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Integrative genotyping of cancer and
immune phenotypes by long-read
sequencing

Livius Penter 1,2,3,4,5,9, Mehdi Borji1,2,6,9, Adi Nagler1,2,9, Haoxiang Lyu 6,
Wesley S. Lu6, Nicoletta Cieri 1,2,3, Katie Maurer 1,2,3, Giacomo Oliveira 1,2,3,
Aziz M. Al’Khafaji 2, Kiran V. Garimella2, Shuqiang Li 1,2,6,
Donna S. Neuberg 7, Jerome Ritz 1,3,8, Robert J. Soiffer1,3,8,
Jacqueline S. Garcia1,3, Kenneth J. Livak 1,6,10 & Catherine J. Wu1,2,3,8,10

Single-cell transcriptomics has become the definitive method for classifying
cell types and states, and can be augmented with genotype information to
improve cell lineage identification. Due to constraints of short-read sequen-
cing, current methods to detect natural genetic barcodes often require cum-
bersome primer panels and early commitment to targets. Here we devise a
flexible long-read sequencing workflow and analysis pipeline, termed nanor-
anger, that starts from intermediate single-cell cDNA libraries to detect cell
lineage-defining features, including single-nucleotide variants, fusion genes,
isoforms, sequences of chimeric antigen and TCRs. Through systematic ana-
lysis of these classes of natural ‘barcodes’, we define the optimal targets for
nanoranger, namely those loci close to the 5’ end of highly expressed genes
with transcript lengths shorter than 4 kB. As proof-of-concept, we apply
nanoranger to longitudinal tracking of subclones of acute myeloid leukemia
(AML) and describe the heterogeneous isoform landscape of thousands of
marrow-infiltrating immune cells. We propose that enhanced cellular geno-
typing using nanoranger can improve the tracking of single-cell tumor and
immune cell co-evolution.

Single cell RNA sequencing (scRNA-seq) has revealed the remarkable
heterogeneity within cellular identities of cancer and is increasingly
used for longitudinal tracking of cell states to understand how ther-
apeutic interventions reshape gene expression profiles1,2. A crucial
prerequisite of cancer single cell studies is the unambiguous

identification of malignant versus physiologic populations, oftentimes
impossible based on gene expression profiles alone. Multi-omics
approaches that combine different single cell assays can be used to
overcome this challenge, but the integration of independently
acquired data layers remains typically complex.
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To address this problem, natural barcodes such as copy number
variants (CNV), somatic nuclear and mitochondrial DNA (mtDNA)
mutations are increasingly used to aid in the identification of malig-
nant clones3.

However, as the coverage of scRNA-seq data is generally insuffi-
cient for consistently calling nucleotide variants, targeted amplifica-
tion of loci containing somatic and mtDNA mutations is usually
required4,5. Existing single-cell genotyping approaches include plate-4

and droplet-based protocols5–8, some of which entail adding locus-
specific primers of predefined targets at the very initial steps of sample
processing, namely, the stage of oil encapsulation. As all these
approaches are based on Illumina short-read sequencing, they require
large numbers of primers for covering all possible mutational sites
across entire genes or genetic regions like the mitochondrial
chromosome7, creating cumbersome and inefficient experimental
workflows. While Illumina currently provides the lowest cost per base
at sequencing error rates below 1/1000, a clear limitation of short-read
based sequencing is that it is suboptimal for long fragments, which
creates considerable difficulties for detecting mutation sites that
require amplicons exceeding a length of 500 nucleotides9. Addition-
ally, short-read sequencing is unable to easily resolve structural tran-
scriptomic variants such as gene fusions, transgenes or even isoforms
that characterize malignant and immune cell subpopulations. Finally,
single-cell analyses often reveal unanticipated genetic and tran-
scriptomic variants whose detection would improve analytical reso-
lution, thus creating the need to iteratively interrogate single-cell
cDNA for such features even following library preparation.

Herein, we take advantage of the recent improvements in the read
accuracy and throughput of long-read sequencing10,11, which provides
full-length coverage of single cell transcriptomes and hence reduces
the complexity for the detection of genetic and transcriptomic var-
iants. PacBio and Oxford Nanopore Technologies (ONT) are two
established long-read sequencing platforms. PacBio was the first long-
read sequencing technology to achieve low error rates comparable to
Illumina12. However, with the recent introduction of the V14 chemistry,
sequencing accuracy of ONT now exceeds 99%13, while also having
lower sequencing costs and providing a wider range of available flow
cell sizes.

For these reasons, we provide a long-read based pipeline for the
ONT platform using limited primer sets to amplify target genes from
5′-anchored 10x Genomics scRNA-seq whole-transcriptome cDNA
libraries, thus enabling the flexible detection of a wide range of bar-
codes from single cell libraries, without spike-in of gene-specific pri-
mers during cDNA library preparation. We demonstrate that this
approach can detect natural barcodes with sufficient accuracy for
reliable lineage- and immune cell-tracing in numerous contexts,
including the setting of ipilimumab-based immunotherapy for
relapsed acute myeloid leukemia (AML) following allogeneic hemato-
poietic stem cell transplantation (HSCT)14. Altogether, we present a
long-read sequencing-based framework for integrative genotyping of
single cell profiles that substantially improves the resolution of leu-
kemia and immune cell phenotypes.

Results
nanoranger: long-read sequencing-based genotyping of single
cell RNA profiles
We developed a versatile workflow that enables the amplification,
long-read sequencing, and processing of targets of interest using the
ONT platform such that a wide range of natural barcodes, including
somatic and mtDNA mutations, fusion genes and isoforms can be
detected (Fig. 1a). The pipeline originates from single cell cDNA
libraries that are whole-transcriptome amplified “intermediate librar-
ies”. To enrich for detection of various natural barcodes, we devised a
3-step PCRprotocol for targeted amplification designed to capture the
molecular feature of interest using a streamlined set of primers

(Fig. 1b; Supplementary Tables 1–7). In brief, this process entails first a
clean-up PCR (“PCR 1”), in which shorter amplicons arising from
template-switch oligo (TSO) artifacts are depleted from cDNA libraries
by amplification with a generic 5′ handle primer and a biotinylated
generic 3′ handle primer followed by streptavidin/biotin selection15.
Loci of interest are then amplifiedwith a generic 5′handle primer and a
locus-specific 3′ biotinylated primer using RNase H-dependent (rh)
PCR16 to enhance specificity of primer pairing with lowly expressed
targets (“PCR 2”). Finally, following a second streptavidin/biotin
selection, a third nested PCR (“PCR 3”) generates material sufficient to
proceed to ONT sequencing.

To integrate single cell gene expression profiles with the geno-
typing features of interest, we devised a processing pipeline called
nanoranger. Nanoranger extracts cell barcode and transcript infor-
mation from theONT sequenced data and provides genomealignment
for the calling of molecular features of interest. Because ONT gen-
erates naturally occurring multimer reads that contain multiple tran-
scripts, we tuned nanoranger such that it can deconcatenate
multimers, including transcripts with opposing orientations (i.e., 5′ to
3′ [molecule1] vs. 3′-to-5′ [molecule 2], Fig. 1c). In doing so, the number
of detected transcripts is increased, compared to previous
approaches17 that discard such reads due to reliance on error-prone
identification of internal adapters, and which in turn can lead to
incorrect assignment of barcodes to transcripts.

We performed a series of analyses to confirm the contributory
role of the various components of this multi-step workflow. First, we
verified that the strategy of depleting TSO priming artifacts15 led to
markedly improved coverage of transcripts and, therefore, improved
genotyping, as shown forTP53 andRUNX1 transcripts (Fig. 1d). Second,
we benchmarked the ability of nanoranger to deconcatenatemultimer
reads by comparison with longbow, an established deconcatenation
tool for MAS-ISO-seq data which is generated from programmable
adapter-based ligation of cDNA molecules15. To do so, we generated a
library containing artificial 15-mers of mitochondrial transcripts using
MAS-ISO-seq (Fig. 1e-top) and sequenced the library on ONT, followed
by deconcatenation of the sequencing datawith either longbow (tuned
for the MAS-ISO-seq protocol) or nanoranger (Fig. 1e-bottom). The
sequencing coverage distribution and number of extracted transcripts
with nanoranger and longbow (10.7 vs. 8.5 millionmapped reads) were
similar, confirming nanoranger’s ability to deconcatenate multimer
reads. Small differences were attributable to the fact that nanoranger
performs deconcatenation based on transcript alignment, whereas
longbow is optimized for known adapter sequences. Third, to sys-
tematically assess the contribution of read deconcatenation to the
performance ofnanoranger, we analyzed a series of 13ONT-sequenced
amplicon libraries not deliberately concatenated usingMAS-ISO-seq. A
median of 22% ONT reads contained multiple extractable transcripts
(range 3-42%) with up to 478 transcripts extracted from a single read.
This yielded a median of 26% more transcripts than sequenced reads
(range 3-49%) (Supplementary Fig. 1a–d).

