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Uncertainties in deforestation emission
baseline methodologies and implications for
carbon markets

Hoong Chen Teo 1,2 , Nicole Hui Li Tan1,2, Qiming Zheng 1,2,3,
Annabel Jia Yi Lim1,2, Rachakonda Sreekar1,2,4, Xiao Chen2,5, Yuchuan Zhou 5,
Tasya Vadya Sarira1,2,6, Jose Don T. De Alban 1,2, Hao Tang2,5,
Daniel A. Friess2,5,7 & Lian Pin Koh 1,2,5,8

Carbon credits generated through jurisdictional-scale avoided deforestation
projects require accurate estimates of deforestation emission baselines, but
there are serious challenges to their robustness. We assessed the variability,
accuracy, and uncertainty of baselining methods by applying sensitivity and
variable importance analysis on a range of typically-used methods and para-
meters for 2,794 jurisdictions worldwide. The median jurisdiction’s defor-
estation emission baseline varied by 171% (90% range: 87%-440%) of its mean,
with a median forecast error of 0.778 times (90% range: 0.548-3.56) the actual
deforestation rate. Moreover, variable importance analysis emphasised the
strong influence of the deforestation projection approach. For the median
jurisdiction, 68.0% of possible methods (90% range: 61.1%-85.6%) exceeded
15% uncertainty. Tropical and polar biomes exhibited larger uncertainties in
carbon estimations. The use of sensitivity analyses, multi-model, and multi-
source ensemble approaches could reduce variabilities and biases. These
findings provide a roadmap for improving baseline estimations to enhance
carbon market integrity and trust.

Forest loss accounts for up to one-fifth of anthropogenic carbon
emissions to the atmosphere, making it the second largest anthro-
pogenic emissions source after fossil fuel combustion1,2. Forest loss
also results in the reduction of habitats, biodiversity, and ecosystem
services provided by forests such as pollination and climate
regulation3–5, while posing a threat to the livelihoods and cultures of
forest-dwelling communities6,7. With forest loss projected to continue
at a rate of 5.9Mha y−1 without additional action8, avoiding deforesta-
tion is one of the most crucial actions for climate mitigation and sus-
tainable development.

The necessity ofmobilisingfinancial support for actions to reduce
deforestation is well-recognised, but global efforts at the scale needed
have repeatedly stumbled. Initially, policy concerns and technical
challenges prevented the inclusion of avoided deforestation projects
in the 1997Kyoto Protocol’s CleanDevelopmentMechanism. Efforts to
make progress on these challenges culminated in the United Nations
Framework Convention for Climate Change’s (UNFCCC) Reducing
Emissions from Deforestation and forest Degradation (REDD+ ) pro-
gramme, and avoided deforestation projects were officially adopted in
2013. Although the REDD+ framework supports both site-based and

Received: 26 July 2023

Accepted: 30 November 2023

Check for updates

1Department of Biological Sciences, National University of Singapore, Singapore, Singapore. 2Centre for Nature-based Climate Solutions, National University
of Singapore, Singapore, Singapore. 3Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong SAR. 4School of the Environment, University of Queensland, Brisbane, Queensland, Australia. 5Department of Geography, National University of
Singapore, Singapore, Singapore. 6Nicholas School of the Environment, Duke University, Durham, NC, USA. 7Department of Earth and Environmental
Sciences, Tulane University, New Orleans, LA, USA. 8Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.

