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High-throughput deconvolution of 3D
organoid dynamics at cellular resolution
for cancer pharmacology with Cellos

PatienceMukashyaka 1,2,3, PoojaKumar1,3, David J.Mellert 1, ShadaeNicholas1,
Javad Noorbakhsh1, Mattia Brugiolo1, Elise T. Courtois 1, Olga Anczukow1,2,
Edison T. Liu 1 & Jeffrey H. Chuang 1,2

Three-dimensional (3D) organoid cultures are flexible systems to interrogate
cellular growth, morphology, multicellular spatial architecture, and cellular
interactions in response to treatment. However, computational methods for
analysis of 3D organoids with sufficiently high-throughput and cellular reso-
lution are needed. Here we report Cellos, an accurate, high-throughput pipe-
line for 3D organoid segmentation using classical algorithms and nuclear
segmentation using a trained Stardist-3D convolutional neural network. To
evaluate Cellos, we analyze ~100,000 organoids with ~2.35 million cells from
multiple treatment experiments. Cellos segments dye-stained orfluorescently-
labeled nuclei and accurately distinguishes distinct labeled cell populations
within organoids. Cellos can recapitulate traditional luminescence-based drug
response of cells with complex drug sensitivities, while also quantifying
changes in organoid and nuclear morphologies caused by treatment as well as
cell-cell spatial relationships that reflect ecological affinity. Cellos provides
powerful tools to perform high-throughput analysis for pharmacological
testing and biological investigation of organoids based on 3D imaging.

The selection of an optimal disease model is critical to the effective
development and evaluation of cancer therapeutics. 2D monolayer
cell cultures have been used extensively but have notable limita-
tions. For example, although they can model cell autonomous
characteristics, they lack multicellular aspects of the in vivo
environment1 that may affect therapeutic performance, such as
contributions of stromal components, spatial architecture, and cell
polarity. Moreover, adaptation of cancer cells to adherent condi-
tions on artificial substrates often perturb cellular characteristics.
For such reasons, 3D cell culture models have emerged as a high-
scale in vitro model platform for anticancer therapeutic discovery
and development2–6. 3D profiling can enable broad analysis possi-
bilities because, unlike 2D profiling, it captures true cell spatial
relationships and morphology, as well as potential cell-cell inter-
actions. However, to realize these possibilities for high-throughput

treatment testing, improved 3D organoid data analysis is a
key need7.

Organoid culture analysis is typically performed through image
capture of organoids grown inmulti-well plates, but availablemethods
have limitations. Luminescence assays that are commonly used are
cell-destructive methods that aggregate cell growth information over
an entire well, whereas analysis of individual organoids and their
constituent cells would be more informative. Current methods to
identify organoids have focused on 2D segmentation, e.g. based on
planar fluorescent quantification of live/dead cell stains and organoid
areas8–14. Yet 2D analysis poorly approximates the complexity of 3D
spatial relationships for cells and organoids14, which are likely to vary
by cell type and growth conditions.

Moreover, prior computational approaches to analyze organoids
in 3D have focused on qualitative visualization7 rather than cellular
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quantification, and current methods for 3D cell segmentation have
been limited to specialized contexts. For example, Boutin et al.15

developed a 3D spheroid and nuclei segmentation approach for opti-
cally cleared images of one single spheroid in a well. More recently,
Beghin et al. developed a segmentation technique for the Jewell system
again with one organoid per well16. However, a more typical cancer
treatment assay interrogates large numbers of organoids within each
well of a plate. Related to this need, Zhang et al.17 described a method
optimized for segmenting organoids in optical coherence tomography
images, though the method lacks cellular resolution. Thus, develop-
ment of a flexible 3D approach able to identify and quantify individual
cells, as well as their morphologies, in high-throughput could be of
significant value to the field.

We demonstrate a computational method, Cellos (Cell and
Organoid Segmentation), to address this challenge. Cellos performs
high-throughput volumetric 3D segmentation and morphological
quantification of organoids and their cells on images with numerous
organoids. Cellos has two stages. At first, organoids are segmented,
and their volume, solidity, and othermorphological characteristics are
computed. In the second, nuclei are segmented in each organoid using
a 3D convolutional neural network trained on an extensively curated
dataset. This enables analysis of characteristics including cell densities
per well, clonal population frequencies, nuclear morphologies, and
potential cell-cell interactions. We demonstrate the utility of Cellos by
quantifying the complex three-dimensional responses of triple nega-
tive breast cancer (TNBC) organoids and their subclonal populations
during platinum-based treatment in vitro.

Results
Description of the cancer cellular system
As a case study for 3D image analysis, we generated organoids from
primary cell cultures derived from a TNBC Patient Derived Xenograft
(PDX) model TM0009918. We used these cells because they have not
been adapted to 2D cell culture conditions and retain clonal hetero-
geneity, and thus resemble the clinical in vivo situation. This TNBC
model is BRCA1 deficient and was initially sensitive to cisplatin. We
have previously reported18 that this PDX tumor consists of two major
subclones with differential cisplatin sensitivity. We isolated and
established single cell-derived clonal lines, a cisplatin-resistant clone
A50 and relatively sensitive clone B.Weperformed IC50measurements
for each of these clones individually grown as 3D organoids using a
standard cell destructive luminescence assay, which assesses the
number of viable cells from ATP content after cellular disruption (see
methods for details). The A50 clone had an IC50 of 10.51 µM (95% CI =
8.71 µM−12.44 µM) and the relatively sensitive B clone had an IC50 of
2.94 µM (95% CI = 2.61 µM−3.35 µM) (Fig. 1a). However, at high con-
centrations of cisplatin (>IC80), subclone B also exhibited a “dor-
mancy” phenotype with elevated cell survival over A50. We took
advantage of these clones to test the effectiveness of Cellos to quantify
mixed populations with complex sensitivity profiles. We used nuclear
localization signal (NLS)-conjugated EGFP or mCherry to stably label
A50 and B clones and mixed them in two different ways: homo-
geneously mixed organoids, defined to be organoids made up of two
genetically identical but differently labeled subclones (A50-EGFP with
A50-mCherry, or B-EGFP with B-mCherry); and heterogeneously mixed
organoids, defined tobeorganoidsmadeupof twodifferent subclones
(A50-EGFP with B-mCherry, or A50-mCherry with B-EGFP). Organoids
were imaged using the PerkinElmer Opera Phenix high-content
screening system (Supplementary Fig. 1).

Cellos pipeline overview
The pipeline consists of two parts: organoid segmentation and nuclei
segmentation (Fig. 1b). Organoid segmentation: To segment the orga-
noids, first, we convert the fluorescent image to grayscale and pre-
process to remove debris and noise (seeMethods for details). Next, we

use the Triangle method for histogram thresholding19 to create a bin-
ary image separating the organoids from the background.We then use
scikit image20 to uniquely label all organoids, remove small objects
(Fig. 1c), and generate a table of measurements for the remaining
organoids (3Dboundingbox, volume,mean intensity, solidity, etc.). All
steps are performed on small fields defined by the imaging platform
used and then stitched together before the labeling step. A csv file that
contains measurements of all organoids is generated for each well in
the plate, allowing parallel processing of individual wells from the
same plate.Nuclei segmentation: For each well, stitched z-stack images
and the measurement file for each individual organoid are used as
inputs. Segmentation of nuclei within the organoids by classical
methods is challenging due to the high density of cells in organoids.
Therefore, we developed a convolutional neural network (CNN) for
nuclei segmentation using the Stardist-3D21 model with a ResNet
backbone22. To train the model, we generated a training dataset of
3862manually annotated nuclei in 3D from 36 TNBC organoids, with a
range of 8-440 cell nuclei per organoid. The organoids consisted of
EGFP, mCherry or Hoechst labelled cells, and 24 of the 36 organoids
were imaged after exposure to a range of cisplatin concentrations. We
then applied the trained model to experimental data (Fig. 1d). We also
used scikit-image to generate measurements (centroid, volume, mean
intensity, solidity, etc.) for every nucleus. Our trained CNN is publicly
available on the Cellos GitHub.