Finally, we assessed nanoranger’s performance for deconcate-
nating and quantifying MAS-ISO-seq data from healthy donor periph-
eral blood mononuclear cells sequenced with PacBio. When
comparing the number of segments deconcatenated per read,
nanoranger found consistently fewer segments (median 12; range
0–37) than the PacBio processing tool skera (median 15; range 0–16),
yielding a total of 85,387,903 and 110,127,015 segments (Supplemen-
tary Fig. 1e, f). This is becausenanoranger identifies only segments that
align to the reference transcriptome (gencode v44) and therefore does
not recognize non-human transcripts, genomic contamination, intro-
nic or unannotated transcripts, such as repeat elements. Nevertheless,
the mean number of detected molecules per gene (141 vs. 55) and per
cell (2580 vs. 1650)werehighly correlated and consistently higherwith
nanoranger compared to skera (r =0.88 and 0.97) (Supplementary
Fig. 1g, h), likely due to differences in the underlying reference
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transcriptome and the annotation method. Similarly, nanoranger
identifiedgenes inmorecells (122 vs. 50) andmoregenes per cell (1380
vs. 867) (r =0.87 and 0.96) (Supplementary Fig. 1i, j). This resulted in
identification of very similar cell types between the two analytical
pipelines but better captureof immunologically relevant genes suchas
HLA-E, IGHM or IL17RA with nanoranger (Supplementary Fig. 2a, b).
Altogether, these analyses demonstrate the generation of an analytical
workflow optimized to maximally extract transcripts from ONT single
cell data.

Detection of natural genetic barcodes by ONT sequencing: effi-
ciency and limitations
To assess the efficiency of extracting molecular features from long
versus short-read sequencing data, we compared the highly poly-
morphicT cell receptor (TCR) sequences obtained fromONTand from

Illumina sequencing. We re-sequenced a TCR cDNA library generated
frommelanoma-infiltrating T cells18 (originally processed with the 10x
Genomics (V)DJ kit) using both the Illumina and ONT sequencing
platforms (Fig. 2a, Supplementary Fig. 3a, Supplementary Table 8). In
the case of ONT, fragmentation of enriched TCR libraries was not
needed, and hence provided a simpler workflow. The number of reads
per CDR3 and the number of cells per CDR3 obtained from either
sequencing platform were highly concordant (5653 [ONT] and 5767
[Illumina] cells with TCR detected) (Fig. 2b). Those cells without
detected TCR sequences (755 [Illumina] and 787 [ONT]) were pre-
dominantly contaminant monocytes (Fig. 2c). The data also provided
the means to estimate the sequencing performance of V14 ONT
chemistry and Illumina. By comparing TCR reads against their
respective consensus sequence, we observed per-base mismatch
(0.54% [Illumina] vs. 0.83% [ONT]) and indel rates (0.08% [Illumina]
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and 0.25% [ONT]) that were slightly higher with ONT (p < 0.001)
(Supplementary Fig. 3b–d). Consistent with known characteristics of
ONT10,19,20, the indel rate increased in reads with homopolymers such
as guanine-repeats (Supplementary Fig. 3e, f). Based on consensus
sequences that overcome these sequencing errors, nanoranger
nevertheless reliably extracted highly polymorphic TCR sequences
and the highly correlated results of single cell TCR clonotypes with
short- and long-read sequencing (r =0.8 [CDR3α] and 0.9 [CDR3β])
demonstrate the sufficient accuracy of the ONT-based workflow for
detecting such natural genetic barcodes.

To assess the specificity and sensitivity of our protocol to identify
recurrent somatic mutations from tumor cells, we performed mixing
studies of two leukemia cell lines with distinct point mutations and
gene fusions. We mixed Kasumi-1 (an AML line harboring AML1::ETO
and homozygous TP53R248G) with K562 (a chronic myeloid leukemia

[CML] line harboring BCR::ABL1 andmonoallelic TP53Q136fs) cells at four
defined ratios (100:1, 15:1, 1.5:1, 1:100) (Fig. 2d); at each ratio, we
amplified and sequenced the homozygous TP53R248G mutation found in
Kasumi-1 cells21. Compared to a0%genotyping rate fromnative scRNA-
seq gene expression data, the number of Kasumi-1 cells that could be
genotyped with nanoranger ranged from 13 to 987, with a consistent
genotyping rate of ~22% across the four samples analyzed (Fig. 2e-left).
Among the Kasumi-1 cells with amplified TP53 segments, the TP53R248G

mutation was detected in 98.8–100% of cells, indicating the high
specificity of our assay (Supplementary Fig. 4a). In contrast, K562 cells,
which have lost their second TP53 allele22, and hence have much lower
levels of TP53 expression, generated genotyping rates of only 1.2–2.8%
compared to the null detection of this mutation in Kasumi-1 cells
(Fig. 2e-right, Fig. 2f-left, Supplementary Fig. 4b, c). The downsampling
analysis of the TP53 reads from both cell lines (Fig. 2f-right) showed
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K562 (yellow) (right). h Coverage across all detectable genes from a 10x Genomics
cDNA library after removal of TSO artifacts as function of transcript length.
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that mutation detection was well above saturation. Thus, the targeted
amplification of the TP53 gene captured most of the TP53 molecules
present in the original cDNA library, and the limited number of gen-
otyped cells was not due to inadequate sequencing depth but rather
from differences in the native expression level of the targeted genes
within these cell populations23.

Likewise, despite the high sensitivity and specificity of our work-
flow, our detection rate of the cell line- specific fusion genes was low:
only 124 (2.7%) K562 cells with BCR::ABL1 and 88 (3.9%) Kasumi-1
cells with the RUNX1::RUNX1T1 fusion transcript (Fig. 2g). To investi-
gate this low detection rate, we analyzed the absolute coverage
across all detectable transcripts in a 5′ 10x Genomics cDNA library
sequenced with ONT after removal of TSO artifacts (clean-up PCR).
While coverage was highest for short transcripts (<1000 bp) of ribo-
somalproteins andother ubiquitously expressed genes likeHLA-B/Cor
mitochondrial genes, mean coverage dropped quickly for longer
transcripts (Fig. 2h-left). Across all transcripts, irrespective of their
absolute length, the coverage was highest within the first 4000 bases
at the 5′ end and dropped quickly towards the 3′ end (Fig. 2h-right;
Supplementary Fig. 4d), such that transcripts with absolute length
greater than 4000 bases show distinctly reduced coverage. Consistent
with this observation, most amplified reads mapping to BCR::ABL1
were not full-length but ranged in length from 100 to 500 bp (Sup-
plementary Fig. 4e). Thus, a likely reason for the low detection rate
of fusion transcripts in these experiments was the distance of the
fusion breakpoints from the 5′ end. Together, ONT-based long-read
sequencing of targets amplified from intermediate 10x Genomics
cDNA libraries appears to be best suited for targets on highly
expressed, short transcripts within the first 4000bp of the 5′ end.
Moreover, for lesions residing close to the 3′ end, we anticipate that
utilization of 3′ chemistry would be preferable, as this would
have better coverage within the last 4000bp of each transcript
(Supplementary Fig. 5a).

nanoranger and GoT capture distinct cell barcodes
Tobenchmark performanceof nanoranger to Illumina-basedmutation
detection, we processed a bone marrow sample of an AML case with
three somatic mutations (DNMT3AR882H, RUNX1I177S, SF3B1K700E) at
relapse after allogeneic HSCT with nanoranger and with the 5′ geno-
typing of transcriptomes (GoT) protocol5 (Fig. 3a). In addition to the
Illumina sequencing described in the published protocol, we
sequenced the unfragmented GoT library on ONT, processing the raw
data with the nanoranger analytical pipeline. Overall, nanoranger and
GoT sequenced with Illumina achieved similar genotyping rates
(4.8–19.2% for nanoranger; 5.5–19.1% forGoT) of scRNA-seqprofiles for
two of the three mutations (DNMT3AR882H, SF3B1K700E) that we targeted
(Fig. 3b, c). For RUNX1I177S, located in close proximity to the 5′ end, GoT
reverse transcriptase (RT) primers improved capture from 15.1% to
39.2% (Supplementary Fig. 6a–c). For all three targets, we observed
that the performance of GoT increased by another 1-7% when
sequenced with ONT and processed with the nanoranger pipeline.
Across all three experimental conditions, 99% cells with an identified
SF3B1K700E mutation were recipient-derived (Methods), demonstrating
the specificity of these approaches (Fig. 3d). The largest difference
between data acquired with nanoranger, GoT sequenced on Illumina,
and GoT sequenced on ONT was the cell barcode representation
(Fig. 3e). We speculated that this could be in part due to a lower cap-
ture efficiency of longer library fragments with Illumina sequencing.
We therefore analyzed the minimal fragment length in reads from the
GoT library that associated with cell barcodes identified with Illumina
and ONT sequencing versus those that were only identified using ONT
sequencing. This revealed that Illumina sequencing did not capture
fragments that were longer than ~1.5kB, demonstrating the advantage
of long-read sequencing for genotyping of loci that are not immedi-
ately adjacent to the 3′ or 5′ of a transcript (Fig. 3f).