e-mail: hcteo@u.nus.edu; lianpinkoh@nus.edu.sg

Nature Communications |         (2023) 14:8277 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0127-978X
http://orcid.org/0000-0003-0127-978X
http://orcid.org/0000-0003-0127-978X
http://orcid.org/0000-0003-0127-978X
http://orcid.org/0000-0003-0127-978X
http://orcid.org/0000-0002-7393-6585
http://orcid.org/0000-0002-7393-6585
http://orcid.org/0000-0002-7393-6585
http://orcid.org/0000-0002-7393-6585
http://orcid.org/0000-0002-7393-6585
http://orcid.org/0009-0001-1687-9342
http://orcid.org/0009-0001-1687-9342
http://orcid.org/0009-0001-1687-9342
http://orcid.org/0009-0001-1687-9342
http://orcid.org/0009-0001-1687-9342
http://orcid.org/0000-0002-1671-5786
http://orcid.org/0000-0002-1671-5786
http://orcid.org/0000-0002-1671-5786
http://orcid.org/0000-0002-1671-5786
http://orcid.org/0000-0002-1671-5786
http://orcid.org/0000-0001-8152-3871
http://orcid.org/0000-0001-8152-3871
http://orcid.org/0000-0001-8152-3871
http://orcid.org/0000-0001-8152-3871
http://orcid.org/0000-0001-8152-3871
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44127-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44127-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44127-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44127-9&domain=pdf
mailto:hcteo@u.nus.edu
mailto:lianpinkoh@nus.edu.sg


jurisdictional approaches which apply across a national or subnational
administrative unit, site-based approaches have been predominant,
operating primarily through voluntary carbon markets9. In recent
years, voluntary carbon markets have expanded rapidly to reach over
$2 billion by 2021, with REDD+ projects being the largest by traded
volume at $863 million10. However, concerns regarding the credibility
of avoided deforestation carbon credits have once again risen to the
forefront11, as contrasting evidence on their effectiveness has cast
doubt on the methods used to estimate deforestation emission base-
lines, which define the business-as-usual scenario upon which the
emission reductions and subsequent carbon credits are calculated12,13.
This has posed challenges for carbonmarket standards, which include
the VerifiedCarbon Standard (VCS), Forest Carbon Partnership Facility
(FCPF), and the Architecture for REDD+ Transactions: The REDD+
Environmental Excellence Standard (ART TREES), among others. To
maintain credibility, carbonmarket standards are typically designed to
be conservative, through mechanisms such as selecting methodolo-
gies with conservative assumptions, and requiring deductions for
permanence, leakage, and uncertainty14,15. Overestimated baselines
may generate credits that lack actual emission reductions, thereby
resulting in inefficient resource allocation; conversely, underestimated
baselines may result in insufficient financial incentives for forest pro-
tection. Thus, uncertainties in baseline projections have important
implications for avoided deforestation schemes16.

Avoided deforestation projects are required to calculate defor-
estation emission baselines and their corresponding uncertainties
following prescribed methods and guidelines (see Methods for
details), such as the VCS, FCPF, and ART TREES standards in the
voluntary carbon market. Typically, the deforestation emission base-
line is a product of two components – a projected deforestation rate
for the futureperiod and a forest carbonestimate. Although baselining
methods are broadly similar across various standards such as the VCS,
FCPF, and ART TREES, even within the same standard a wide range of
methods, parameters, and datasets are permitted, leading to concerns
about baseline inflation and the overgeneration of credits17,18. This also
leads to confusion and hesitancy amongmarket participants regarding
the reliability of standards and potential future reputational risks of
being involved in a project that later becomes controversial12,19.
Recognising these risks, carbon project developers are working to
overhaul standards and address growing concerns about carbon credit
integrity20. Project developers are alsomaking a stronger push towards
jurisdictional and nested REDD+ baselines21,22, an approach where
baselines are determined at jurisdictional-level and applied to jur-
isdictional projects or allocated to site-based projects nested within
the jurisdiction. Although jurisdictional baselines intend to ensure
consistency by preventing individual project developers from delib-
erately making methodological choices to inflate their baselines, they
still follow the same broad methodological principles as site-specific
baselines. Therefore, jurisdictional baselines are potentially also able
to make a wide range of methodological choices, with unknown con-
sequences for the consistency and accuracy of baselines derived.

