolysis in the CROP-less LCTs (TcdA1–1834, TcdB1–1805, TcsH1–1832, and
Tcnα1–1801) compared to the full-length toxins. Error bars indicate mean± SD, n = 3
independent experiments. b 2μg/kg TcdA and 1.35μg/kg TcdA1–1834 were pre-
incubated with or without 100μM InsP6 for 30minutes and then IP injected into

the mice. The survival of the mice is shown by the Kaplan-Meier curves, n = 5 mice
per group. c 1μg/kg TcdB and 0.75μg/kg TcdB1–1805 were pre-incubated with or
without 100μM InsP6 for 30minutes and then IP injected into the mice. The sur-
vival of themice is shown by the Kaplan-Meier curves, n = 5mice per group. Source
data are provided as a Source Data file.
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closed and open TcsL at an acidic pH were finally reconstructed at an
average resolution of 2.9 Å and 2.5 Å using 410,049 and 1,045,888
particles, respectively.

The reported resolutions are calculated based on the FSC value of
0.14368. The angular distributions of the particles used for the final
reconstructions are reasonable. Local resolution variations for the
TcsL at pH 7.4 and pH 5.0 were estimated using Resmap69 and cryoS-
PARC, respectively. The EM density maps display clear features that
allow detailed structural examination of protein sidechains (Supple-
mentary Table S1).

Model building and refinement
The atomic models were mainly generated by de novo modeling
facilitated by AlphaFold70. The predicted structure was fitted into the
individual EMdensitymap for the TcsL at pH 7.4 or 5.0 using Chimera71

andmanually adjusted using Coot72. The finalmodels of the TcsL at pH
7.4 and pH 5.0 were refined using the phenix.real_space_refine pro-
gram in PHENIX with secondary structure restraints73. The structures
were further validated through examination of the Molprobity scores
and statistics of the Ramachandran plots. Molprobity scores were
calculated as described74 (Supplementary Table S1).

Cytopathic cell rounding assay
Cells were seeded at a density of 3×105 cells per well in 24-well plates
(Corning) and cultivated at 37 °C and 5% CO2 overnight. Toxins were
then added into the culture medium in a serial dilution of 1/3 and
incubated at 37 °C for 24 hours. Thephase-contrast images of cells were
then captured (Olympus IX73, 10× objectives). A zone of 200 × 200 µm
was selected randomly, each containing ~20-50cells. Round-shapedand
normal-shaped cells were counted manually. All experiments were

performed in three independent biological replicates. Statistical analy-
sis was performed using OriginPro v8.5 (OriginLab).

Toxin challenge assay in mice
0.8μg/kg TcsL, 0.6μg/kg TcsL1–1808, 2μg/kg TcdA, 1.35 μg/kg
TcdA1–1834, 1μg/kg TcdB, or 0.75μg/kg TcdB1–1805 was pre-incubated
with or without 100μM InsP6 in 200–500μL of saline (0.9 % NaCl, pH
7.4) for 5, 10, 20, or 30minutes. The mixtures were then IP-injected
into the mice. For TcsL, all mice were euthanized after four hours. The
fluid present in the thoracic cavity was collected for volume mea-
surement and the lung segments of these mice were dissected for
histopathological analysis. For TcdA and TcdB, the survival of themice
was illustrated by the Kaplan-Meier curves (monitored for 72 hours).

H&E staining and histopathological analysis
Lung specimens were fixed in formalin for 12 hours before being
dehydrated with an alcohol gradient, cleared with xylene, and then
embedded in paraffin. Paraffin blocks were cut into 5mm thick sec-
tions. The sections were stained with H&E. The H&E staining sections
were scored blinded by two pathologists based on edema and
inflammatory cell infiltration on a scale of 0 to 3 (mild to severe). The
average scores were plotted on the charts.

Statistics and reproducibility
Data are presented as mean± standard deviation (SD) for biochemical
experiments and mean ± standard error of the mean (SEM) for
pathological experiments. The number of the sample size (n) and
statistical hypothesis testing method are described in the legends of
the corresponding figures. Statistical analyses of data were performed
withGraphPadPrismv9.3 orOriginPro v8.5. All experiments in Figs. 1b,
1d-e, and 1g have been repeated for at least three times with similar
results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The atomic coordinates for the TcsL at pH 7.4 and at the pH 5.0 in its
open and closed conformations have been deposited in the Protein
Data Bank (PDB) with the accession codes 8JB5, 8X2H, and 8X2I,
respectively. The EMmaps have been deposited in the EMDB with the
accession codes EMD-36141, EMD-38010, and EMD-38011 for the TcsL
at pH 7.4 and 5.0 in its open and closed conformations, respectively.
The other data that support the findings of this study are available in
the publicly accessible repository. Source data are provided with the
paper. Source data are provided with this paper.
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