In sum, nanoranger has comparable performance to GoT, but
genotypes different cell barcodes due to differences in sequencing
capture rates of longer library fragments. The GoT ONT results with
nanoranger processing indicate that including gene-specific RT pri-
mers during the cell encapsulation step can improve the genotyping
rate of targets close to the 5′ end but requires the prescience to select
targets prior to initiation of a single cell project (Supplementary
Fig. 6d). As illustrated by the numerous examples presented herein,
the full nanoranger workflow enables re-analysis of archived cDNA
libraries so that targets can be flexibly added to address new hypoth-
eses that are generated after the initial single cell analysis.

Tracking mutated and non-mutated hematopoietic cell
lineages in AML
AML-associated somatic mutations have been previously described
across the myeloid differentiation trajectory, leading to the descrip-
tion of 6AMLgene expression clusters (EC: HSC, Progenitor,GMP, Pro-
mono, Mono, and cDC)4. We confirmed the detection of these AML
ECs through the re-analysis of a recently reported scRNA-seq analysis
of serial bone marrow samples obtained from study participants
enrolled in the phase I ETCTN/CTEP 10026 study that tested combined
decitabine and ipilimumab treatment in two patient cohorts:
transplant-naïve AML/MDS or post-allogeneic HSCT (Fig. 4a)24. Dis-
tinguishing normal and malignant hematopoiesis using expressed
donor- and recipient-specific single nucleotide polymorphisms (SNPs)
(souporcell)25 revealed two additional AML-derived ECs, mega-
karyopoiesis and erythropoiesis, to be almost entirely recipient-
derived in 6 of 8 analyzed cases from the post-HSCT cohort at time
of relapse prior to initiation of decitabine and ipilimumab (non-frac-
tionated bone marrow chimerism 2–85%) (Fig. 4b-left; Table 1). To
extend this analysis, we used nanoranger to genotype individual AML/
MDS cells originating from 9 patients enrolled in either of the two
cohorts, targeting 11 recurrently mutated AML/MDS-associated genes
(ASXL1, DNMT3A, NRAS, IDH2, RUNX1, SF3B1, SRSF2, STAG2, TET2, TP53,
U2AF1) (Supplementary Table 4). From 18,097 genotyped profiles
(median of 610 genotyped cells per sample, range 180–5507), most
AML-associatedmutationsweredetectable acrossmyeloid progenitor,
monocytic, and dendritic cell populations (Fig. 4b-right, Supplemen-
tary Fig. 7a, Supplementary Tables 9, 10). Of note, we also identified
AML-associated mutations in the erythroid and megakaryocytic pro-
genitor populations in all samples, indicating these two cell compart-
ments directly differentiate from leukemic clones. CNV changes
associated with several AML cases likewise segregated in not only
myeloid but also erythroid and megakaryocytic progenitor cell
populations (Supplementary Fig. 7b–d). A further elucidation of leu-
kemic subclonal structure was provided by the example of AML1019,
where we found two separate AML clones that were not only defined
by presence or absence of RUNX1R320*, but also by amp(8p) and
amp(21p) (Supplementary Fig. 7d).

Throughout our analysis of the AML cohort, we repeatedly
noticed samples with apparently homozygous mutated and wild-type
cells at roughly equal proportions, indicating sampling only one
transcript per cell. For example, analysis of AML1022 (Supplementary
Fig. 8a-left) revealed that only one UMI was captured in most cells
(77–93%), despite mean coverage of locus-specific reads per cell ran-
ging from36 to 248 (Supplementary Fig. 8a-right, 8b). Therefore,most
observations of apparent homozygosity are probably due to allelic
drop-out. Concordantly, we observed aggregated VAFs of 50% while
pseudobulk donor chimerismwas0% (Supplementary Fig. 8c, d). Thus,
we caution that while detection of somatic mutations was specific for
leukemic clones, their absence is not sufficient to identify wild-
type cells.

To evaluate the longitudinal dynamics ofAMLclones,weobtained
genotyping information at screening and at time of response for 5
AML/MDS cases who achieved complete remissions. In all cases,
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somatic mutations remained detectable in HSC, LMPP, GMP, mega-
karyocytic and erythroid cells over time (Fig. 4c, Supplementary
Fig. 9a), unambiguously revealing that the cytoreductive effect of
therapy was not accompanied by leukemic clone eradication (in fact,
all patients subsequently relapsed)14, which we previously could only
infer on the basis of chimerism analysis24. In the case of AML8007, we
detected evidence of a differential therapeutic response among sub-
clones. At screening, three somatic mutations (DNMT3AV296M, TP53C176S,
TP53R282W) and three chromosomal aberrations (amp(1p), del(3p) and
del(5q)) were detected (Fig. 4d, e). At remission, the somaticmutations
and del(5q) remained detectable, but amp(1q) and del(3p) became

undetectable in all cell compartments except for LMPP (Supplemen-
tary Fig. 9b, c). Together, this supports del(5q) as the founder lesion,
followed by acquisition of somatic mutations in DNMT3A and TP53,
and finally a subclonal event with acquired amp(1q) and del(3p) asso-
ciated with differential sensitivity to decitabine and ipilimumab
treatment.

Comparison of the expression features of AML clones revealed
that noneof the signatures of thepreviously reported ECs showedhigh
expression scores in erythroid and megakaryocytic cells (Supple-
mentary Fig. 10a–c). We thus devised 5-gene expression signatures for
these two cell types consisting of GATA1, CA1, HBA1, HBB, ALAD
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Fig. 3 | Comparison of nanoranger with GoT. a Experimental workflow of com-
parison between nanoranger and genotyping of transcriptomes (GoT). A pre-
treatment bone marrow sample of AML1022 at relapse after allogeneic
hematopoietic stem cell transplantation (HSCT) was used for single cell cDNA
library preparation according to the standard 10x Genomics 5′ gene expression
protocol and following the modified 5′ GoT protocol with in-droplet inclusion of
gene-specific reverse transcriptase primers. Both cDNAs were taken forward for
sequencing with the standard nanoranger protocol (orange), GoT using Illumina
sequencing (black) and GoT using Oxford Nanopore sequencing (blue).
b, c Number of cells genotyped with each experimental condition (b) and per-
centage of genotyped cells across hematopoietic differentiation states (c).

dComparison of apparent single cell variant allele frequencies (VAFs) for SF3B1K700E

in donor- versus recipient-derived cells to demonstrate specificity of genotyping
with each experimental condition. e Comparison of cell barcodes identified with
each condition. The venn diagrams demonstrate the number of cell barcodes that
are uniquely identified or shared across experimental conditions. To enable direct
comparison of captured cell barcodes, the cDNA for the GoT conditionwas used as
input for nanoranger. f Minimal read length versus number of reads for cell bar-
codes identified with GoT on Illumina and ONT (black) versus those identified only
with GoT on ONT (blue), demonstrating the preferential sequencing of shorter
fragments with Illumina sequencing.
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(erythroid) andGATA2, ZFPM1, FLI1, NFE2, PF4 (megakaryocytic).When
applied alongwith the previously defined EC gene signatures to a large
public dataset consisting of 646 AML bulk RNA-seq profiles (Beat
AML)26, these two signatures scored highest in essential thrombo-
cythemia, and acute erythroid and megakaryoblastic leukemia. We
also sawa high erythroid score in AMLwithmutatedCEBPA, consistent
with observations of expanded mutated erythroid cells in AML har-
boring double mutant CEBPA27. The megakaryocytic score was high in
AML with inv(3) or cases carrying a RPN1-EVI1 fusion, also consistent
with knownmegakaryocyte-lineage skewing in this subtype (Fig. 4f, g,
Supplementary Fig. 10d)28. To determine if recurrent somatic muta-
tions in erythroid and megakaryocytic leukemic populations were
detectable in the data used to define the original AML ECs, we per-
formed a re-analysis and indeed identified recurrent somatic muta-
tions in these compartments, but the overall number of genotyped

erythroid or megakaryocytic progenitors was very low (<10) for most
samples (Supplementary Fig. 10e), precluding statistical significance.

