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Mapping combinatorial drug effects to DNA
damage response kinase inhibitors

Hanrui Zhang 1, Julian Kreis2, Sven-Eric Schelhorn2, Heike Dahmen2,
Thomas Grombacher2, Michael Zühlsdorf2, Frank T. Zenke 2 &
Yuanfang Guan 1,3

One fundamental principle that underlies various cancer treatments, such as
traditional chemotherapy and radiotherapy, involves the induction of cata-
strophicDNAdamage, leading to the apoptosis of cancer cells. In our study,we
conduct a comprehensive dose-response combination screening focused on
inhibitors that target key kinases involved in theDNAdamage response (DDR):
ATR, ATM, and DNA-PK. This screening involves 87 anti-cancer agents,
including six DDR inhibitors, and encompasses 62 different cell lines spanning
12 types of tumors, resulting in a total of 17,912 combination treatment
experiments. Within these combinations, we analyze the most effective and
synergistic drug pairs across all tested cell lines, considering the variations
among cancers originating from different tissues. Our analysis reveals inhibi-
tors of five DDR-related pathways (DNA topoisomerase, PLK1 kinase, p53-
inducible ribonucleotide reductase, PARP, and cell cycle checkpoint proteins)
that exhibit strong combinatorial efficacy and synergy when used alongside
ATM/ATR/DNA-PK inhibitors.

Cancers are aggressive, invasive diseases characterized by uncon-
trolled growth.Many cancers exhibit genome instability resulting from
tumor-specific DNA repair defects and increased replication stress,
making them more susceptible than normal tissues to DNA damage,
such as single and double strand breaks (SSBs and DSBs,
respectively)1,2. Taking advantage of this vulnerability, DNA-damaging
treatments such as ionizing radiation and platinum-based anti-
neoplastic have long been used as anti-cancer treatments3,4. More
recently, a suite of therapeutic agents targeting DNAdamage response
(DDR) pathways has been developed that specifically exploits this
susceptibility, promising reduced side effects compared to non-
targeted treatments5–8. In this context, it is hypothesized that the
simultaneous deactivation of multiple DDR pathways could lead to
improved treatment efficacy by addressing both acquired treatment
resistance and buffering by parallel DDR pathways2.

A set of 450 proteins involved in different pathways of the DNA
damage response has recently been mapped9. While it is commonly
assumed that specific pathways exist that address different types of

DNA damage, e.g., for SSBs, DSBs, or mismatch repair, loss of function
of a DDR pathway can be compensated by parallel repair pathways2,10.
The simultaneous inhibition of multiple complementary DDR path-
ways by somatic mutation in the tumor and/or one or more targeted
treatments, such as the synthetic lethality between PARP1 inhibition
and BRCA1 loss of function11,12, was therefore identified as a promising
therapeutic strategy in clinical cancer treatments. This strategy also
inspired the development of combination treatments of multiple DDR
inhibitors to overcome resistance to single drugs, achieve synergistic
effect, and expand DDR drugs’ usage to other indications beyond
BRCA-deficient cancers8,13.

Three canonical DNA damage-sensing kinases that are central to
the human DDR are ataxia telangiectasia mutated (ATM), ataxia tel-
angiectasia and Rad3-related (ATR), and DNA-dependent protein
kinase (DNA-PK), which is also referred to as protein kinase, DNA-
activated, catalytic subunit (PRKDC)14,15. So far, studies that compre-
hensively map the synergistic effects between small molecule inhibi-
tors of these key DDR kinases and other anti-cancer drugs are lacking
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in both coverages across tumor types and the number of combination
therapy partners. In this study, we generated cancer cell line drug
combination screens of six kinase inhibitors, including two ATM inhi-
bitors (M3541 and M407616), three ATR inhibitors (berzosertib17,18,
gartisertib19, M177420), and one DNA-PK inhibitor (peposertib21,22)
against 87 anti-cancer drugs of a wide range of mode-of-actions on
22 ~ 62 cancer cell lines across 12 tissues (or tumor types), forming a
total of 17,912 combination treatment experiments.