Cellos organoid segmentation is accurate
To evaluate the effectiveness of Cellos for segmenting organoids,
we applied it to heterogeneously mixed organoids (A50-EGFP with
B-mCherry) in several wells. These wells were treated with cisplatin
concentrations ranging from 0-128 µM (see methods experiment-1
for details). Organoid segmentation appeared accurate in the
absence (Fig. 2a, left panel) and presence (Fig. 2a, middle and right
panels) of cisplatin. For more organoid segmented images, see
Supplementary Figs. 2–5a–c. To quantify this, we manually counted
true positives, false positives, and false negatives for 321 segmented
organoids in wells treated with different concentrations of cisplatin
(16-128 µM). We focused on high cisplatin doses because they are
more difficult to accurately segment—their organoid shapes are
more diffuse, and the images have higher cell debris and noise. We
observed precision, recall, and F1 scores of 96.07, 83.80, and 89.52,
respectively, where the F1 score is the harmonic mean of recall and
precision. At high doses of drug, the cutoff on minimum organoid
size caused the recall value for organoid segmentation to be lower
than the precision. The cutoff, which was chosen to reduce the
effect of debris, also reduced recall by excluding some single cells
from being segmented as organoids, as shown in Supplemen-
tary Fig. 6.

Cellos nuclei segmentation model is accurate
To evaluate Cellos for nuclear segmentation, we first used internal
cross-validation. We performed six-fold cross-validation (30 and 6
organoids for training and validation respectively) and computed F1
score versus intersectionover union (IoU) thresholds. IoU is the spatial
overlap between the ground truth and the predicted nuclear region—
the bigger the IoU, the greater the overlap.Weobserved high F1 scores
extending to relatively large IoU thresholds, for example an F1 score of
0.853± 0.052 at IoU of 0.4 (Fig. 2b), indicating the quality of thematch
between predicted nuclei and ground truth. Visual inspection sup-
ported the consistency in ground truth and predicted labels, and the
total numbers of nuclei identified were similar in the predictions and
ground truth (Fig. 2c). For additional visuals of nuclei segmentation,
see Supplementary Figs. 2–5d. These results show the accuracy of
Cellos to segment nuclei, despite the challenges of high anisotropy in z
resolution relative to x and y21 and increased debris after exposure to
high concentrations of drug.
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Fig. 1 | Outline of Cellos pipeline and cellular system. a Cisplatin IC50 curves for
two clones A50 (blue line) and B (gray line) from 3D homogeneously mixed orga-
noids using a cell-destructive luminescence readout. Mean of three replicate wells
is plotted and error bars represent the standard deviation. Source data is provided
as a source data file. b Cellos: Two-stage pipeline for 3D organoids and nuclei
segmentation on 3D images. Scale bar represents 400 µm for top andmiddle panel
and 25 µm for the bottom panel. c Top panel represents steps for 3D organoid
segmentation. The inputs are3Dz-stack images, and theoutputs are the segmented

and labeledorganoids. Bottompanel shows anexample of 3Dorganoidsbefore and
after segmentation. Scale bars shown represent 125 µm. d Steps for nuclei seg-
mentation. A Stardist-3DwithResnetbackbonemodel22 is trained using the training
dataset. The trained model is then applied to experimental data with individual
segmented organoids as input, and segmented and labelled nuclei as outputs. The
3D figures were generated using the napari46 python library, which is integrated
into the Cellos pipeline.
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Cellos organoids and nuclei segmentation is robust on
independent datasets
To test the broader applicability of Cellos, we determined if Cellos was
effective on organoids from cell lines with different organoid
morphologies. For this purpose, we analyzed a total of 426,810 cells
from 11,416 organoids generated from TNBC cell lines HCC1806 and
MDA-MB231 that have mass-like and stellate morphologies, respec-
tively, as well as breast cell line MCF10A that has round and cyst-like
organoids when differentiated (Fig. 3a–c). In this challenge, Cellos
successfully segmented the organoids with distinct morphologies in a
quantitative manner. In all cases, we observed a decrease in volume of
segmented organoids with decreasing seeding densities of cells

(Supplemantary Fig. 7a). Specifically, for HCC1806 the average orga-
noid volumes (×105 µm³) were 2.68 ±0.01, 2.65 ± 0.07, and 2.17 ± 0.07
for high, medium, and low cell seeding densities respectively. For
MCF10A the average organoid volumes (×105 µm³) were 1.50± 0.20,
1.39 ±0.21, and 0.96 ±0.24 for high, medium, and low cell seeding
densities respectively. For MDA-MB231 the average organoid volumes
(×105 µm3) were 2.99 ± 0.52, 2.59 ± 0.48, and 1.89 ± 0.28 for high,
medium, and low cell seeding densities. Additionally, as expected, the
number of cells per organoid segmented using Cellos decreases as the
seeding density decreases, with p <0.022 in all comparisons between
high and medium seeding densities (p < 2.551e−08 in all comparisons,
Supplementary Fig. 7b). Thus, we observed that Cellos effectively

Fig. 2 | Evaluation of organoid and nuclei segmentation. a For each pair of
images, the top panel shows fluorescence z-axis maximum projections with A50
cells labeled with EGFP and B cells labeled with mCherry. The bottom panel shows
organoids segmented by Cellos. Segmented individual organoids are in distinct
colors. Organoids from untreated, 2 µM, and 128 µM cisplatin wells are shown and
scale bar represents 100 µm. Representative segmentation for one field per con-
dition is shown. Segmentation was performed on 25 fields per well and three

replicate wells for each condition. b F1 score for nucleus identification vs. IoU
threshold. Mean and standard deviation across six cross-validations are shown. A
total of 3,862 nuclei were used for this analysis. Source data is provided as a source
data file. c Example of EGFP-labeled organoid image (left panel) with manually
annotated ground truth nuclei annotations (middle panel) and Cellos predicted
labels (right panel), respectively. Images are z-axis maximum projections and scale
bar represents 25 µm.
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segments nuclei from organoids with distinct morphologies. More-
over, despite the variations in organoidmorphologies and fluorescent
dyes used for segmentation (see methods), no changes in Cellos
pipeline parameters were required.

We next tested whether Cellos could segment nuclei from orga-
noids in external datasets generated independently from our group.
We used data from Boutin et al.15, who manually annotated cells in
three optically cleared spheroids grown and assayed in a manner dis-
tinct from our platform, which does not use optical clearing. The
spheroids were from a breast carcinoma cell line T47D grown in 384-
well round-bottomUltra-Low Attachment plates for 3 days. They were

stained with DAPI and imaged using a 20x water objective magnifica-
tion with 5 µm z-step size. Despite these system and fluorescence
marker differences, Cellos accurately segmented the nuclei (1585
nuclei) in their spheroids with F1 = 0.885 at IoU of 0.4 (Fig. 3d), with an
example spheroid shown in (Fig. 3e). We compared Cellos to the 3D
classical nuclei segmentation protocol that Boutin et al. developed for
their spheroids. Cellos showed superior specificity of 93.38% and
F1 = 0.94 compared to the Boutin et al. method with 75.76% for spe-
cificity and F1 = 0.76.

Additionally, we applied Cellos to a leukemia cell line
HL60 synthetic dataset23, consisting of four synthetic image subsets

Fig. 3 | Application of Cellos on diverse organoid datasets. 3D images of
a HCC1806, bMDA-MB231 and cMCF10A organoids. Raw images are shown in the
left panel, organoid segmentations via Cellos are shown in the middle panel, and a
smaller field for better visualization of organoid segmentation is shown in the right
panel. Individual segmented organoids are displayed in different randomly selec-
ted colors. Segmentation was performed on at least three replicate wells for each
cell line and representative segmentation for onewell per condition is shown. Scale

bars represent 400or 200 µmas indicated.d F1 scoreofCellos nuclei segmentation
in spheroids of breast carcinoma from Boutin et al.15 vs. IoU threshold. A total of
1585 nuclei was used for the analysis. Source data is provided as a source data file. e.
Example DAPI stained image (left panel) from Boutin et al.15 with ground truth
(middle panel) and Cellos predictions (right panel), respectively and scale bar
representing 25 µm.
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each containing 30 images at different nuclei densities and signal to
noise ratios. Cellos was able to segment the nuclei with precision,
accuracy, and recall of >0.95 in all subsets. Finally, we were also able to
segment 52 out of 56 annotated nuclei from an image of a mouse
embryo24. Thus, Cellos was able to process external image datasets
with quantitative precision.