Altogether, our integrated analysis of recurrent somatic muta-
tions, donor chimerism and copy number changes at single cell reso-
lution revealed not only clear definition of individual AML clones
present inmyeloid cellular compartments but also their differentiation
into erythroid and megakaryocytic lineage in the setting of relapsed/
refractory secondary AML, consistent with two recent single-cell
sequencing studies in AML/MDS8,29. These discovery findings provide
leukemia-discriminating signatures that can yield more accurate ana-
lysis of bulk RNA sequencing profiles of AML.

Mitochondrial DNA mutations for tracking AML
MitochondrialDNA (mtDNA)mutations have recently been recognized
as natural barcodes that can mark clonal cell populations and hence
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Fig. 4 | AML-associated somaticmutations are detectable inmyeloid, erythroid
and megakaryocytic progenitor populations. a AML bone marrow aspirates for
single cell RNA sequencing (scRNA-seq) were obtained from participants in the
ETCTN/CTEP 10026 study, which tested combined decitabine and ipilimumab in
advanced MDS/AML or relapsed AML post-HSCT patients. Samples were analyzed
at study entry (screening) and time of response. b Percentage of donor-derived
cells across bone marrow associated immune cell types across 8 AML cases re-
analyzed from Penter et al., Blood 202324 using souporcell (left). Percentage of
genotyped cells with AML-associated somatic mutation for bone marrow-
associated hematopoietic cell types across 9 AML cases (right). Cell types from
scRNA-seq profiles were identified using short-read sequencing and reference-
based annotations (UMAP top). Recurrently mutated genes were amplified and
sequenced using nanoranger to identify leukemic cell compartments and immune
cells with recurrent AML-associated mutations (UMAP bottom). c Detection of

recurrent somatic mutations at screening and at time of response in 5 study par-
ticipants of ETCTN/CTEP 10026 across HSC (n = 847), LMPP (n = 1,198), GMP
(n = 154), megakaryocytic (MK) (n = 815) and erythroid (Ery) (n = 3,223) cells.
d Heatmap of somatic mutations (DNMT3AV296M, TP53C176S, TP53R282W), chromosomal
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sensitivity to decitabine and ipilimumab. Expression of erythroid (f) and mega-
karyocytic (g) signature in 646 Beat AML bulk RNA-seq profiles of AML/MDS sub-
types. Boxes represent the interquartile range (IQR) from the 25th to 75th
percentile and the median value indicated by the inner horizontal line. Whiskers
extend to the extreme values but no more than 1.5xIQR above/below the hinge.
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enable tracking of leukemia cell subpopulations1,30, or even donor and
recipient populations at single-cell resolution following HSCT
(Fig. 5a)31. However, it remains unclear whether mtDNA and somatic
mutations provide similar definitions of leukemic clones. As the native
coverage ofmitochondrial transcripts in cDNA varies bymore than 10-
fold and is largely insufficient for calling of variants, we developed a
20-primer panel (Supplementary Table 5) for their targeted amplifi-
cation and subsequent long-read sequencing (Supplementary
Fig. 11a–c). Abundance of mitochondrial transcripts appeared to be
highest in metabolically active, proliferative AML blasts, which led to
preferential amplification of their mitochondrial transcripts. Our data
thus indicate that such cells are well-suited for detection of mtDNA
mutations (Supplementary Fig. 11d, e).

To determine how well mtDNA mutations called from scRNA-seq
libraries would correlate to mutation calls with mtscATAC-seq, an
established ATAC-seq based single-cell protocol for the detection of
mtDNA mutations32, we processed the same bone marrow sample of
AML1026 in parallel with both technologies and compared their
pseudobulk VAFs. For mtDNA mutations with an overall VAF > 0.5%,
both technologies were highly correlated (r =0.8), indicating that such
mutations likely represent reliable clonal markers (Supplementary
Fig. 11f). We therefore integrated the detection of mtDNA and somatic

mutations for AML1026, who relapsed following HSCT, for the iden-
tification of donor or recipient-derived cells and longitudinal leukemic
clone tracking. Eight mtDNA mutations (14766C> T, 14905G>A,
15452C >A, 15607A >G [donor] and 4011C > T, 8433T >C, 9722T >C,
15833C > T [recipient]) were used to distinguish donor and recipient-
derived cell populations and were consistent with the annotation
derived from analysis of expressed SNPs: 1855 recipient- and 532
donor-derived cells were annotated concordantly, with disagreement
in only 14 cells (Fig. 4b, Supplementary Fig. 11g). Aside from individual-
specific variants, mtDNA mutations were enriched in myeloid pro-
genitor cells. For example, abundance of 10685G >A remained similar
among myeloid progenitor cells, despite cytoreduction following
treatment with decitabine and ipilimumab (Fig. 5c), consistent with
observations made using somatic mutations. Further, we detected
three somatic mutations (NRASG13R, SF3B1R775Q, and SRSF2P95H) that co-
occurred with mitochondrial mtDNA mutations such as 10685G >A
but were absent in T and NK cells (Fig. 5d, e).

In another notable example (de-novo AML1) (Table 2), we dis-
covered two leukemic clones defined by distinct mutually exclusive
mutations in NPM1. Clone 1 (NPM1W287fs) also harbored FLT3-ITD and
loh(13), whichwere absent in clone 2 (NPM1W288fs). By evaluatingmtDNA
mutations, we observed that both clones could be identified by a total

Table 1 | Clinical information study participants ETCTN/CTEP 10026

Study ID Diagnosis Mutationsa CNV changes from clinical
karyotyping

Transplant
status

%Bonemarrownon-fractionated
chimerismb

Genotyping
performed

1002 sAML from
essential
thrombocythemia

IDH1R132C

IDH2R140Q

JAK2V617F

TET2I1873T

TP53H179R

TP53P278S

U2AF1S34Y

del(7q) naïve - Yes

1006 sAML arising from MDS U2AF1S34Y del(20q) post 78 No

1007 MDS EB-2 ASXL1D988fs*

IDH2R140Q

STAG2K1439*

none post 31 Yes

1010 AML NRASG12D none post 2 Yes

1012 AML TP53V173M inv(3)
del(5q)
add(21)

post 11 No

1016 tAML - del(5q)
del(17p)

post 84 No

1019 sAML from MDS ASXL1Q748*

RUNX1R320*
amp(8)
amp(21)

post 85 Yes

1022 sAML from MDS DNMT3AR882H

RUNX1I177S

SF3B1K700E

del(13)
del(19)
del(20q)

post 9 Yes

1026 sAML from MDS/MPN
overlap
syndrome

ASXL1G646Wfs*

NRASG13R

SF3B1R775Q

none post 6 Yes

3003 MDS EB-2 ASXL1Y591*

STAG2Q275*

TET2N1504Kfs*

TET2N488Mfs*

none naïve - Yes

3005 sAML from MDS DNMT3AN403Tfs*

TP53R273H

U2AF1S34Y

del(5q) naïve - Yes

8007 MDS EB-2 DNMT3AV296M

TP53C176S

TP53R282W

amp(1q)
del(3)
del(5q)
amp(6p)
del(9)
del(10)

naïve - Yes

AML acute myeloid leukemia, sAML secondary AML, tAML therapy-related AML, MDS myelodysplastic syndrome, MDS EB-2 MDS with 11–20% blasts.
aMutational profiles were identified prior to this work using amplicon-based targeted sequencing of recurrently mutated genes in myeloid hematologic malignancies52.
bBone marrow bulk chimerism was determined immediately prior to treatment on ETCTN/CTEP 10026.
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of 6 mutually exclusive mtDNA mutations (Fig. 6a–c). Both clones
were further distinguished by their phenotypes: clone 1 differentiated
along the entire myeloid, megakaryocytic, and erythroid trajectory,
while clone 2 had a more confined progenitor-like phenotype.
These findings were confirmed by analyzing the distribution of the
mtDNA mutations. Within GMP-like cells, further gene expression
differences between both clones of de-novo AML1 could be identified
such as differential expression of myeloid markers like LYZ or CST3
(Fig. 6d, e). This case demonstrates that, like secondary AML andMDS,
de-novo AML can also differentiate from HSC-like to monocytic or
even megakaryocytic and erythroid populations, which we also
observed in two additional cases of de-novo AML (Supplementary
Fig. 12a, b). Together, our data reveal that mtDNA mutations can dis-
tinguish donor and recipient-derived cells with high accuracy, may
serve as alternative disease markers in AML and can resolve subclonal
heterogeneity.