In order toprovide support for enhancing carbonmarket integrity
by improving baselining methods and assist carbon market partici-
pants in decision-making, here we assess the variability, accuracy, and
uncertainties of baselining methods at the jurisdictional-level on a
global scale. Firstly, we assess the range of commonly used methods
for establishing deforestation emission baselines, deriving approxi-
mately 4 × 109 unique combinations ofmethods and parameters which
were then applied to calculate baselines for each national or subna-
tional jurisdiction. Secondly, we perform sensitivity analysis to quan-
tify the relative variability of deforestation emission baselines across
different methods. Thirdly, we validate the accuracy of different
deforestation projection methods against historical data. We also use
variable importance analysis to identify the key contributors to the
observed relative variability and accuracy. Lastly, we assess

uncertainties inherent to different deforestation projection methods
and different models of carbon estimation, and propagate uncertain-
ties in deforestation emission baselines.

Results
Relative variability of mean deforestation emission baselines
We estimated the relative variability (asmeasured by the coefficient of
variance, CV = standard deviation/mean) of deforestation emission
baselines across all methods for each jurisdiction (Fig. 1). The median
variability was 171% (90% range: 87–440%), i.e. using different defor-
estation emission baselining methods would cause deforestation
emission baselines to vary by 171% of the mean deforestation emission
baseline for the median jurisdiction. Jurisdictions with high relative
variabilities could be found across biomes and latitudes, including in
jurisdictions with high forest area and high deforestation rates (Figs.
S1–2). There was a significant negative correlation between log-
transformed forest area and relative variability, with Pearson’s r = -0.34
and p < 0.01 (Fig. S3a), suggesting that although jurisdictions with
larger forest area would generally have less variability in baselines,
there were also other factors driving that variability.

Next, we analysed variable importance for how each parameter
type influences the deforestation emission baseline (Table 1). Projec-
tion approach was the most important variable, followed by the forest
dataset used for estimating deforestation.Within eachparameter type,
we calculated and plotted the relative variabilities of each level (i.e. CV
of possible combinations of methods which use only that level) for
each jurisdiction (Fig. 2), and performed one-way ANOVAs and Tukey’s
HSD post-hoc tests to determine which levels had lower relative vari-
abilities and would thus generate more consistent results.

Of the deforestation projection approaches, linear regression
models (global, global_s, regional, and regional_s; see Methods for
explanation) generated the least variable results (Table 1, Fig. 2a);
although permitted by VCS standards such as VM0015, these are sel-
dom used compared to the simpler historical average (hist) or time
function (linear and poly2)methods (Supplementary Data 1).We found
that multi-model ensembles taking the means of 300 linear models
which used random combinations of between 3 and 11 driver variables
(global_s and regional_s) had significantly lower median relative vari-
abilities than the corresponding linear models which used all 12 driver
variables (global and regional). Moreover, the multi-model ensembles
reduces the interquartile range (IQR) as well as outliers among jur-
isdictions. However, the regional models had significantly higher
median relative variabilities (regional: 70.7%, regional_s: 65.4%) than
their corresponding global models (global: 66.0%, global_s: 61.0%).

Of the forest datasets used for deforestation projection, Hansen
et al.23 generated the least variable results, regardless of which tree
cover threshold was used (Table 1, Fig. 2a). Hansen et al.23 is also the
forest dataset with the highest spatial resolution (30m) used in this
study; however, MODIS24 (500m) was observed to generate less vari-
able results than ESA-CCI25 (300m). A longer historical reference
period, which ranged between 5 and 15 years in this study, also sig-
nificantly reduced median relative variabilities (Table 1, Fig. 2b); this
suggests that longer historical reference period can reduce the effect
of stochastic variations in deforestation rates.