Cellos precisely detects distinct proportions of labelled cells in
mixed organoids
We wished to evaluate the efficacy of Cellos to quantify multiple cell
types simultaneously in an organoid to study cancer population
dynamics. To do so, we first analyzed the ability to distinguish mixed
organoids expressing different fluorescent tags using the PDX
TM00099 A50 clone. Organoids were made up of mixtures of A50-
EGFP and A50-mCherry, at four different seeding ratios of EGFP-20%,
EGFP-40%, EGFP-60%, and EGFP-80%. Theseorganoidswere seeded on
day “-3” and imaged at day 0 (days are counted relative to when
organoids were stably formed, Supplementary Fig. 8a), allowed to
grow, and imaged again 4 days later (day4) (seemethods experiment-2
for details). We performed similar experiments for homogeneously
mixed fluorescent organoids of TM00099 clone B-EGFP with
B-mCherry.

To evaluate this quantitatively, we used Cellos to calculate the
total number of EGFP and mCherry cells in each well and their corre-
sponding ratios. We observed that the EGFP fluorescence increased
with the EGFP seeding ratio in organoids made of A50-EGFP with A50-
mCherry (Fig. 4a). Indeed, across all wells imaged at day0, we detected
ratios close to the expected EGFP:mCherry ratios, with average abso-
lute differenceof 2.986% (Fig. 4b). Ratioswere also stable fromday0 to
day4, with mean difference of 2.852%. We calculated the standard
deviation within each set of triplicate wells, and the average deviation
across seeding conditions was 0.808% (Fig. 4b). We repeated these
experiments for organoids generated from mixtures of B-EGFP and
B-mCherry and found similar results (Fig. 4b). We did not detect bias
towards either fluorescent label or clone type (Supplementary
Table. 1).

Next, we evaluated how these ratios varied within individual
organoids across the different seeding conditions. Using Cellos, we
quantified the number of EGFP and mCherry cells in each organoid in
eachwell (total 561,722 nuclei and 23,258 organoids) and plotted these
values across organoids (Fig. 4c) for each seeding condition. As
expected, the slopes of the regression line between number of EGFP
versus mCherry cells changed monotonically with seeding ratio. Spe-
cifically, we observed slopes of 2.270, 1.347, 0.814, 0.427 for the wells
with seeding conditions of EGFP-20%, 40%, 60%, and 80%, respectively
for A50 (Fig. 4c). Observations were similar for B (Supplementary
Fig. 8b). This indicates that Cellos is able to discern cellular ratios
across different organoid sizes.

Cellos robustly quantifies treatment response in co-
cultured clones
An important useofCellos is to quantify treatment response profiles of
organoidsmadeupofmultiple clones, a taskwhichmaybevaluable for
parallelizing response evaluations and detecting clonal interactions.
The A50 and B clones from TM00099 tumors have distinctive drug
responses to cisplatin (Fig. 1a) making them well-suited to evaluating
Cellos for this task because of the differential sensitivity to che-
motherapy. We generated heterogeneously mixed organoids consist-
ing of A50-EGFP and B-mCherry cells and treated themwith a range of
(0-128μM) cisplatin concentrations (see methods experiment-1) in
triplicates. We first used Cellos to estimate cell density in each well. As
expected, we saw a decrease in cell density as cisplatin concentration
increased (Fig. 5a), confirming effectiveness of treatment. We then
used clone-specific cell densities to determine IC50 for each clone. A50
was 2.7× more resistant to cisplatin than B, i.e. A50 IC50 = 2.87 µM (95%

confidence interval (CI) = 1.95 µM–4.54 µM) and B IC50 = 1.06 µM (95%
CI = 0.87 µM–1.35 µM) (Fig. 5b). At higher doses (~IC80), and as expec-
ted, we observed a higher viability of B than A50. These observations
were consistent with the standard luminescence assays (Fig. 1a), indi-
cating that Cellos can recapitulate those findings by counting indivi-
dual fluorescently labelled nuclei of specific cell types, but in a non-
destructive and higher (cell) resolution manner.

To further visualize these results, we analyzed the ratio of A50and
B cells in the cisplatin-treatedwells containing heterogeneouslymixed
organoids. For each drug condition, the ratio of A50-EGFP to
B-mCherry cells per well was computed (Supplementary Fig. 9a) and
normalized relative to the ratio in untreated wells. We observed
increasing A50-EGFP and decreasing B-mCherry normalized cell pro-
portions with increasing cisplatin concentration, up to 16 µM (Fig. 5c).
This trend reversed at higher concentrations (64 and 128 µM), con-
sistent with the luminescence and Cellos-based cell density estimates.
This result highlights the dormant phenotype of B having better sur-
vival than A50, but only at high doses of cisplatin.

To determinewhether fluorescence labelingmight have impacted
cell viability or generated any imaging bias, we flipped the fluorescent
labels and repeated the experiment, i.e. generating and treating het-
erogenous organoids with A50-mCherry and B-EGFP cells (see meth-
ods, experiment-3). The flipped-label results were highly correlated
with the originals (R =0.982, Fig. 5d, see also Supplementary Fig. 9b),
confirming that the observed treatment responses were determined
by intrinsic clonal differences. We also analyzed homogeneously
mixed organoids consisting of A50-EGFP and A50-mCherry cells trea-
ted with cisplatin (see methods, experiment-4). As expected, the nor-
malized proportions of EGFP and mCherry cells were stable across all
cisplatin conditions (Fig. 5e). IC50 and cell density curves showed
variability across replicates related to the variable spatial distribution
of organoids relative to the imaged regions in each well. However, the
ratio of EGFP to mCherry was highly consistent across replicates
(Fig. 5c), demonstrating the improved robustness of measures based
on internal calibration, compared to measures based on absolute cell
counts.

At the individual organoid level, we observed similar clonal
compositional shifts andwere able to quantify the clonal variationon a
per organoid basis (Fig. 5f, g). The median percentage of A50 EGFP
cells per organoid in control untreatedwells was 57%. This increased to
72% at 2 µM cisplatin (p = 2.774e−13) and decreased to 23% at 64 µM
(p = 3.142e−56, Fig. 5f). Though consistent with the bulk behavior of
A50 vs B clones, for organoids with few cells we observed wider var-
iation in the A50-EGFP percentage, as expected from their suscept-
ibility to stochastic fluctuations (Fig. 5g). When we computed the
clonal ratios usingmean fluorescence intensities within eachorganoid,
we observed findings similar to those from the cell counts (Supple-
mentary Fig. 9c).

To determine if organoid and nuclear segmentation post drug
treatment would be efficient in a different cell line model and using
different therapeutic agents, we used Cellos to analyze organoids
generated from TNBC cell line HCC1806 treated with cisplatin or
two additional chemotherapeutic agents commonly used for TNBC
treatment, namely Docetaxel and Doxorubicin (Supplementary
Fig. 10a). Cellos was used to segment HCC1806 organoids and
yielded a monotonic decrease in organoid volume as the drug
concentration increased for all three drugs (Supplementary
Fig. 10b). Additionally, the number of viable nuclei counted using
Cellos was highly correlated with luminescence assay signals
acquired post imaging (correlation = 0.961, 95% confidence inter-
val = 0 .916–0.982) (Supplementary Fig. 10c). Cellos was effective in
organoid and nuclear segmentation despite the organoids being
treated with relatively high drug doses, which yields abundant cell
debris that in principle could have interfered with segmentation
(Supplementary Fig. 10a). Note that segmented nuclei that were
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also positive for dead cell stain DRAQ7 were identified as dead cells
and removed from the analysis. These results show the ability of
Cellos to segment organoids and nuclei generated from an estab-
lished cell line treated with three drugs with distinct mechanisms of
action.