Genotyping of BCR::ABL1 reveals more restricted leukemic
phenotypes in ALL
Having observed somatic mutations in AML across myeloid, erythroid
and megakaryocytic expression clusters, we investigated whether a
similar distribution would also be detectable in acute lymphoblastic
leukemia (ALL). We applied our approach to identify BCR::ABL1 fusion
genes in 4 cases of Philadelphia+ (Ph+) ALL. From ALL1 and ALL2, we
obtained a bone marrow aspirate at initial diagnosis, while the other
two samples were collected when ALL3 and ALL4 were in hematologic
remission with measurable residual disease (MRD+). We readily
detected BCR::ABL1 transcripts that represented the p190 variant
(better detected than the p210 variant commonly found in CML due to
closer proximity of the fusion breakpoint to the 5′ end) (Fig. 6f). While
no such fusion transcripts were detected at MRD+ remission, in ALL1
and ALL2, BCR::ABL1+ cells were detectable in two clearly defined
clusters transcriptionally distinct from myelopoiesis, physiologic B
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Table 2 | Patient and molecular features of de-novo AML cases

Case Age
(Years)/sex

Clinical
karyotype

Somatic mutations
according to RHP52

FLT3-ITD sequence according to RHP52

de-novo
AML 1

70/M 47, XY, +4[3]/
46, XY[17]

NPM1W288fs

FLT3-ITD
TET2T606fs

TCTAAATTTTCTCTTGGAAACTCCCATTTGAGATCATATTCATATTCTCTGAAATCAACGTCAAAC

de-novo
AML 2

57/M 46, XY[20] DNMT3AR882H

FLT3-ITD
NPM1W288Cfs*12

PTPN11S502A

TTCATATTCTCTGAAATCAACGTAG

de-novo
AML 3

59/F 47, XX, +8[8]/
46, XX[12]

BCORR1164*

FLT3-ITD
RUNX1P294fs*

ATTCTCTGAAATCTACGTAAG

F female, M male, RHP rapid heme panel (amplicon-based clinical genetics)52.
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cells or erythropoiesis, and thus consistent with B cell progenitor
populations (i.e., upregulation of CD34 or DNTT [encoding terminal
deoxynucleotidyl transferase]) (Fig. 6g, Supplementary Fig. 12c-d).
Annotation using a healthy bone marrow reference similarly mapped
BCR::ABL1+ cells to B cell progenitor-like cells (Fig. 6h-left). To confirm
the constricted, predominantly B cell progenitor-like transcriptional
profile of ALL, we characterized CNV changes in 48,188 single cell
profiles of ALL bonemarrow samples from two studies33,34. Indeed, the
vast majority of cells harboring CNV changes (99%) had a B cell-like
phenotype (Fig. 6h-right, Supplementary Fig. 12e), and these changes
were mostly absent from other hematopoietic compartments. AML
thus occupies a large phenotypic space,whileALL is farmore confined.

Tracking of genetic and transcriptomic variants in immune cells
Our analysis of ETCTN 10026 AML bone marrow genotyping profiles
also yielded identification of somatic mutations in co-localizing
immune cell populations. In 4 of 9 AML cases, NK cells carried recur-
rent somatic mutations (Fig. 7a). In one notable example, NK cells
harbored two TP53 mutations (TP53H179R and TP53P278S), which were
absent in AML (Fig. 7b), consistent with a clonal event in a progenitor
population committed to NK cell differentiation. Re-analysis of bulk

amplicon sequencing data of the same patient at various timepoints
revealed both TP53 mutations to display an inverse trajectory com-
pared to other somaticmutations (Fig. 7c). The resolution of single cell
genotyping integrated with transcriptome-based phenotypes thus
established the presence of mutations in non-leukemic cells, rather
than what might have been otherwise interpretated as two competing
AML subclones.

Our genotyping approach also improved detection of CD19+ CAR
transcripts in scRNA-seq libraries, which is often incomplete35. Thiswas
accomplished by employing a CD28-specific primer to amplify CAR
and wildtype CD28 transcripts from a single cell cDNA library of an
axicabtagene ciloleucel (Yescarta) infusion product (Fig. 7d). Our tar-
geted detection of CAR transcripts identified not only almost all CAR+

T cells identified using unenriched Illumina scRNA-seq data but also
found an additional 15% CAR+ T cells, corresponding to >75% CAR+ T
cell detection (Fig. 7e, f, Supplementary Fig. 13a–c). Neither a primer
closer to the 3′ end using a CD247-specific primer nor
deeper sequencing coverage demonstrated by a downsampling ana-
lysis led to further increase in detected CAR+ T cells, once again due to
the preferential amplification of shorter library fragments (Supple-
mentary Fig. 13d, e).We noticed that theCD28domain of axicabtagene
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ciloleucel harbored a SNP that distinguishes wildtype CD28 transcripts
from CD28 expression as part of the CAR transgene (Supplementary
Fig. 13f, g), illustrating how germline SNPs can serve as proxies for
molecular features in long-read sequencing data (i.e., “phasing”).

When sequencing CAR transcripts using additional scRNA-seq
libraries from CAR infusion products (n = 4) and matched blood sam-
ples 7 days after CAR infusion (n = 4), we repeatedly noticed cells with
high levels of CAR transcript despite normal expression of wildtype
CD28. These included proliferating CD4+ and regulatory T cells (Tregs)
(Fig. 7g–i; Supplementary Fig. 13h, i), consistent with the reported
modulatory role of Tregs in CAR products35. To examine the origin and
functional state of CAR high-expressing T cells, we used an established

gene signature of T cell exhaustion18,24, and elucidated that high CAR
expression was not predominantly associated with T cell exhaustion
(4.2% non-exhausted vs. 0.2% exhausted) (Fig. 7j). Analysis of native
TCR sequences indicated CAR-high expressing cells originate from
previously unexpanded populations such as naïve T cells, consistent
with polyclonal expansion of CAR T cell products (Fig. 7k)36. Together,
CAR-high expressing cells from axicabtagene ciloleucel seemed to
represent a subpopulation with high proliferation capacity without
apparent transcriptional evidence of functional impairment.

Long-read sequencing of whole-transcriptome cDNA provided
only shallowcoverageof splice variants and thuswasunsuitable for the
interrogation of specific isoforms present in rare cell populations.
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Therefore, we used nanoranger to detect alternative splicing events.
Reads thatweused to detect somaticmutations inU2AF1 also detected
splice variants a, b and c of U2AF1. While the expression levels of
variant a were highest and of variant c lowest, we observed no differ-
ences in the relative expression levels of the three isoforms in any of
themajor cell populations (Supplementary Fig. 14a). To track isoforms
in T cells, we designed primers to target isoforms of PTPRC, CTLA-4,
and IL7R. This approach dramatically increased the coverage of the
PTPRC isoforms CD45RA and CD45RO, which aremarkers of naïve and
memory T cells (Fig. 8a). To validate our workflow, we compared
expressionofPTPRC exon4 and surfacemarker expressionofCD45RA,
which demonstrated reasonable concordance (r =0.45) (Fig. 8b, Sup-
plementary Fig. 14b). We used detection of PTPRC exon 4 in two cases
of AML (AML1007, AML3005) following CTLA-4 blockade and
observed reduced expression across T cell subsets, consistent with
known T cell differentiation induced by ipilimumab (Fig. 8c, Supple-
mentary Fig. 14c)37.

Proteins encoded by isoforms of CTLA-4 and IL7R exist in mem-
branous and soluble forms, which differ in their function and are thus
highly relevant for single cell studies of different immunological con-
texts. By targeting CTLA-4 to dramatically increase the detection of its
two isoforms, we observed that melanoma-infiltrating and CAR-T cells

had the highest expression level of the membranous variant, while
circulating T cells in AML bone marrow and peripheral blood of mel-
anoma patients expressedmore soluble CTLA-4 (Fig. 8d–f). This could
relate to sustained T cell activation in the tumor microenvironment
and during the manufacturing process of CAR-T cell products. We
noted that high expression of the IL7R isoform for the membranous
variant was also detectable in CAR-T cells (Supplementary Fig. 14d).

Discussion
Single cell RNA sequencing has substantially advanced our under-
standing of cell identities and fate. However, due to incomplete cap-
ture of long or lowly expressed transcripts and the inability to
definitively detect many genetic and transcriptomic variants, current
short-read single-cell data do not provide sufficient resolution to
address many important biological questions that can be revealed
through differential gene expression analyses ofmalignant versus non-
malignant single cells or identification of lymphocyte subsets that are
characterized by expression of different immune receptors and
isoforms.

Weovercamemanyof these limitationsbydesigning apipeline for
the targeted detection of genetic and transcriptomic barcodes from
single-cell cDNA libraries using long-read sequencing, and in turn, have
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gained fresh insights into the technical and biological aspects of single
cells recovered from a biopsy specimen. First, we addressed the
challenge that current scRNA-seq genotyping assays often utilize large
primer sets and would benefit from simplified workflows. We show
that improvements in the accuracy of nanopore-based long-read
sequencing, when coupled with scRNA-seq, afford the use of this
platform for accurate genotyping of single nucleotide variants at
single-cell resolution, an application that is highly dependent on low
sequencing error. The ability to accurately sequence longer amplicons
substantially streamlines workflows by reducing both the number of
primers and processing steps required before loading a sample on a
sequencer. Our use of long-read-based genotyping for unbiased
tracking of AML clones and the identification of erythroid and mega-
karyocytic cell populations that differentiate from leukemic clones
demonstrates that a focus on myeloid progenitor populations for
single cell genomic studies likely misses important AML subpopula-
tions and suggests the need for a transcriptome-based classification of
AML that includes erythroid and megakaryocytic signatures.