Although using different forest datasets used for carbon estima-
tion (forest mask) had statistically significant differences in relative
variabilities of the deforestation emission baseline, none of the post-
hoc pairwise comparisons were statistically significant. For above-
ground biomass carbon (AGBC), data from Soto-Navarro et al.26. and
Spawn et al.27, which are both global wall-to-wall products, generate
significantly less variable results than the Global Ecosystem Dynamics
Investigation (GEDI) productwhich provides limited sampling tracks28.
For belowground biomass carbon (BGBC), Soto-Navarro et al.26 gen-
erated the least variable results, and for soil organic carbon (SOC)
neither dataset generated less variable results than the other (Table 1).
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Historical accuracy of predicted deforestation rates
We assessed the accuracy of predicted deforestation rates by calcu-
lating the forecast error (relative difference between actual and pre-
dicted deforestation rates); this was achieved by comparing mean
deforestation rates during the historical reference period with the
ensuing period of the same duration, if the data was available. The
median jurisdiction’s median forecast error between actual and pre-
dicted deforestation (calculated by predicted�actualj j

actual ) was 0.778 (90%
range: 0.548–3.56) across all methods (Fig. 3a), i.e. median predicted
deforestation was different from actual deforestation by 0.778 times
the actual deforestation. Each projection approach had different spa-
tial variabilities and biases in how accurately they predicted defor-
estation rates (Fig. S4), without there being clear regional patterns.
Forecast errors for the linear models (global, global_s, regional, and
regional_s) were significantly lower than other approaches, but there
were no significant differences between the different linear models.
However, by taking the median of all approaches, it is possible to
overcome the individual spatial variabilities and biases that are inher-
ent to each individual projection approach. Variable importance ana-
lysis showed that the projection approach was the most important in
affecting accuracy, followed by the forest dataset used, and finally the
length of the historical reference period (Table 2). Linear models were

more accurate in predicting deforestation than other approaches
(Fig. 4a, S4e-S4f). Hansen et al.23 was the most historically accurate
forest dataset. In general, increasing the length of the historical
reference period improves accuracy, resulting in lower medians and
IQRs for forecast errors (Fig. 4).

Uncertainties of deforestation emission baselines, deforestation
projections and carbon estimates
We propagated the deforestation projection model uncertainties and
carbon pool uncertainties by summation of quadrature (Figs. 3b–f and
4c, d). The median jurisdiction’s propagated uncertainty was 29.1%
(90% range: 20.8–42.6%) of its deforestation emission baseline.
Deforestationprojectionmodel uncertainty (median25.3%; 90% range:
10.1–40.4%) was higher than carbon uncertainty (median 10.7%; 90%
range: 6.2–19.5%). There was no clear spatial pattern for overall
uncertainty and deforestation projection uncertainty (Fig. 3b-c), but
carbon uncertainty appears to be highest in the polar and boreal
regions, as well as the tropics (Fig. 3d); in the tropics this was mainly
due toAGBCuncertainties (Fig. 3e),while in theCongobasin, polar and
boreal regions this was due to both AGBC and BGBC uncertainties
(Fig. 3e, f), suggesting systematic issues such as under-sampling of
these regions29. Voluntary carbon market standards typically require

Fig. 1 | Relative variability of deforestation emission baselines across jurisdic-
tions globally. a Global map of national or subnational jurisdictions, with colour
indicating relative variability of deforestation emissions baselines for each

jurisdiction. Deforestation emission baselines are the product of the projected
deforestation rate and average forest carbon in CO2e per jurisdiction. b Inset of
a for South and Southeast Asia. c Inset of a for Europe.
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Fig. 2 | Relative variability of deforestation emissionbaseline components.Box
plots showing distribution of relative variabilities (% CV) of deforestation emission
baselines (each point represents one jurisdiction, for n = 2794 jurisdictions) for
different component parameters (see explanationof thesedatasets andmethods in
Method section): a Overall relative variability (across all methods), relative varia-
bility for each deforestation projection approach, as well as for each forest dataset