Cellos can reveal organoid and nuclear morphology changes
due to therapy
Organoid morphology may change in response to therapy and can be
used to evaluate effects of drugs on cancer organoids in qualitative
image-based assays25–27. We therefore investigated whether Cellos

Fig. 4 | Cellos distinguishes proportions of co-cultured cells. a Representative
z-axis maximum projection images of homogeneously mixed organoids generated
with seeding percentages of 20%, 40%, 60% and 80% A50-EGFP, respectively, with
the remaining cells being A50-mCherry. Images shown are from day4. Twenty-five
fields per well and three replicate wells for each condition were analyzed and
representative images for one field per condition is shown. b Stacked bar plot
showing the percentage of A50-EGFP+A50mCherry cells detected byCellos at day0
and day4 for each of the seeding conditions. Analogous experiments for B-
EGFP + B-mCherry mixed organoids are shown in the right panel. Mean of three

replicate wells are plotted for each condition, white points show the data for
individual replicates wells and error bars indicate the standard deviation. A total of
1,123,444 cells were analyzed. c Number of cells labelled with EGFP vs. mCherry
detected in each homogeneously mixed A50 organoid. Each dot depicts an orga-
noid Seeding conditions of EGFP-20% (blue), EGFP-40% (orange), EGFP-60% (green)
and EGFP-80% (red) are shown from left to right. In total, 3245 organoids with a
total of 185,702 cells were analyzed. The slope of the fitted linear regression is
noted with the shaded bands indicating the 95% confidence interval. Source data
for b and c are provided as source data files.
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Fig. 5 | Cellos quantification of treatment response for organoids consisting of
co-cultured clones. a Total cell density (for both A50 and B) after exposure to
cisplatin (0-128 µM) for 4 days. Mean and standard deviation across three replicate
wells per condition are shown and data for individual replicates are shown as black
dots. b IC50 curves for A50-EGFP and B-mCherry clones when co-cultured in het-
erogeneously mixed organoids. Mean values with standard deviation across tri-
plicates indicated for each condition. c Control normalized cell proportions vs.
cisplatin treatment concentration range, for A50-EGFP and B-mCherry clones cul-
tured as mixed organoids. Line plots shows mean and standard deviation of three
replicates for all conditions. A total of 137,765 cells were examined for (a–c).
dCorrelation ofA50clonal percentages post cisplatin treatment,when labeledwith
either nuclear EGFP or mCherry and mixed to form organoids with B clones that
hadbeen labelledwith theother fluorescent channel. 238,077 cellswereutilized for
this analysis. Pearson correlation coefficient and two-sided t-test p value are noted.
e Clonal cell proportions for A50-EGFP and A50-mCherry clones co-cultured as

mixed organoids, normalized by proportion in the untreated control, as a function
of cisplatin treatment concentration. Data was collected from three replicates for
all but one condition that had two replicates available. A total of 123,069 cells were
assessed. Mean values with standard deviation are plotted. f Distribution of per-
centage of A50-EGFP cells per organoid whenmixedwith B-mCherry cells after 0, 2
or 64 µM cisplatin exposure. Horizontal line in the boxplot indicates the median,
the box denotes the interquartile range (IQR) and the whiskers beyond the box
extend to a maximum of 1.5 times the IQR. g Percentage of A50-EGFP cells per
organoid versus total cells. Each dot represents an organoid. White dots represent
untreated organoids, and blue and orange dots represent organoids treated with
2 µM and 64 µM cisplatin, respectively. The median percentages of A50-EGFP cells
for each condition aremarked by the triangles at bottom. A total of 2772 organoids
with 57,102 cells across three replicate wells for each condition were analyzed for
figures f and g. Source data for a–g are provided as source data files.
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Fig. 6 | Changes in organoid and nuclearmorphological features after cisplatin
treatment. a Organoid volume (µm3). b Solidity and c Cell number after cisplatin
treatment for 4 days is shown. Each experimental condition had three replicate
wells. A total of 8382 organoids were analyzed. Horizontal line in the boxplot
indicates themedian, the boxdenotes the IQR, thewhiskers beyond the box extend
to a maximum of 1.5 times the IQR and outliers are shown as dots. Red dotted line
on a marks the cut-off used to define large organoids (organoid
volume > 1.85 × 105 μm3). d Cell density of large organoids (n = 1077) after 4 days of
cisplatin exposure. Boxplot features same as that described above. e Logistic
regression classificationsbasedonnuclearmorphology, for classificationof control
nuclei vs. cisplatin-treated nuclei. A50-EGFP and B-mCherry cells are analyzed

separately. LR-AUC indicates area under the curve of the logistic regression clas-
sifier for the specified comparison. A total of 352,939 nuclei were used for training
and 88,243 nuclei were used for testing. f Nuclear volume of A50-EGFP and
B-mCherry cells after exposure to a range of cisplatin concentrations. A total of
137,765 nuclei were examined and mean values with standard deviation for tripli-
cate wells are plotted. Source data for a–f are provided as source data files.
gRepresentative images of B-mCherry cell nuclei at day 4post cisplatin exposure. A
total of 51,269 nuclei were examined. h A50-EGFP cell nuclei at day 4 post selected
concentrations of cisplatin exposure. A total of 86,496 nuclei were examined. Scale
bar represents 25 µm.
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coulddetect quantitative differences inmorphology amongorganoids
after cisplatin treatment. Multiple morphological features (volume,
volume filled, volume convex, volume bbox, intensity mean, intensity
max, intensity min, eccentricity, solidity, Euler number, and inertia
tensor eigvals) for everyorganoidwerecomputedusingCellos. Several
features exhibited clear changes post treatment. We observed mono-
tonic decreases in organoid volume (Fig. 6a), solidity as a measure of
cell packing (Fig. 6b), and total cell number per organoid (Fig. 6c) as
drug concentration increased. These factors showed statistically sig-
nificant differences (p < 0.05) compared to control even at low cis-
platin thresholds, e.g. solidity declined at 1μM cisplatin, p = 4.13e−10,
cell number also decreased at 1μM Cisplatin, p = 5.87e−05, and orga-
noid volume was reduced at 4μM cisplatin, p = 4.44e−08.

Unexpectedly, despite the decrease in average volume at high
cisplatin concentrations, there were still a number of remnant large
organoids. 2.5% of organoids in the 64 and 128μM cisplatin wells had
volume greater than 1.85 × 105 μm3 (red dotted line in Fig. 6a), the
threshold for the largest quartile of untreated organoids. Such large
organoids (>1.85 × 105 μm3) exhibited different morphological char-
acteristics in the untreated versus treated wells. For example, large
organoids showed 4.25-fold lower cell density in the 64μM wells
compared to untreated organoids (Fig. 6d). The treated large orga-
noids also showed lower solidity, lower eccentricity (minor/major
axis), and higher Euler number (measure of holes present) (Supple-
mentary Fig. 11a–d). This suggests that the structure of the large
organoids appears to be maintained despite a reduction in cellular
content (as measured by lower cell density, solidity, and higher Euler
number) and an increase in debris arising from dead cells (Supple-
mentary Fig. 12). Thus, Cellos is able to quantify distinctive morpho-
logical changes at the individual organoid level as the result of
escalating doses of chemotherapy.

We next studied whether Cellos could classify response based on
nuclearmorphology changes causedby cisplatin treatment. Todo this,
we trained binary logistic regressionmodels to classify untreated cells
versus treated cells for each concentration of cisplatin treatment. A
total of 235,957 nuclei were used for this analysis. Separate sets of
classifiers were trained for the A50-EGFP and B-mCherry clones. The
inputs to the classifiers were Cellos-identified morphological features
(volume, volume filled, volume convex, volume bbox, intensity mean,
intensity max, intensity min, eccentricity, solidity, Euler number, and
inertia tensor eigvals) for every nucleus. For each model, 80% of the
dataset was used for training and the remaining 20% was used for
testing. In addition, area under the ROC Curve (AUC) was used to
evaluate the model. As expected, the logistic regression classifiers
showed increasing AUC for cells exposed to higher cisplatin con-
centrations for both clones (Fig. 6e). However, even at low drug con-
centrations, the two clones, A50 and B already started to show
morphological differences with ~0.6 AUC at 1μM, to 0.7 AUC at 2μM
cisplatin. At higher cisplatin concentrations (>4μM), the classifier gave
AUCs of >0.8 and at the highest dose of cisplatin (128μM) the AUCwas
>0.95 for the classification of untreated versus cisplatin treated A50
and B nuclei. This suggests that 3D nuclearmorphology can be used as
a quantitative surrogate for chemotherapeutic effect.