Second, we demonstrate that enriching for genes of interest
augments the inherent ability of long-read sequencing to detect
structural transcriptomic variants including alternative splicing events
by increasing the number of cells with sufficient coverage for analysis
by 2–3 orders of magnitude. This provides an opportunity to deeply
interrogate cell populations for expression of specific molecular fea-
tures such as individual isoforms, which provides qualitative infor-
mation not obtainable by short-read data. For example, our
nanoranger workflow makes it possible to characterize CD45RA
expressionwhen antibody detection via CITE-seq38 proves inadequate.
Current long-read flow cells generating 5–50 million reads enable
primer panels designed to detect multiple informative isoforms to
track immune cells or aberrant splicing events in cancer. Combining
multiplex panels with barcoding approaches to lower per-sample
sequencing costs enable systematic targeted identification in single
cells. Further technical improvements to our approach could pave the
way for its adoption as a clinical tool for immune monitoring in the
future. Increasing the number of genotyped features per sample could
extend target detection to other, less frequently mutated genes or
even non-recurrent, private somatic mutations. This would make
possible the detection and characterization of lowly abundant tumor
cells, for example to identify the phenotype of residualmalignant cells
after systemic therapy or of relapse-initiating populations at incipient
relapse. Such combined phenotypic and genetic information could
potentially be used to instruct clinical decision-making and thus pro-
vides a clear translational application for our technology. Co-
sequencing of DNA and RNA, currently under developed by several
academic and industry groups39–41, may overcome current limitations
in genotyping while preserving the ability to dissect transcriptional
states.

Lastly, long-read sequencing provided us with insights into the
structure of 5′ 10x Genomics scRNA-seq cDNA libraries which are
characterized by skewed coverage at the 5′ end and dramatic drop-off
of coverage after the first 4kB. Therefore, we expect efforts for tar-
geted enrichment of transcript regions will work best for shorter
transcripts or loci within the first 4kB from the 5′ end. Besides poten-
tially impacting gene expression quantification with short-read
sequencing, this skewing is a major bottleneck for further develop-
ments in the field of single cell transcriptomics. While long-read
sequencing can improve the detection of molecular features,
the ceiling for any genotyping approach is currently determinedby the
low, incomplete representation of many transcripts including absence
of longer variants and cannot be merely overcome through optimized
amplicon-generation or deeper sequencing. We thus recommend
future efforts to focus on developing high-throughput single cell
chemistries that provide truly full-length cDNA in order to expand the
accessible terrain in single cell RNA sequencing space.

Methods
Sample accrual and storage until analysis
AML bone marrow and peripheral blood samples were collected from
study participants enrolled on the ETCTN/CTEP 10026 study
(NCT02890329). Melanoma-infiltrating T cell were obtained from a
participant in a phase I clinical trial at Dana-Farber Cancer Institute
(DFCI) (NCT01970358)18,42. CAR T cells were obtained from a banked
infusion product at DFCI35. ALL bone marrow samples were collected at
DFCI. All study participants provided written consent and samples were
collected under Institutional Review Board-approved protocols at DFCI.
Until the time of analysis, bone marrow and peripheral blood samples
were stored in vapor-phase liquid nitrogen after Ficoll-Hypaque density
gradient centrifugation (Cytiva, Cat. no. 17144002) and cryopreservation
with 10% dimethyl sulfoxide (Sigma-Aldrich, Cat. no. D2650).

Processing of samples prior to single cell sequencing
Bonemarrow and peripheral blood samples were slowly thawed in the
vapor of a steam water bath at 37 °C. Thawing medium (phosphate
buffered saline [PBS], Fisher Scientific, Cat. no. MT21040CV with 10%
fetal calf serum [FCS], Gibco, Cat. no. 10437028 and 10%DNase I, grade
II, Roche, Cat. no. 10104159001) was added in a drop-wise fashion until
a total volume of 15ml. After centrifugation for 5min at 300 g, cells
were resuspended in RPMI 1640 (Gibco, Cat. no. 11875119) with 10%
FCS and 10% DNase I (Stemcell Technologies, Cat. no. 07900) and
rested for 15min at 37 °C. If cell viability assessed by 0.4% Trypan Blue
solution (Sigma, Cat. no. T8154) was below 80%, dead cells were
depleted (Dead Cell Removal Kit; Miltenyi, Cat. no. 130-090-101).

Generation of single cell libraries
Single cell RNA sequencing libraries from AML bone marrow samples
and CAR T cell infusion product were previously generated and their
cDNA libraries were utilized for this work24,35. Single cell RNA sequen-
cing libraries for the mixing experiment and from ALL bone marrow
were generated for this study as follows: after resuspension at 1000
cells/µl in PBS with 0.04% ultrapure bovine serum albumin (BSA, Invi-
trogen, Cat. no. AM2616) 17,000 cells were loaded onto a Chromium
Chip K (10x Genomics, Cat. no. 1000286). The Chromium Next GEM
Single Cell 5′ Kit v2 (Cat. no. 1000263) was used for generation of
single cell gene expression libraries. Enriched single cell TCR libraries
were generated using the V(D)J Chromium Single Cell Human TCR
Amplification Kit (Cat. no. 1000252). All library preparations were
performed according to manufacturer′s instructions. For short-read
Illumina sequencing, libraries were pooled after quality control with a
Bioanalyzer High Sensitivity DNA Kit (Agilent, Cat. no. 5067-4626).
Sequencing was performed on an Illumina NovaSeq 6000 with 26/
28 bp read1, 90 bp read2, 10 bp for index 1, and 10 bp index 2.

Single cell ATAC sequencing libraries were generated as previously
reported1,30. During preparation of samples for sequencing, cells were
subjected to fixation (formaldehyde) and permeabilization (NP-40 sub-
stitute) according to the mtscATAC-seq protocol32. After loading onto a
Chromium Chip H (10x Genomics, Cat. no. PN-1000161) (targeted
recovery of 7,000 cells), library preparation was performed with the
Chromium Single Cell ATAC Library & Gel Bead Kit (Cat. no. PN-
1000175) according tomanufacturer’s instructions. After quality control
of libraries with a Bioanalyzer High Sensitivity DNA Kit (Agilent), pooled
librarieswere sequencedon aNovaSeq S2platform (Illumina)with 50bp
paired-end reads, 8 bp for index 1 and 16 bp for index 2.

Generation of amplicons for ONT sequencing
PCR reaction 1 (removal of template-switcholigo artifacts aspreviously
described15):

5 µl of cDNA library was amplified under qPCR control until
maximum exponential amplification (~5 cycles) with 2.5 µl 10 µM
AA0272 and 2.5 µl 10 µM bio-AA0273 primers using 25 µl 2x KAPA HiFi
Uracil+ Kit (Roche, Cat. no. 07959052001) and 5 µl 1:1000 nuclease-
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free H2O pre-diluted 10,000x SYBR Green I Nucleic Acid Gel Stain
(Invitrogen, Cat. no. S7563) in a total volume of 50 µl. 98 °C 3min
(initialization), cycles: 98 °C 20 sec (denaturation), 65 °C 30 sec
(annealing), 72 °C 8min (elongation), stop at end of elongation. After
purification of PCR products with 65 µl ProNex Beads (1.3x) (Promega,
Cat. no. NG2002) and elution in 20 µl, biotinylated fragments were
captured using 5 µl 10mg/ml Dynabeads (Invitrogen, Cat. no. 60101)
according to manufacturer instructions and resuspended in 10 µl TE
pH 8.0 (Invitrogen, Cat. no. AM9849).

PCR reaction 2 (gene-specific amplification). 1 µl resuspended bead-
bound PCR 1 product was amplified using rhPCR16 in a total volume of
50 µl under qPCRcontrol until exponential amplification or a total of 18
cycleswith stop at endof elongation. Primers are stored at−80 °C inTE
pH 7.4 (Fisher Scientific, BP2476100). 1.25 µl 20 µM rhCGA_venus pri-
mer, 2.5 µl 5–20 µM patient-specific primer mix (for primers see Sup-
plementary Tables 1–7), 2.5 µl 20x rhPCR buffer (300mM Tris-HCl pH
8.4, 500mM KCl, 80mM MgCl2), 0.8ml 25mM dNTPs (Fisher Scien-
tific, Cat. no. FERR1121), 1.25 µl 20mU/µl RNase H2 (Integrated DNA
Technologies, Cat. no. 11-02-12-01), 2 µl 5U/µl Hot Start OneTaq DNA
Polymerase (New England Biolabs, Cat. no. M0481L) and 5 µl 1:1000
nuclease-free H2O pre-diluted 10,000x SYBR Green I Nucleic Acid Gel
Stain (Invitrogen, Cat. no. S7563). 95 °C 5min (initialization), 96 °C
20 sec (denaturation), 60 °C 6min (annealing), 72 °C 4min (elonga-
tion). After purification of PCR products with 65 µl ProNex Beads (1.3x)
(Promega, Cat. no. NG2002) and elution in 50 µl, biotinylated frag-
ments were captured using 12.5 µl 10mg/ml Dynabeads (Invitrogen,
Cat. no. 60101) according to manufacturer instructions and resus-
pended in 10 µl TE pH 8.0 (Invitrogen, Cat. no. AM9849).