In order to characterize tissue-specific patterns of DDR inhibitor
combination treatments, we carried out full-genome and tran-
scriptomic profiling of all 62 cell lines and statistically associated dose
responses with genomic and transcriptomic readouts. This screen
represents a large DDR inhibitor combination study and allowed us to
identify a small set of inhibitors to proteins involved in five pathways
that displayed strong co-therapeutic efficacy and synergy with ATM/
ATR/DNA-PK inhibition globally: the DNA topoisomerase pathway, the
serine/threonine-protein kinase PLK1 pathway, the p53-inducible
ribonucleotide reductase pathway, the PARP pathway, and the cell
cycle checkpoint proteins.

Results
The experimental dose-response screen of three DDR inhibitors
across a wide range of anti-cancer combination treatments
The goal of this study was to comprehensively analyze the synergistic
relationship between the inhibitors of canonical DDR kinases (ATM,
ATR, and DNA-PK) and a panel of anti-cancer drugs. In total, we com-
bined six kinase inhibitors, including two ATM inhibitors (M3541 and
M4076), three ATR inhibitors (berzosertib, gartisertib, M1774), and
one DNA-PK inhibitor (peposertib) with 87 anti-cancer drugs, on 62
cancer cell lines covering 12 tissues or tumor types (Fig. 1a, Supple-
mentary Data 1 and “Data availability”). For each of the cell lines, we
carried out RNA- and whole-genome DNA sequencing, and derived

genome-wide readouts covering gene expression, copy-number pro-
filing, and loss-of-function mutation both for single genes as well as
biological pathways.

In vitro combination treatment responses were quantified on the
level of both efficacy and synergy. The efficacy of treatment was esti-
mated by the area above the parametric dose-response curve divided
by the sum of the areas above and below this curve, a quantity that we
denote as relative AoC score. The synergy between two combination
partners within treatment was measured by the Bliss score, which
reflects the additional effect of two drugs over the expected response
if the two drugs were to act independently (see “Methods” section for
detailed discussions of the dose-response experimental setup, cell line
sequencing, and computation of response measures).

In total, we generated 17,912 combination treatment experiments
and 7081 monotherapy experiments, with reproducibility of Pearson’s
correlation =0.8380 (p < 1e−22) in AoC score for monotherapy and
0.7611 (p < 1e−22) in Bliss score for combination treatment, which is
comparable with previously reported combination treatment screen-
ing datasets including DREAM23, ALMANAC23,24, and O’Neil25. While
various DDR inhibitor combinations were used in our screens, we
report results on the level of mode-of-action combination (e.g., ATMi-
PARPi) for conciseness and generalizability. However, all analyses were
conducted using and are supported by individual drug combinations
(such as M3541-olaparib).

Mapping the global interaction relationships between DDR
inhibitors and combination treatment partners
In anti-cancer treatment, ideal drug combinations are notonly safe and
effective, but also complement each other in a synergistic manner8.
Due to the complex relationships between DDR pathways2, finding
optimal drug combinations that show broad efficacy across multiple
tumor types and genomic contexts of tumors is particularly
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Fig. 1 | Overview of combination treatment synergy screening experiments.
a Dose-response curves were used to calculate drug pairs’ efficacy and synergy
scores. Inhibitors to DDR kinases ATM, ATR, and DNA-PK (ATMi/ATRi/DNAPKi)
were tested against 62 cell lines across 12 tissues. b DDR inhibitor combination
treatment screens show strong interactions between drugs targeting different DDR
factors. The efficacy (left panel, by area over the curve (AoC) score) and synergistic
(right panel, by Bliss score) responses of all combination treatments across the 12

tissue types tested in this study are shown. Six DDR inhibitors of interest of three
mode-of-actions (ATMi, ATRi, and DNA-PKi, shown on y-axis) combined with 87
drugs (x-axis), form 546 different combinations, which are facetted by the 12 dif-
ferent cancer cell line tissues of origin. Some drugs (and their mode-of-actions)
with significant synergistic effects, when combined with the six DDR inhibitors of
interest, are marked and shown in pop-out tables. More detailed information on all
drug/mode-of-action combinations is shown in Supplementary Figs. 3 and 4.
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challenging. This large-scale screen, therefore, provides a unique
opportunity to map the overall global efficacy and synergy relation-
ships between DDR inhibitors and other anti-cancer agents.