To verify that these results were not fluorescent label-specific, we
repeated the classifier analyses using the reversed fluorescent-labelled
nuclei (B-EGFP and A50-mCherry). AUCs were robust despite label
flipping (Supplementary Fig. 13a, b), with the maximum AUC differ-
ence across the flips being only 0.0677, observed at 64 µM for
B-mCherry vs. B-EGFP. This confirms that when a cell is exposed to
cisplatin, changes in their nuclear morphology occur in a dose
dependent manner, and that these changes are sufficient to build
discriminative models regardless of the fluorescence marker used.

Nuclear volume and fluorescence intensity were the morpholo-
gical features that provided the greatest contribution in the logistic
regressions. Thus, we further analyzed these features individually.

Fluorescence intensity decreasedwith cisplatin concentration for both
clones (Supplementary Fig. 13c), indicating that the cellular stress
induced bydrug exposuremight reduce either the label’s transcription
or translation. Nuclear volume exhibited a more complex behavior,
initially increasing with cisplatin concentration for both A50 and B
(Fig. 6f), which was also apparent by visual inspection (B clone: Fig. 6g,
A50 clone: Fig. 6h). Interestingly, the B clone showed a faster increase
in nuclear volume compared to the A50 clone at lower doses of cis-
platin, consistent with the logistic regression AUC values and with the
greater sensitivity of B clones to cisplatin (Fig. 6e). However, A50 cells
showed a greater decline in nuclear volume than the B clone at con-
centrations >32μM cisplatin. Decreases in nuclear sizes have been
observed in cells undergoing apoptosis28,29. Thus, the early reduction
in A50 nuclei volumes could indicate the initiation of apoptotic path-
ways whichwould correlate with the increased cell death in A50 clones
at high cisplatin concentrations compared to the B clone30. This con-
firms that B cells survive better at high drug concentrations, but Cellos
also provides insightful information that these surviving cells are not
normal and show cellular stress via larger nuclear volume. While the
precise meaning of these morphological changes is not clear, the
ability to discern morphological alterations on a single cell level can
motivate new experiments, especially around the biology of cellular
responses to different levels of drug exposure. Our observations sug-
gest that the nuclear effects at cytotoxic doses <32 μM cisplatin are
different from the nuclear effects at doses >32μM.

Cellos reveals spatial relationships between cells in organoids
3D segmentation at cellular resolution allows for analysis of cell spatial
relationships, which may reveal ecological interactions among clones.
To interrogate such interactions, we analyzed how clones were orga-
nized within heterogeneously mixed TNBC organoids. For each clone
in each organoid, we calculated the localization score, which quantifies
how often a cell’s adjacent cells are of the same clonal type, within a
specified cell number window size. This score is normalized for the
clonal fraction in the organoid. The higher the localization score, the
higher the co-localization of cells of the specified clone with them-
selves (see Methods).

We observed that cells of a given clone tend to co-occur with
othersof the same clone, as demonstratedby a decrease in localization
score with increasing window size. This was true both in the presence
and absence of cisplatin treatment, and for both clones B (Fig. 7a) and
A50 (Supplementary Fig. 14a). These results indicate that clones form
small spatial clusters within the organoids. Co-localization was stron-
ger in the organoids having only a small fraction of one clone, whether
the minor population clone was B (Fig. 7b) or A50 (Supplementary
Fig. 14b). This effect was consistent even in the 10-cell windows (Sup-
plementary Fig. 14c, d). An example of a heterogeneously mixed
organoid (consisting of 20% B clone fraction) with strong clone loca-
lization (localization score = 3.1) is shown in Fig. 7c. In organoids with
equal fractions of the two clones,weobserved cases bothwhere clones
are well mixed (Fig. 7d, localization score = 1.25) and where they form
separate clusterswithin the organoid (Fig. 7e, localization score = 1.53).

Local cell division could generate spatial clusters of cells within
organoids, but they could also arise from ecological affinity between
cells of the same clone. Comparing homogenouslymixed organoids to
heterogeneously mixed organoids allows one to distinguish whether
spatial clusters arise from cell division or ecological affinity. This is
becausehomogeneouslymixedorganoids shoulddemonstrate the cell
division effect but not the ecological affinity effect. We observed sig-
nificantly higher clone localization in heterogeneously mixed orga-
noids compared to homogeneously mixed organoids (Fig. 7f, g). This
was the case for comparison of homogeneous B organoids to B-A50
mixed organoids (p = 1.5e−9), as well as for comparison of homo-
geneous A50 organoids to A50-B mixed organoids (p = 5.2e−6). Thus,
thesecloneshavegreater ecological affinity for cellsof their same type.
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We also used radial distribution as an alternate metric to assess the
proximity of A50 cells to either B or other A50 cells (see methods).
Radial distribution analysis quantifies the frequency of cells of each
clonal type to be near cells of the same type within a specified radius.
The higher the radial localization score, the higher the co-localization
of cells of the specified clone. In such an analysis, we observed sig-
nificantly higher clone localization in heterogeneously mixed

organoids compared to homogeneously mixed organoids (Supple-
mentary Fig. 14e, f). This was the case when comparing homogeneous
B organoids to heterogeneous B-A50 organoids (p = 7.673e−5) (Sup-
plementary Fig. 14e), as well as for comparison of homogeneous A50
organoids to heterogeneous A50-B organoids (p = 2.512e−5) (Supple-
mentary Fig. 14f). Note that to avoid the effect of clonal fraction on
localization score, we restricted these analyses to organoids with

Fig. 7 | Investigation of cell-cell spatial relationships within organoids.
a Localization score vs. window size (5, 10, 20, 30, 40 and 50 cells) for B-mCherry
cells within heterogeneously mixed organoids. A total of 271 organoids from con-
trol or 4μM cisplatin treated conditions are shown. b Localization score for
B-mCherry cells in organoids (5 cell window), stratified by B clone fraction in the
organoid.Organoids (n = 232) are binned in increments of 0.2 for theB cell fraction.
For boxplots in a and b, the median is shown by the horizontal line in the boxplot,
the box denotes the IQR, the whiskers extend to a maximum of 1.5 times the IQR
and outliers are shown as dots. c–e 3D spatial locations of nuclei in representative

individual organoids showing different patterns of colocalization. The 3D scatter
plots for each of the three representative organoids consists of 88 (left panel), 74
(center panel) and 57 (right panel) nuclei respectively. fDistribution of localization
score of B clones (in 5-cell window) when mixed with A50 (blue line) or with
alternately labeled B (orange line). Kernal density estimate is used to visualize
distribution of the data consisting of 212 organoids. g Distribution of localization
score of A50 clones when mixed with B (blue line) or with alternately labeled A50
(orange line). Kernal density estimatewas appliedon 152organoids. Source data for
a–g are provided as source data files.
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comparable clonal fractions, with both clones within a range of
0.4-0.6.

Discussion
We have presented Cellos, a high-throughput pipeline for segmenting
and analyzing organoids at the cellular level. The distinctiveness of
Cellos compared to other organoid segmentation methods is that it
can segment large numbers of organoids at cellular resolution within
eachwell, in flexible culture conditions, and in true 3D (Supplementary
Table. 2). These aspects provide accurate high-throughput quantifi-
cation with little need for user-specified parameter tuning. Further
advantages of Cellos include its abilities to accurately segment orga-
noids and cells from different imaging modalities; to robustly deter-
mine cell ratios in wells; to generate IC50 curves based on cell
segmentations within images; and to identify organoid and nuclear
morphological features associated with treatment response. More-
over, Cellos enables 3D analysis of cell spatial relationships, which are
valuable to the assessment of tumormicroenvironmental interactions.