20x rhPCR buffer:
• 3mL 1M Tris-HCl, pH 8.4 (300mM) (Fisher Scientific, Cat. no.

NC9922659)
• 5mL 1M KCl (500mM) (Fisher Scientific, Cat. no. 50-842-959)
• 0.8mL 1M MgCl2 (80mM) (Fisher Scientific, Cat. no. 50-

842-746)
• 1.2mL nuclease-free H2O (Promega, Cat. no. MC1191)

PCR reaction 3 (nested PCR). 1 µl resuspended bead-bound PCR 2
product was amplified under qPCR control until end of exponential
amplification with stop at end of elongation in a total volume of 50 µl.
25 µl Q5 High-Fidelity 2X Master Mix (New England Biolabs, Cat. no.
M0492S), 5 µl 1:1,000 nuclease-free H2O pre-diluted 10,000x SYBR
Green I Nucleic AcidGel Stain (Invitrogen, Cat. no. S7563), 1.25 µl 20 µM
CGAvenus.PS primer, 1.25 µl 20 µMeach patient-specific nested primer
mix. 98 °C 5min (initialization), 98 °C 20 s (denaturation), 62 °C 30 sec
(annealing), 72 °C 4min (elongation). After purification of PCR pro-
ducts with 65 µl ProNex Beads (1.3x) (Promega, Cat. no. NG2002) and
elution in 50 µl. Quantification of PCR products using TapeStation
(Agilent, Cat. no. 5067–5365 and 5067–5366).

Amplification of mitochondrial transcripts
Mitochondrial transcripts with high abundance were amplified only
with PCR reactions 1 and 2 without streptavidin capture after PCR
reaction 2. Mitochondrial transcripts with low abundance (ND1, ND4,
ND5) were amplified using PCR reactions 1-3 as described above.

Oxford Nanopore Technologies (ONT) sequencing
Sequencing adapters were ligated using the SQK-LSK114 kit (ONT) and
the NEBNext Companion Module (New England Biolabs, Cat. no.
E7180S) according to manufacturer instructions with 100 ng input per
sample. Sequencing was performed using R10.4 flow cells on aMinION
MK1CorGridION.Basecallingwasperformedusing guppy version6.1.2
with the module dna_r10.4_e8.1_sup. For optimization of sequencing
costs, the Native Barcoding Kit 24 V14 (SQK-NBD114.24) was used to
multiplex 2–10 amplicon libraries per R10 flow cell.

Processing of ONT data using nanoranger
Following basecalling of long-read data with guppy43, raw reads in the
format of fastq files are processed by nanoranger. Required runtime
parameters are a custom reference of transcripts for the enriched
targets and a quantificationmode which is either variant calling or VDJ
reconstruction.

Raw reads are aligned against the transcript reference using
minimap244 with map-ont mode and --secondary=no option. Each sam
record or “alignment” is subjected to a “deconcatenation” function
using pysam45. In order to deconcatenate naturally or synthetically
generated concatemers where each read can contain potentially many
“sub-reads”, primary and supplementary alignments are systematically
processed. For each alignment two new fastq records are generated
which mimic the read1-read2 format of standard paired-end libraries.
The “read2” record is generated by saving a relevant part of the read
based on the quantification mode. For variant calling the entirety of
the “query” sequence is extracted. For VDJ reconstruction the query
sequence (V gene transcripts used as reference in the input) and 100
nucleotides in the 3′ softclip of the alignment, which would cover the
CDR3 region and J gene, are extracted. The “read1” record is generated
by extracting the barcode region for each of the alignments. For 5′ 10x
Genomics chemistry, the barcode region is assigned by search of a
“motif” composed of the 10x forward primer, followed by 26 unknown
bases representing barcode and UMI and the 10x TSO in a 200 nt
window in the 5′ softclip of the alignment. This search is performed
using the edlib package46 within 5 Levenshtein distance under the
decon_5p10XGEX function in the utils.py script. These parameters
have been optimized heuristically to maximize the number of relevant
candidate barcodes. To have more confident candidates the search
window and edit distance can be decreased. To speed up the decon-
catenation function input fastq files can be split into smaller parts and
processed in parallel using –split flag as an optional input parameter.

Following deconcatenation, barcode candidates are matched to a
known whitelist of barcodes. To speed up the process while also
allowing bothmismatches and indels in candidate barcodes, the short-
read aligner STAR47 is used. First, a reference using whitelist barcodes
is made after padding the barcodes with unknown (N) nucleotides on
both sides to account for TSO andUMI nucleotides which are included
in the candidate barcodes but are not to be penalized by the aligner
based on errors on these parts. Next, the aligner is forced to align all
bases of the candidates (as opposed to soft clipping the non-matching
parts) to this reference by changing the alignment mode to EndtoEnd.
Subsequently a sam file is generated where each candidate barcode
will bematched with a clear start and end position to the best whitelist
barcode. Only barcodes matching with a maximum of 1 mismatch or
indel are considered. The UMI is extracted as the ten nucleotides that
follow the last aligned base of the whitelist barcode on the read. Next,
for variant callingmode, the “read2” fastq is aligned to the full genome
using minimap2 with splice mode. Barcode-UMI pairs are transferred
to the final bam of primary alignments. The result of this process is an
output similar to cellranger’s possorted_genome_bam ready for
downstream analysis. For the case of VDJ reconstruction, the “read2”
fastq is processed usingMiXCR48. Reads with assigned CDR3s are again
paired with the matched barcodes. Code is available under https://
github.com/mehdiborji/nanoranger.

Variant calling
Functionality for variant calling is provided as an R package nanor-
anger. R (https://github.com/liviuspenter/nanoranger.R).

Single nucleotide mutations including insertions/deletions. For
callingof singlenucleotide variants (extract_mutation(), extract_indel()
and extract_length_diff()), reads mapping to the locus were processed
using pysam45 by extracting the base for each read and any deletion or
insertion using the nanoranger script perform_pileup.py. A filter for
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the minimum number of reads per cell barcode and UMI is defined by
the shape of the knee plot for each locus ranging from 5 to 100. Reads
supporting a combination of cell barcode and UMI are collapsed by
using starcode49 to identify UMI clusters within a Levenshtein distance
of 3. A consensus base and insertion/deletion is defined for each cell
barcode and UMI combination based on the highest number of reads.
A cell is considered to carry amutation if >20%ofUMIs support a single
nucleotide variant or insertion/deletion.

Fusion genes or CAR transcripts. For analysis of fusion genes and
CAR transcripts two strategies were utilized. For analysis of coverage
across fusion genes, cell barcode, UMI, starting and end positions of
reads mapping to the reference sequence of fusion genes (BCR::ABL1
or RUNX1::RUNX1T1) or CAR transcripts were extracted with the
nanoranger script fusion_gene.py using pysam45. Reads extending
beyond the 5′ end of the fusion site were considered fusion reads.
Reads extending into the CAR sequence when using a CD28-specific
primer or extending into the CD28 sequence when using a CD247-
specific primer are considered CAR reads.

Otherwise, reads were mapped to a reference containing indivi-
dual genes (e.g., BCR and ABL1, RUNX1 and RUNX1T1 or CD28, CD247
and the full CAR sequence) followed by extraction of cell barcodes and
UMI using fusion_gene.py. Reads were subsequently processed in
analogy to single nucleotide mutations using extract_fusion().

Mitochondrial DNA mutations. Deconcatenated and genome aligned
ONT reads were processed using maegatk7 with the setting –NMmax
100. Mutations were called using the computeAFMutMatrix() function
(https://github.com/petervangalen/MAESTER-2021) and further ana-
lyzed using custom scripts.

Detection of isoforms
Differentially expressed exons were detected using the nanoranger
workflow through a pileup approach for each exon in which the overlap
of reads with the genomic coordinates of the exon were analyzed (iso-
forms.py) and quantified in R (extract_isoforms()). Absence of an exon
was defined as less than 50% overlap with the genomic coordinates of
the read. Alternatively, nanoranger was used with a reference genome
and transcriptome containing individual isoforms of target genes.