used for deforestation projection estimates. Note that hist is a simple historical
average, linear and poly2 are time functions; global, global_s, regional, and regio-
nal_s are linear regressionmodels.bRelative variability for eachof the 5–15 possible
lengths of historical reference periods used for deforestation projection estimates.
c Relative variability for each forest dataset used for carbon estimates, as well as
each AGBC, BGBC, and SOC dataset.
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projects withmore than 15% overall uncertainty to apply a discount, or
may even prohibit their listing;14 we found that amedian of 28.0% (90%
range: 20.0–60.0%) of carbon estimation methods exceeded 15%
relative uncertainty for each jurisdiction, and a median of 52.9% (90%
range: 48.9–58.5%) of deforestation projectionmethods exceeded 15%
relative uncertainty for each jurisdiction, giving a propagated overall
median of 68.0% (90% range: 61.1–85.6%) for all possible methods for
each jurisdiction.

Discussion
Deforestation emission baselines vary considerably depending on the
methods and parameters used, within the range of commonly per-
missible methods and parameters. Many voluntary carbon standards
also permit upward adjustments with justification, such as for High
Forest Low Deforestation (HFLD) jurisdictions and in other circum-
stances, as flexibility for individual projects to make methodological
choices14,30,31. Although such flexibility is intended to allow for

Fig. 3 | Median forecast error and uncertainty in deforestation projections and
deforestation emission baseline components across jurisdictions globally.
Globalmaps of national or subnational jurisdictions, with colour indicatingmedian

forecast error of different deforestation projection approaches a, and median
relative uncertainty (90%CI) of deforestation emissionbaselinesb, of deforestation
projections c, of carbon estimates d, of AGBC estimates e, and of BGBC estimates f.

Table 1 | Variable importance for howeachparameter type influences thedeforestation emission baseline, aswell as statistical
tests (one-way ANOVA and Tukey’s HSD post-hoc) comparing relative variabilities between the different levels of each
parameter, for n = 2794 jurisdictions

Parameter Variable
Importance

Statistical tests

Mean SE One-Way ANOVA Tukey’s HSD post-hoc

Deforestation rate

Projection approach 10.2 0.18 F(6,19524) = 1678, p <0.01 All pairs p <0.05, except global-regional_s (p = 0.1) and global_s-regional_s (p = 0.07)

Forest dataset 4.41 0.14 F(4,12791) = 430, p <0.01 All pairs p <0.05, except hansen15-30 (p = 0.97)

Historical reference years 2.22 0.16 F(10,30749) = 82, p <0.01 All pairs p <0.05, except 7-8, 8-9, 9-10, 9-11, 10-11, 10-12, 11-12, 11-13, 12-13, 12-14, 13-14, 13-15,
14-15.

Carbon

Forest dataset 0.74 0.04 F(4,13565) = 2.5, p =0.042 All pairs p > 0.05.

AGB 1.31 0.04 F(2,8379) = 8.4, p <0.01 gedi-soto & gedi-spawn (p <0.01); soto-spawn (p = 0.99)

BGB 0.50 0.02 F(2,8385) = 26.8, p <0.01 ipcc-soto & soto-spawn (p <0.01); ipcc-spawn (p = 0.98)

SOC 0.23 0.02 F(1,5594) = 0.3, p = 0.556 esdac-olm (p = 0.556)
aBold indicates statistically-significant values

Article https://doi.org/10.1038/s41467-023-44127-9

Nature Communications |         (2023) 14:8277 5



necessary adjustments to the actual unique local circumstances, it can
make baseline setting a matter of political judgement, and opens up
carbon market participants to potential credibility and reputational
risks should these baselines later be independently assessed to be
flawed12,19. Performing sensitivity analyses (such as those used in our
study) to assess the variability of baselining methods and parameters
permitted, can help guide efforts to overhaul carbon standards and
increase transparency to market participants. Sensitivity analyses
could also be required for carbon project or programmedevelopers in
order to justifymethodological choices, and as an additional safeguard
to ensure that the calculated baselines are conservative.