The high-throughput capacity of Cellos is crucial to its value for
drug or gene knockout screening analysis. To clarify its scalability,
~100,000 organoids and ~2.35 million cells were analyzed for the
experiments presented here. In addition, the analysis of multiple wells
was parallelizable, with the time for 60 wells processed by 60 CPUs
being similar to the time for onewell with one CPU. Imaging speed and
size of the data in 3D are also important practical considerations for
large scale image-based assays. To minimize imaging time, we used
coarser z-sampling intervals of 5μm while still achieving accurate
segmentation, requiring far less data. Prior studies have used z-stack
intervals of 0.122μm to study Caenorhabditis elegans31 and 1.2μm
intervals for cleared spheroids32. Axial sampling of 5 μm was chosen
because our initial studies indicated that resolutions finer than 5μm
did not appreciably improve segmentation accuracy. For the majority
of experiments we limited the number of z-slices to 100 and imaged
the same z-range for all wells in a plate, which restricted identification
of organoids to certain regions of the well. Because organoid dis-
tribution within wells can be variable, this led to differences in cell
counts across replicate wells. To address this problem, Cellos includes
a customized method for distinguishing image areas that contain
organoids in focus within the acquired image of every well (Supple-
mentary Fig. 15a–c). This area estimate can then be utilized to deter-
mine organoid and cell densities, allowing for a more robust
comparison between wells. In addition, Cellos can generate quantifi-
cations based on clonal ratios within a well, which are even less sen-
sitive to this issue since ratios calibrate for absolute cell numbers. To
decrease storage, images generated by Cellos were saved as zarr
arrays33, which required ~12GB to store an image of onewell (with a size
of 3 × 101 × 5080 × 5080 pixels). Altogether, when pre-processing and
morphological feature characterization are included, it took on aver-
age ~1.9 h with CPU efficiency of 91.2% and ~100GB of computational
memory to segment 550 organoids, and ~1.4 h with CPU efficiency of
82.31% and 6.86GBof computationalmemory to segment 4837 nuclei.
These computations are straightforward to execute because the
pipeline has been optimized to work on high performance computing
systems.

A major challenge in cancer therapeutics is deciphering the
effects of multicellular interactions. For example, the tumor micro-
environment contains diverse tumor clones, immune cells, endothelial
cells, and tumor-associated fibroblasts, which may each provide new
target pathways for drug development34–36. Non-organoid approaches
to evaluate howdrugs interactwith the tumormicroenvironment have
included measurements in animal models, tissue explants, or obser-
vations in clinical samples37, all ofwhichare challenging to scale. Clonal
heterogeneity in tumors has also long been studied through 2D tech-
niques such as immunohistochemistry. In contrast, in vitro 3D orga-
noid technologies allow interrogation of drug and cellular

combinatorics based on high numbers of independent multicellular
structures. Cellos facilitates interpretation of these parallel measure-
ments in organoids by individually quantifying and analyzing orga-
noids and their cells in 3D to elucidate growth and pharmacology
effects.

Cellos is effective in 3D cell segmentation despite complexities
such as the difficulty of identifying cell boundaries in packed orga-
noids, aswell as inherent differences in cellularmorphology across cell
types,which can be changed further by drug treatment.We genetically
engineered the expression of fluorescent tagging in many of our
experiments to provide controlled markers for distinguishing the
behavior of different cancer clones. However, we also observed that
nuclear dyes such as Hoechst can be effectively used for segmenting
nuclei by Cellos. Multiplex analysis of cellular morphology is likely to
become increasingly common in the field, and we expect that expan-
sions of Cellos techniques to viability dyes and other markers will be
beneficial for assessing responses of organoids and cells to different
drug concentrations.

In our analysis of the pharmacological dynamics of TNBC orga-
noids with complex multiclonal cisplatin sensitivity, we could accu-
rately recapitulate the IC50 curves of well-based luminescence assays
using Cellos including subtle non-monotonic changes in relative drug
sensitivity. Moreover, the morphological characterizations enabled
advanced associations that have not been previously possible. For
example, we were able to quantify how nuclear volume changes with
cisplatin, how volume tracks with viability changes observed in IC50

curves, and the population dynamics of organoids after drug expo-
sure. While we have focused on intuitive features such as volume and
fluorescence intensity and their contribution to logistic classifiers,
more general image analysis algorithms, such as convolutional neural
networks38,39, may provide even greater potential for classification of
the biological states of organoids and cells.

Another promising direction enabled by Cellos is the quantifica-
tion of cell-cell spatial relationships—an inherently three-dimensional
problem.We were able to distinguish the affinity of a cancer cell clone
to localize with other cells of the same clone from the effects of local
cell division. An interesting future direction would be to study if such
affinities can be altered to modulate treatment response. In any case,
the detection and quantification of ecological affinities in model sys-
tems will be valuable for understanding the interactions within tissue
microenvironments. Such analyses can clarify the impacts of cell jux-
tapositions resulting from processes including cell division, motility,
cytokine signaling, and cell-cell ligand-receptor interactions.

In conclusion, we report a high-throughput pipeline for true 3D
volumetric organoid and nuclei segmentation, enabling quantitative
evaluation of cell counts, spatial relationships, and nuclear as well as
organoid morphology affected by treatment. Cellos opens new
opportunities for organoid experimentation and the elucidation of
multicellular phenotypes from imaging.

Methods
Clonal line establishment and nuclear fluorescent labelling
The TM00099 PDXmodel have previously been established under the
protocols approved by The Jackson Laboratory IRB (Protocol
#121200011)18. In this study, primary cell cultures were derived from
TM00099 PDX tumor fragments. Briefly, tumor fragments were dis-
associated in 2mg/ml Collagenase Type IV (Invitrogen) for 1–2 h at
37 °C on a rocker, passed through 100 µm cell strainers and harvested
cells were washed and plated on irradiated 3T3-J2 feeder cells and
maintained in 37 °C and 7.5% CO2 in culture medium as described by
Liu et al.40 After in vitro expansion of the primary cell cultures, single
human cells labelled with Anti-Human HLA-ABC APC (cloneW6/32,
eBiosciences, Cat. no. 17-9983-42) at a dilution of 5 µl/5 × 106 cells were
isolated usingflowcytometry. Forward scatterwasplotted against side
scatter to gate singlet cells after which APC positive cells were
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identified and gated based on unstained control cells. Single cells were
sorted and further expanded to establish clonal lines. Two clonal lines
defined as A50 and B were then stably transduced with lentivirus
expressingnuclear EGFPormCherry. pTRIP-SFFV-EGFP-NLS (Addgene,
Plasmid #86677) was used for the lentiviral nuclear EGFP construct.
mCherry sequence was subcloned from pLenti6-H2B-mCherry
(Addgene, Plasmid #89766) to replace the EGFP sequence thus gen-
erating a pTRIP-SFFV-mCherry-NLS construct.

The two lentiviral plasmids were packaged into lentivirus by
transfecting 5μg of each plasmid with psPAX2 (Addgene, Plasmid
#12260) and pMD2.G (Addgene, Plasmid #12259) in HEK293T (ATCC,
Cat. no. CRL-3216) cells with Lipofacamine 2000 (Invitrogen, Cat. no.
11668019). Lentivirus collected after transfection was concentrated
using 3 P Lenti-X™ Concentrator (Clontech Labs, Cat. no. NC9833735)
using manufacturers protocol. Clonal cell lines were infected with the
lentivirus and selected for by sorting for nuclear EGFP ormCherry cells
respectively. All clonal lines were authenticated by validation of clonal
line specific structural variations and routinely tested for Mycoplasma
contamination using the MycoAlert PLUS Mycoplasma Detection Kit
(Lonza, Cat. no. LT07-710).

3D cell culture assays and imaging
For 3D culture assays, fluorescence-activated cell sorting (FACS) was
used to isolate EGFP or mCherry cells of the desired clone. Single cells
were gated using standard gating on forward scatter vs side scatter
plots and cells positive for the flourescent labels were then gated on
using cells without any flourescent labels as negative controls. Sorted
cellswere seeded at a density of 30,000 cells perwell in triplicate in 96
well plates (PerkinElmer) coated with 35μl Matrigel Growth Factor
Reduced (BD Biosciences, Cat. no. 356230) on day −3. Cells were cul-
tured in 37 °C and 7.5% CO2 for three days for organoids to form. On
day 0,mediawas replaced, and organoids were treatedwith 9 doses of
cisplatin (Selleck Chemicals, Cat. no. S1166) in two-fold serial dilutions
in the range of 0.5 to 128μM. After 96 hours of drug exposure, on day
4, CellTiter-Glo® 3D Cell Viability Assay (Promega, Cat. no. G9681) was
used for luminescence-based assay readouts using manufacturer’s
protocols.