Gene expression analyses including annotation of cell types,
donor/recipient origin and copy number changes
Raw Illumina sequencing reads were processed using CellRanger ver-
sion 6.2.0 with the reference genome GRCh38-2020-A. Gene expres-
sion analysis was performed according to best practices with the
Seurat package version 4.1.050. Cell type annotation was performed
either based on canonical marker gene expression or for AML samples
by mapping single cell profiles to a healthy human bone marrow
reference dataset provided by the Seurat package.

Donor and recipient annotation was performed by deconvoluting
individuals with souporcell25 using common SNPs and the parameter
k = 2 followed by analysis of T cell and myeloid clusters taking into
consideration clinical chimerism information.

Copy number changes were inferred using the numbat pipeline51

considering structural chromosomal changes known from clinical
karyotyping.

Data reanalysis
For reanalysis of single cell RNA sequencing and genotyping data from
van Galen et al. ref. 4, count matrices and genotyping data were
downloaded from NCBI GEO (GSE116256). Gene expression data was
processed using Seurat as described above. Genotyping information
was integrated using a custom script.

Processed data from the beat AML26 data set waves 1–4 was
downloaded (http://www.vizome.org/) and processed using a custom

script. ALL scRNA-seq data were downloaded from NCBI GEO
(GSE132509 and GSE130116) and processed using cellranger for quan-
tification of count matrices and numbat for read-out of CNV changes.

Comparison of nanoranger with genotyping of
transcriptomes (GoT)
Bonemarrowmononuclear cells from AML1022 were loaded onto two
10x lanes. One lane was processed according to the standard manu-
facturer’s instructions and the second one according to the mod-
ifications of the 5′ GoT protocol described in the original publication
(i.e., spike-in of gene-specific RT primers and additive primers during
cDNA amplification) (Supplementary Tables 1–7)5. Both cDNAs were
used as starting material for generation of nanoranger amplicon
libraries. GoT cDNA served as input for generation of targeted ampli-
con libraries with an index PCR using locus-specific reverse primers.
scRNA-seq libraries and the GoT amplicon library were sequenced
together using the Illumina NextSeq 1000 system with a P2-100 cycle
kit (read 1 26 cycles, read 2 90 cycles, index 1 10 cycles, index 2 10
cycles). ONT sequencing of GoT and nanoranger amplicon libraries
was performed as described above.

Primer design rhPCR primers
For the design of rhPCR primers the guidelines below were followed.
The primers have a 6-nucleotide 3′ tail that begins with a ribonucleo-
tide (rNNNNNM) containing a mismatched base (M) at position 6 fol-
lowed by a spacer (/3SpC3/) to block polymerase extension.

For streptavidin capture, the 5′ end is conjugated with a biotin
(/5Biosg/)

General design:

/5Biosg/NNNNNNNNNNNNNNNNNVrVNNNNM/3SpC3/

Rules for rhPCR primer design:
• Tm 55 °C for sequence before 3′ 6-nt tail (all Tm’s from IDT

OligoAnalyzer Tool with default settings)
• Primer length 18 to 24 nucleotides with 40-60% GC content for

sequence before 3′ 6-nt tail
• No 4G or C in a row
• No >5A or T in a row
• 2-4 G or C in positions 1-5 of 3′ 6-nt tail
• NoT before ribonucleotide or U as the ribonucleotide (indicated

by V in the sequence above)
• For mismatch base use A, C or T (not G)
• T:G is not disruptive for mismatch base pair

Primer design nested primers
The nested primers are positioned closer to the 5′ end of the transcript
compared to rhPCR primers. An overlap of up to 5 nucleotides between
rhPCR and nested primers is acceptable. The nested primers have a 5′
tail consisting of the mars sequence (AAGCAGTGGTATCAACGCAGAG).

General design:

AAGCAGTGGTATCAACGCAGAGNNNNNNNNNNNNNNNNNN

Rules for nested primer design:
• Tm 57 °C
• Primer length 18 to 24 nucleotides with 40-60% GC content
• No G in last 2 3′ nucleotides
• Optimal 3′ end: AA, TA, CA, AT, AC, TT, CC
• GC-rich at 5′ end
• No 4G or C in a row
• No >5A or T in a row

Benchmarking deconcatenation
Deconcatenation benchmarking was performed using nanoranger
with the mode for analysis of whole-transcriptome cDNA
generated with the 10x Chromium Next GEM Single Cell 3′ kit (v3.1),
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concatemerized using MAS-Seq protocol and sequenced on
PacBio Revio.

The publicly available circular consensus sequence data corre-
sponding to run “DATA-Revio-PBMC-2“ was downloaded from https://
downloads.pacbcloud.com/public/dataset/MAS-Seq/. Following con-
version into fastq files, nanoranger was run with the following mod-
ifications: instead of motif search for barcode-UMI candidates, the
reverseof theTruseqRead 1 adapter (CTACACGACGCTCTTCCGATCT)
was identified in the 200 nucleotides flanking the 3′ end of each
transcript alignment. In lieu of using only transcript references of the
PCR targets, the entire gencode v44 transcriptome reference was uti-
lized. This reference transcriptome was downloaded from https://ftp.
ebi.ac.uk/pub/databases/gencode/Gencode_human/release_44/
gencode.v44.transcripts.fa.gz.

Next, the number of extracted transcripts per 16-mer read was
counted and compared to the number of segmented reads using the
PacBio software for eacharray stored in the Sreads subfolder of the run
DATA-Revio-PBMC-2 in the public data repository mentioned above.
Subsequently, cell barcodes were corrected against the whitelist of the
10xGenomics 3′ chemistry within one edit distance. Grouped reads for
each cell barcode and deduplicated UMIs for each gene were sum-
marized in a count matrix compatible with the output of cellranger for
downstream purposes. As the count matrix provided by PacBio con-
tained multiple entries for some genes, we collapsed these genes by
summing up their UMI counts to enable a head-to-head comparison
with nanoranger.

For our final analysis, we focused on shared genes between the
PacBio and nanoranger count matrices, as the PacBio output missed a
substantial amount of mitochondrial and ribosomal transcripts, likely
due to differences in the underlying reference transcriptome.

Benchmarking sequencing accuracy Oxford Nanopore Tech-
nologies (ONT) and Illumina
To perform sequencing error analysis using TCR reads obtained with
ONT and Illumina, a dedicated alignment pipeline using the raw
sequencing reads from V(D)J amplicon libraries generated from cDNA
of T cells shown in Fig. 2 against a custom reference made of nucleo-
tide sequences of the CDR3 regions was created.

For Illumina reads, readR2was used,whichwas sequencedwith 90
cycles. ONT reads were reprocessed using nanoranger by extracting a
120-nucleotide subsequence that confidently covered the CDR3 region.
For the custom V(D)J reference, CDR3s with identical consensus
nucleotide sequences in the cellranger and nanoranger output were
selected and further filtered to have at least 50 supporting reads from
nanoranger and 200 supporting reads from cellranger. We reasoned
thatONTdatahad roughlyhalf the sequencingdepth and that each long
read would most likely cover the CDR3 albeit with variable qualities,
while short reads do not always cover the CDR3 (cellranger associates
them with the CDR3 using shared UMIs with the reads that cover the
CDR3). Since reads contained bases outside of the CDR3 regions, the
consensus sequences were padded with “N” nucleotide on each side of
the CDR3. STAR aligner was set to EndToEnd mode to ensure partially
aligned reads covering CDR3 to be included in our analysis.

The number ofmismatches and indels was extracted using AS and
nM tags for each aligned read and reported per read and as average
per CDR3.

Amplification of GC-rich targets
For GC-rich targets, addition of 10% glycerol to the rhPCR (PCR2) and
nested PCR (PCR3) markedly increased amplification and
sequencing depth.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Gene expression matrices of samples sequenced for this work are
deposited with the NCBI Gene Expression Omnibus (GEO)(accession
numberGSE243227). The raw long-read sequencing data generated for
this work are available on the NCBI sequencing read archive (SRA)
(project number PRJNA935418). Previously published gene expression
matrices for samples from ETCTN/CTEP 10026 are available on NCBI
GEO (accession GSE223844). Additional previously generated single
cell RNA Illumina raw sequencingdata are available onNCBI’sDatabase
of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/
gap) under accession number phs003015.v1 (AML), or under accession
number phs001451.v4.p1 (melanoma) and phs002922.v1.p1(CAR).

Code availability
The code used to generate figures is available under https://github.
com/liviuspenter/ONT-lineage-tracing [https://doi.org/10.5281/
zenodo.10060863]. The nanoranger pipeline is available under
https://github.com/mehdiborji/nanoranger and https://github.com/
liviuspenter/nanoranger.R.
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