In spite of efforts to advance the methods and science behind
deforestation projections, it remains challenging to accurately predict
deforestation rates for the future, as deforestation rates are influenced
by various stochastic political, socio-economic, and biophysical
environmental factors32,33. We show that the choice of deforestation
projection approach has the greatest influence on baselines, with lin-
ear regression models incorporating various driving factors perform-
ing better than simpler and more commonly-used historical average
and time function models, which do not include such driving factors.
Our results also showed that forest datasets had the second-largest
influence on baselines. Given that these different approaches, models,
and data sources have their own unique spatial variabilities and biases,
multi-model and multi-source ensemble approaches to overcome
thesevariabilities andbiases canbeconsideredbestpractice, similar to
other modelling communities such as the climate modelling, disease
modelling, and remote sensing communities34–36. However, the feasi-
bility and costs required for enhancedmodelling efforts, as well as the
need for more elaborate reporting and decision-making processes
when faced with contradicting baselines, may become barriers to
implementation.

We found large uncertainties in most combinations of methods
andparameters, exceeding the 15% typically allowed inmany voluntary
carbon market standards; however, actual project developers may
have access to additional observational data which could help reduce
these uncertainties. Prior research has observed that uncertainties in
deforestation baselines are commonly underestimated37. With such
large uncertainties in the baselining methods analysed by our study,
cost-effective approaches to reduce uncertainties will be relevant to
the carbon market, such as improving experimental design and
effective use of statistical techniques in place of extensive fieldwork38.

There are many potential areas for further fundamental scientific
research to improve baselining methods. Given that forest dataset is
the second most important variable affecting variabilities in baselines
as well as historical accuracy, further work to improve forest datasets,
such as by harmonising definitions of forests and ecosystems, and
improvingmethods for quantifying their area and functional value, will
be important39–42.With higher uncertainties in carbon estimation in the
tropics, efforts to acquire more high-quality validation data and per-
form more forest research in the tropics, are also important. Further
work on improving how permanence and leakage risks are monitored
and managed may also need to consider the impact of inaccurate and
uncertain baselines, as analysed in our study.

Carbon markets play a crucial role in financing nature-based cli-
mate solutions such as avoided deforestation and restorationprojects,
which can potentially provide up to one-third of cost-effective climate
mitigation to meet the <2 °C target of the Paris Climate Agreement8.
Our analyses show that baselining methods for avoided deforestation
projects have high variabilities and uncertainties, and face challenges
in accuracy; approaches such as sensitivity analyses and the use of
multi-model and multi-source ensembles may help. These results can
help guide carbon market participants in decision-making, and pro-
vide a useful roadmap for further research and practice to improve
baseline estimation methods and thus enhance carbon market integ-
rity and trust.Ta
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Methods
We first assessed the range of deforestation emission baselining
methods commonly used for avoided deforestation carbon crediting
by examining project documents for jurisdictional and site-based
approaches. This included 30 VM0015 Verified Carbon Standard (VCS)
projects, 4 Plan Vivo projects, and 55 Forest Reference Emissions Level
(FREL) submissions to the United Nations Framework Convention on
Climate Change (UNFCCC) by countries intending to implement
activities under Reducing Emissions from Deforestation and Forest
Degradation (REDD+ ) (see Supplementary Data 1 and Note S1-2).

Based on this assessment, we used a high-performance computing
cluster to calculate deforestation emission baselines for each jurisdic-
tion using all unique combinations ( ~ 4 × 109) within the range of para-
meters and methods typically permitted and used in avoided
deforestation carbon crediting (Table 3). Deforestation emission base-
lines are the product of the projected deforestation rate and average
forest carbon in CO2e per jurisdiction. These possible deforestation
emission baselines were calculated for each of 2794 level-0 national
jurisdictions or level-1 subnational jurisdictions43. Only nations with at
least 1000km2 of forest (as estimated byMODIS for the year 2001) were
included; nationswithmore than 10,000km2 of forest were divided into
level 1 subnational jurisdictions, while subnational jurisdictions with less
than 10% forest cover by land area were excluded.