For image-based readouts, plates were imaged at day 0 or day 4
using theOpera-PhenixHigh-Content Screening System (PerkinElmer).
Twenty-five fields perwell, were imaged using a 20×water objective. In
each field, 101 z-stacks at 5μm separation were imaged in three
channels—brightfield, EGFP and mCherry. Cells were maintained at
37 °C and 7.5% CO2 during the imaging. For training set experiments,
nuclei were counterstained with a final concentration of 1μg/ml
Hoechst 33342 Solution (Thermo Scientific, Cat. no. PI62249) for
30minutes at 37 °C before imaging.

For generation of heterogeneously mixed organoids, A50-EGFP
and B-mCherry cells (experiment-1) or A50-mCherry and B-EGFP
(experiment-3) cells were mixed in 50:50 ratios and treated with drug
as described above and imaged at day4 post drug exposure. For gen-
eration of experiment-2, homogeneously mixed organoids consisting
of A50-EGFP and A50-mCherry (or B-EGFP and B-mCherry cells) were
generated by mixing them in varying rations of EGFP:mCherry namely
—20:80, 40:60, 60:40 or 80:20 respectively. These organoids were
imaged at day 0 and day 4. For experiments 4 and 5, homogeneously
mixed organoids consisting of equal proportions of A50-EGFP and
A50-mCherry (experiment-4) or B-EGFP and B-mCherry cells (experi-
ment-5) were generated and treated with cisplatin and imaged as
described above.

3D culture and imaging for breast cell lines
TNBC cell line MDA-MB231 was a kind gift from Min Yu’s laboratory
(University of Maryland) and was cultured in DMEM (Gibco) supple-
mented with 10% fetal bovine serum (Gibco) and 1% Penicillin/Strep-
tomycin (Sigma). HCC1806 (ATCC, Cat no. CRL-2335) was cultured in

DMEM (Gibco) supplementedwith 15%Fetal bovine serum (Gibco) and
1% Penicillin/Streptomycin (Sigma). Breast cell line MCF10A (ATCC,
Cat. no. CRL-10317) was maintained in DMEM/F12 (Gibco) supple-
mented with 5% horse serum (Gibco), 1% Penicillin/Streptomycin
(Sigma), 20 ng/ml EGF (Peprotech), 0.5 μg/ml hydrocortisone (Sigma),
100 ng/ml cholera toxin (Sigma), and 10μg/ml insulin (Sigma)41 and all
cell lines were maintained in 5% CO2 at 37 °C. Cells were routinely
tested negative for mycoplasma using the MycoAlert Mycoplasma
Detection Kit (Lonza) and cell aliquots from early passages were used.
For 3D experiments, cells were seeded at varying densities on 35μl of
growth factor reduced Matrigel (BD Biosciences) per well of 96 well
plates, allowed to grow for 4–5 days and imaged using the Opera
Phenix system. For MDA-MB231, cells were seeded at increasing
seeding densities of 2000 (low), 3000 (medium) or 4000 (high) cells
per well and imaged after 4 days in 3D culture. HCC1806 and MCF10A
cells each were seeded at three seeding densities (low, medium, and
high) of 5000, 7000 or 10000 cells per well and 200, 500 or 700 cells
per well respectively and imaged after 5 days in 3D culture. MDA-
MB231 andHCC1806organoidswere stainedwithHoechst (Invitrogen,
Cat. no. 62249) at final concentration of 5μg/ml and Calcein AM
(Invitrogen, Cat. no. C3099) at a final concentration of 1μM for 30min
at 37 °C and imaged using above mentioned imaging conditions for a
total of 165 individual z stacks per well. MCF10A organoids were
stained with 5μg/ml Hoechst (Invitrogen) and imaged in a similar
manner. For all cell lines and seeding conditions, images were col-
lected from at least three and up to five replicate wells for each cell line
and seeding density.

HCC1806 3D organoids drug screen
For drug experiments on theHCC1806 cell line, 7000 cells were plated
on 35μl of growth factor reducedMatrigel (BDBiosciences) perwell of
96 well plates on day −3 and organoids were allowed to form for three
days. On day 0, media was replaced, and the cells were treated with
two drug concentrations (Dose1 and Dose2) each for three drugs
namely, Cisplatin, Doxorubicin and Docetaxal in triplicate conditions.
Organoids were treated with 15μM and 30μM Cisplatin (Selleck Che-
micals), 1μM and 2μM Doxorubicin (Selleck Chemicals, Cat. no.
S1208) and 6.5 nM and 13 nM Docetaxel (Selleck Chemicals, Cat. no.
S1148) respectively. Organoids were maintained with drugs for 72 h,
stained with 5μg/ml Hoechst (Invitrogen), 1μM Calcein AM (Invitro-
gen) and 1μM DRAQ7 (Abcam, Cat. no. ab109202), incubated for
30min at 37 °C and imaged using above mentioned imaging condi-
tions for a total of 200 individual zs per well. CellTiter-Glo® 3D Cell
Viability Assay (Promega) was then used for luminescence-based assay
readouts using manufacturer’s protocols.

Analysis protocol overview
We developed a customized pipeline combining python and shell
scripts to analyze 3D organoids both at the organoid and cellular
level. The customized pipeline is written to process an entire multi-
well plate. Multiple wells can be processed at the same time on a
high-performance computing cluster by taking advantage of mul-
tiple central processing unit (CPU) cores. The main steps for the
pipeline are: 1. Exporting and organizing image data, 2. 3D seg-
mentation of individual organoids, 3. Cropping individual orga-
noids and 3D segmentation of nuclei in each organoid, 4.
Computing morphological features and saving output information,
5. Calculating area of imaged well with organoids, 6. Post segmen-
tation analysis such as IC50 estimates and cell co-localization ana-
lysis. The pipeline code is available on GitHub.

Exporting and organizing image data
The image data were exported from the Opera Phenix high content
screening confocal microscope using the Harmony High-Content
Imaging and Analysis Software (PerkinElmer). The resulting folder
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contains subfolders with tiff files (Images) and xml file (metadata).
Each tiff file is a single image fromonewell, onefield, one x,y-plane and
one channel. This means for one well we had 7500 tiff files (25
fields × 101 planes × 3 channels). We developed an automatic protocol
that organized all tiff files from one well and saved them as zarr arrays.
To do this, first we created an empty zarr array with size equal to a
whole well image (the size of the image is collected directly from xml
file). Then we put individual planes and channels from the same field
together in the zarr array. Lastly, we stitched all the fields of a well
together.

3D organoid segmentation
Organoid segmentation had two major steps, preprocessing of the
image and segmentation of the organoids.Mostof the algorithmsused
were from python scikit image processing package20. The preproces-
sing step reduces debris and intensity differences to increase accuracy
of organoid segmentation. Todo this: 1. The image is converted to gray
scale, and a threshold is used to create a binary image, 2. Binary
opening and dilation algorithms are then used to close small holes and
remove small dots. For simplicity this is done on the 2D “max-projec-
tion” image, corresponding to the projection of the image maximum
among all z-stacks. 3. The binary image is then multiplied by the ori-
ginal image to produce a “cleaned” image. For the organoid segmen-
tation step: 1. The “cleaned” image is converted into gray scale, and a
multidimensional gaussian filter is used to remove noise. 2. The
threshold triangle method is then used to generate a binary image.
Note: All the above steps are done on single field instead of an entire
well image because fields often vary in noise and intensity. 3. The
individual fields are stitched together. Objects in the stitched image
are given a label using the “measure label” algorithm, 4. Unwanted
small objects are removed using the “morphology remove small
objects” algorithm. “Measure regionprops table” algorithm is used to
generate a table of measurements for each organoid containing: label,
centroid, 3D bounding box (bbox), volume, volume (bbox, filled, and
convex), major and minor axis length, euler number, extent, intensity
(max, min, and mean), and inertia tensor eigvals. 5. The output is
stored in a csv file with the file name containing the row and column
number of that well.