The types of projection approaches used typically falls into three
categories: (i) historical average, which is a continuation of the average
annual rate calculated for the historical reference period; (ii) time
function, where historical trends are extrapolated to the future from
the historical reference period using a linear or logistic regression; and
(iii) modelling, which uses amodel that expresses future deforestation
as a function of driver variables. In this study, we used the historical
average, two types of time function (linear time function and 2nd order
polynomial time function), as well as four sets of linear models. In the
linear models, the response variable (deforestation rate) was box-cox
transformed, with outliers removed. There were up to 12 explanatory
driver variables to predict deforestation which were biophysical and
socioeconomic covariates (Table 4, brief explanation and rationale in
Note S3), derived from commonly-used spatial products available at
global-scale. Note that in this study, remotely-sensed tree cover loss or
forest loss are considered to be synonymous with deforestation; for
consistency among all datasets, forest gain or forest regeneration are
not included. These spatial datasets were processed in Google Earth
Engine using Mollweide equal-area projection. Next, statistical mod-
elling and calculations were performed in R version 4.0.2, using the
statistical packages ‘MASS’ v7.3-51.6’, ‘dplyr’ v1.1.2, and the paralleli-
sation packages ‘foreach’ v1.5.0 and ‘doParallel’ v1.0.15. Bidirectional
stepwise elimination was performed to determine variables that
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Fig. 4 | Jurisdictional forecast error and uncertainty in deforestation emission
baselines. Box plots showing distribution of jurisdictional forecast error a, b of
deforestation emission baselines (each point represents one jurisdiction, for
n = 2,794 jurisdictions) for different component parameters (see explanation of

these datasets and methods in Method section), as well as jurisdictional median
relative uncertainty (90% CI) for carbon estimation, deforestation projection
model, and propagated uncertainty for the deforestation emission baseline c, and
the % of methods with > 15% uncertainty d.
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Table 3 | Parameters and range of methods, data sources, and values used in this study

Parameter Range of methods, data sources, and values used in this study

Projection approach Historical average

Linear time function

2nd order polynomial time function

Global linear model (all 12 driver variables; see Table 4)

Global linear model (300 repetitions of 3–11 random combinations of driver variables)

Regional linear model (all 12 driver variables; see Table 4)

Regional linear model (300 repetitions of 3–11 random combinations of driver variables)

Forest dataset European Space Agency Climate Change Initiative Land Cover (ESA CCI-LC) land cover 300m, forest defined by land covers 50-90
and 160-170 where tree cover > 15%25. Forest cover for each year was clipped to the previous year to allow only forest loss.

Hansen Global Forest Change 30m, forest defined by tree cover > 15%23

Hansen Global Forest Change 30m, forest defined by tree cover > 30%23

Hansen Global Forest Change 30m, forest defined by tree cover > 60%23

MODIS MCD12Q1.061 land cover 500m, forest defined by land covers 1-6 under classification Type 1 (International Geosphere
Biosphere Programme classes) where tree cover > 60%24. Forest cover for each year was clipped to the previous year to allow only
forest loss.

Historical reference years 5–15 years

Starting year 2000–2021 (Hansen)

2001–2020 (MODIS)

1992–2020 (ESA-CCI)

Aboveground biomass (AGB) Spawn et al.27, 300m

Global Ecosystem Dynamics Investigation (GEDI) L4B28, 25m

Soto-Navarro et al.26, 300m

Belowground biomass (BGB) Spawn et al.27, 300m

Soto-Navarro et al.26, 300m

Intergovernmental Panel for Climate Change (IPCC) BGB ratios45

Soil organic carbon (SOC) European Soil Data Centre (ESDAC)46, 30 arc sec

OpenLandMap47, 250m

Table 4 | Data sources and processing methods for biophysical, socioeconomic, and land cover explanatory variables