StarDist-3D training
To annotate ground truth images for training a StarDist-3D model, we
followed guidelines from Stardist42 GitHub page. Ground truth images
were annotated manually using Labkit43 a plugin in Fiji. Every nucleus
was given a label. In total 36 organoids from different wells and bio-
logical conditionswere labeled. 10, 12 and 14 organoids had cellswhich
were fluorescently labeled with Hoechst, EGFP and mCherry respec-
tively. Hoechst labeling was performed to diversify the training set.
Among these 36 organoids, 24 had been treated with cisplatin. In total
3,862 nuclei were annotated. The data was augmented using elastic
deformation, noise/intensity shift, and flip/90-degree rotation. Note
that we did not see significant changes in validation metrics when in
total 30 organoids were used (precision = 88.15 ± 4.7, recall = 87.47 ±
3.76 and accuracy = 78.31 ± 6.09). For training, we used parameters
based on an example from the StarDist GitHub. The model config-
uration was: anisotropy = (9.0, 1.0, 1.0), backbone =ResNet, number of
rays = 64, patch size = (16, 128, 128), epochs = 400. The median object
size was (2, 18, 18). Thus, a network view of (17, 30, 30) was used to
make sure at least one nucleus is seen by the network. “KFold scikit
learn model selection” was used to split data into six folds for cross
validation, with 30 and 6 organoids for training and validation,
respectively. The trained model was then used to segment nuclei in
organoids. It is important to note that non-star-convex-shaped nuclei
cannot be segmented properly by the model.

3D nuclei segmentation
The segmentation of nuclei in organoids was done using the trained
model. 3D bbox information of eachorganoidwasused to extract each
organoid in the saved zarr image of cells. To segment nuclei in the
organoid: The organoid image was normalized. In detail, each indivi-
dual channel of each organoid is normalized before the nuclei seg-
mentation step. This normalization is percentile based and is part of
the StartDist method44. The trained model was used to segment indi-
vidual nuclei, by giving each nucleus in the organoid a label. The “scikit
image measure regionprops table” algorithm was used to generate a
table of measurements for each nucleus: label, centroid, 3D bounding
box (bbox), volume, volume (bbox, filled, and convex), major and
minor axis length, euler number, extent, intensity (max, min, and
mean), inertia tensor eigvals, and eccentricity (which was calculated as
minor axis length/major axis length). Each fluorescence channel was
processed and segmented separately. The data for all nuclei in a well
were then stored as a csv file (one csv file per well) with the file name
contains the row and column number of that well. It is important to
note that Cellos segments nuclei regardless of their fluorescence
intensity (supplementary Fig. 2d). The post-segmentation analysis
used the csv files generated in the organoid and nuclei
segmentation steps.

Calculating area of imaged well with organoids
Cellos includes a customized method for distinguishing image areas
that contain organoids in focuswithin the acquired image of everywell
(Supplementary Fig. 15a–c). To do this, the whole well image with
segmented organoids is used as input. To calculate the area all the
processes are done on the 2D “max-projection” image. First, any very
big objects that are not organoids are removed (note: we rarely have
these objects), then any space between adjacent organoids is closed
using “scikit image dilation and binary closing”. Second, the non-zero
pixels (pixels with organoids) are counted using “Opencv-python (cv2)
countNonZero” package. Finally, the number of pixels is converted
into desired unit such as mm2, based on the size of an image pixel in
μm. Notably, this step to calculate the area is done during organoid
segmentation and can be skipped if not needed.

Detecting and removing dead nuclei from analysis
Cellos includes a customized step to detect dead nuclei and remove
them from the subsequent analysis. To do this, for each individual
cropped organoid, we first normalize its dead cell dye (DRAQ7)
channel intensity so that the intensity is between0-1. This is performed
because intensity values may vary across distinct organoids. We then
proceed to evaluate each segmented nucleus within an organoid. We
calculate the average intensity of theDRAQ7 channel in the segmented
nucleus bounding box region. The resulting calculated number is then
used to categorize each nucleus as live or dead. To make this classifi-
cation we rely on a predetermined threshold of nucleus with intensity
>0.1 as dead. The threshold was chosen by evaluating several histo-
grams illustrating the average DRAQ7 intensity of all the nuclei in
several different wells.

IC50 estimation
Cell density for each well was calculated by dividing the number of
segmented cells by the customized calculated area of the imaged well
with organoids. Cell densities for each drug-treated well were com-
pared to cell densities from control wells (medium only). IC50 values
were estimatedusingRpackagenplr (N-Parameter Logistic Regression.
R package). For the luminescence based IC50 assay, luminescence
values were compared to control wells and IC50 values were calculated
as mentioned above. Error bars represent the standard deviation of
triplicates for each condition.
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Cells co-localization analysis
The co-localization analysis was performed on organoids consisting of
two cell populations each labeled with either EGFP or mCherry. To
calculate co-localization score of a specific fluorescently labeled clone,
for example B-mCherry in an organoid: 1. Centroid of nucleus was
computed for each cell in the organoid. 2. All pairwise distances
(Euclidean distance) between nuclei centers were computed. 3. For
each B-mCherry cell, the neighboring cells were ranked by distance in
the window of K = 5, 10, 20, 30, 40, and 50 cells. 4. B-mCherry cells
proportion was then calculated in each window (K) and normalized for
the overall proportion of B-mCherry cells in the organoid. This was
performed to avoid the bias of varying proportions of B-mCherry cells
across all organoids. 5. Co-localization score for B-mCherry in the
organoid for a given K was then calculated by averaging the co-
localization score of all B-mCherry cells in the organoid. We hereafter
denote the co-localization score for clone type X in an organoid, Lo as,

Lo =
1
n

Xn

i= 1

Lci ð1Þ

where, n is the total number of cells of clone type X in the organoid and
Lc is the co-localization score of a cell of clone type X in a givenK and is
defined as,

Lc =
Xn

K*Rx
ð2Þ

where, Xn is the number of cells of clone X in given K, and Rx is the
proportion of clone X in the organoid.

Radial localization score calculation
To calculate the radial localization score of a fluorescently labeled
clone, for example B-mCherry in an organoid: 1. The nuclear centroid
was computed for each cell in the organoid. 2. All pairwise distances
(Euclidean distance) between nuclei centers were computed. 3. The
longest distance in the organoid was noted (rmax). 4. For each
B-mCherry cell, the cells between [0,ri] were identified, where ri was
calculated for 6 equally spaced values from rmax/6 to rmax. 5. The
proportion of B-mCherry cells was then calculated for each ri and
normalized by the proportion of B-mCherry cells in the organoid. The
subsequent steps are the same as for thewindow-based co-localization
analysis. Note for Supplementary Fig. 14e, f, results are shown at
ri = 2(rmax/6). Results at other values for ri are qualitatively similar.

Statistics and reproducibility
All experiments were designed to have at least three replicate wells for
each condition. This was determined based on feasibility of imaging
within a reasonable time frame given the scale of imaging required for
each assay (100 z stacks × 25 fields × 4 fluorescent channels) where
each field is 1080× 1080 pixels in dimension. All samples (organoids
and nuclei) available in acquired images of good quality or met our
thresholds as described inmanuscript were included in the analysis. In
instances where image quality was poor (for example, organoids were
not captured in acquired image), the replicate was disregarded from
the analysis, and this was noted in the respective figure legends.
Sample sizes were determined to be sufficient based on themagnitude
of data analyzed in different conditions and consistency observed
across replicates. Experiments were not randomized, and the investi-
gators were not blinded to allocation during experiments and out-
come assessment. All additional statistics performed are described in
the paper. All t-tests were two-tailed. All error bars indicate standard
deviation or 95% confidence interval and are described in figure
legends. In all boxplots, the center line represents themedian, the box
limits represent the upper and lower quartiles, and the whiskers
represent the 1.5× interquartile range.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Representative dataset of raw images for one well and its
metadata generated in this study has been deposited in the figshare
database under (https://figshare.com/articles/dataset/cellos_data_zip/
21992234)42. Manually annotated dataset used to train the nuclei seg-
mentation model have been deposited in GitHub under the Zenodo
accession code45. Considering the volumeof imagingdata generated in
this study, the remaining data are available in twoweeks upon request.
All source data are provided with this paper. Cell lines will be made
available in four weeks upon request. Source data are provided with
this paper.

Code availability
Cellos pipeline code has been deposited in GitHub under the Zenodo
accession code45.
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