Variable Data source and processing methods

Elevation Gap-filled digital elevation data from Shuttle Radar Topography Mission (SRTM)48

Slope

Long-term mean annual temperature WorldClim BIO Variables V149

Long-term mean annual precipitation

Global gridded per capita Gross Domestic Product (GDP) adjus-
ted for purchasing power parity (PPP)

Extracted for 1992–2015; for years beyond2015,data from2015wasuseddue to theunavailability
of more recent data50

Human Development Index

Average nightlight intensity Average nightlight intensity extracted from consistent and corrected DMSP-OLS data for 1992-
2013; VIIRS nightlights datawas extracted for 2012–2020 and calibrated to DMSP-OLS as per the
method of Li et al51. and Teo et al52. by spatially aggregating both VIIRS and DMSP-OLS to 1 km
resolution, generating power regression models for the temporally overlapping mosaics, and
using the average of the resulting coefficients to calibrate all VIIRS images53,54.

Population density Extracted for 1992-2020 from the Global Human Settlement layer (GHSL)55

Percentage forest area Derived from forest datasets as described in Table 3.

Percentage agricultural area For consistencywith forest datasets, we used: land cover classes 10 and 20 from the ESACCI-LC
where ESA CCI-LC was used for forest cover; Global Food Security-Support Analysis Data
(GFSAD)56 where Hansen Global Forest Change was used for forest cover; and MODIS
MCD12Q1.061 land cover class 12 where MODIS was used for forest cover.

Percentage land area occupied by mining land uses Extracted for the year 2019, and applied to all years, based on the assumption that areasmined in
the year 2019 generally represent areas with easily accessible and knownmineral depositswhich
present an incentive for deforestation, and also becausemining infrastructure tends to remain for
decades57.

Percentage land area occupied by tree plantations Tree plantations are distinct from natural forest, and may consist of tree crops such as oil palm,
coffee, or coconut, or planted forests grown for wood production. Extracted for 1992–2020 from
global map of planting years of plantations58.
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created the best model fit. A set of global models were run: the first
linear model used all 12 explanatory driver variables (before stepwise
elimination), while the second linear model was the mean of 300
repetitions of 3-11 random combinations of these explanatory driver
variables. Next, these linear models were repeated for six regions of
the world separately: Africa, Asia, Oceania, Latin America, North
America, and Europe. These seven projection approaches in our study
were then applied for all possible combinations of the different forest
datasets, number of historical reference years, and range of years
available, to derive the projecteddeforestation rate. Only non-negative
projected deforestation values were retained, as methods which gen-
erate negative projected deforestation values would likely be rejected
in actual baselines.

Average forest carbon in CO2e per jurisdiction was estimated
from various aboveground biomass (AGB), belowground biomass
(BGB), and soil organic carbon (SOC) datasets. These spatial datasets
were processed in Google Earth Engine using Mollweide equal-area
projection. All biomass was converted to carbon stock by a 0.47 stoi-
chiometric factor, then to carbon dioxide equivalent emissions (CO2e)
by a 3.67molarmass conversion factor.We assumed a conservative 10-
year decay estimate for the belowground carbon pool44.

Uncertainties were derived from the time function and linear
models by extracting the 90% prediction intervals from themodels, in
line with ART TREES methodology30 and IPCC convention1. Uncer-
tainties for carbon pools were either derived from the data provider
where available, or used the IPCC default of 33%. Finally, these
uncertainties were propagated by summation of quadrature.

Finally, variable importance was assessed by using random forest
machine learning models in the R package ‘ranger’ v0.13.1, with
deforestation emission baselines as the response variable and type of
parameter as the explanatory variables. To improve computational
efficiency, we bootstrapped 100 random forest models with 200 trees
each, and with each random forest model taking a random sample of
900,000 rows.

Data availability
All data generated by this study is included in the manuscript and
supplementary, as well as the Figshare repository (https://doi.org/
10.6084/m9.figshare.24597315).
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