To visualize these global relationships, we generated compre-
hensive heatmaps showing the efficacy and synergy responses of all
87 anti-cancer drugs screened in combination with six ATM/ATR/
DNA-PK inhibitors across all 62 cell lines and 12 tissues (Fig. 1b and
Supplementary Figs. 1–3). By visual and numerical analysis, we
identified several drugs that result in high efficacy when combined
with ATM, ATR, and DNA-PK inhibitors. In general, ATR inhibitors
have stronger synergy and efficacy compared to other DDR inhibi-
tors in all combinations tested. In terms of the combination part-
ners, tubulin inhibitors achieved high efficacy but low synergy with
DDR inhibitors, possibly due to the high cytotoxicity of tubulin
inhibitors alone26 that may result in a plateau effect in cell growth
inhibition which could not be further increased by combinationwith
DDR inhibitors. Combination treatments with PARP inhibitors, such
as veliparib, talazoparib, rucaparib, olaparib, and niraparib, which,
with the exception of veliparib, are approved as targeted drugs for
BRCA-mutated cancer treatment8,27, demonstrated the highest
synergy with ATM and ATR inhibitors across multiple cancer types.
The TOP1/2 (DNA topoisomerase 1/2) inhibitors SN-38 (the active
metabolite of irinotecan), topotecan, etoposide, and doxorubicin,
also display high efficacy and synergy with ATM/ATR/DNA-PK inhi-
bitors (DNA-PK > ATR > ATM), as previously reported in preclinical
studies19,28,29. Last, selected chemotherapeutics such as gemcitabine,
an antimetabolite that inhibits DNA synthesis, also achieved high
efficacy and synergy when combined with ATR and ATM inhibitors
(Fig. 2a, b). While the synergistic relationship between ATRi and
gemcitabine has been reported before30, we note that similar rela-
tionships between gemcitabine and either DNA-PKi or ATMi have
not been reported before, to our knowledge. Overall, the dataset
shows a low Pearson’s correlation of 0.2 (p < 1e−22) between efficacy
and synergy, which, while well within the range of values observed in
previous studies31,32, highlights the need of analyzing both measures
of response independently.

In addition to analyzing results on the level of individual drugs, we
further characterized the most efficacious and synergistic combina-
tion treatments identified in our screen by their mode-of-actions.
Hierarchical clustering based on responses in different cell lines shows
treatments with the same mode-of-actions tend to cluster together
(Supplementary Figs. 3–7). For example, for monotherapy, ATM inhi-
bitors (M3541 and M4076), CHK1 inhibitors (GDC0425 and
LY2603818), and BET inhibitors (IBET151, CPI0610, and GSK525762A)
are located adjacent to each other (Supplementary Fig. 1). The same
pattern, i.e., combinations with the same or similar mode-of-actions
are more likely to cluster together, also appears in combination
response in terms of efficacy (Supplementary Figs. 4 and 5) and
synergy (Supplementary Figs. 6 and 7). When combined with ATM,
ATR, and DNA-PK, several modes of action consistently showed high
efficacy and synergy (Fig. 2c, also see Supplementary Data 2), in par-
ticular TOP1i33, RRM2Bi (the small subunit of p53-inducible ribonu-
cleotide reductase)34,35, PLK1i (polo-like kinase 1)36, and checkpoint
inhibitors CHEK1i and CHEK2i, suggesting that targeting cell cycle
checkpoint may confer a significant benefit in the combination setting
as has recently been suggested for ATRi-CHK1i37.

Drug mode-of-actions identified from synergy analyses alone
partly overlappedwith those for efficacy scores; inhibiting RRM1/2 and
TOP pathways seems to be broadly effective in combination with ATR/
ATM/DNA-PK inhibition. The inhibition of RRM 1/2 pathway is only
synergistic in combination with ATR, but not ATM and DNA-PK inhi-
bition, while inhibiting TOP pathway is synergistic with all ATR, ATM
andDNA-PK inhibition. Lastly, PARP inhibitors appeared to be strongly
and broadly synergistic in combination with ATRi/ATMi, but not DNA-
PKi (Fig. 2d and Supplementary Data 3).

Four monotherapy and two DDR inhibitor combinations show
significant variability in response between different
cancer types
For investigating whether general biological backgrounds, such as
cancer or tissue types, influence treatment response, we carried out
statistical comparisons of the efficacy and synergy responses between
different cancer types covering the 87 monotherapy agents and 465
combination treatments screened in our study.

As the number of cell lines covering each of the 12 cancer types
varies, we chose the non-parametric Kruskal-Wallis test to analyze the
variance of treatment response of each treatment across all cancer
types in this study. After multiple testing correction, only four out of
the 87 monotherapy agents showed significant variance in efficacy
across different cancer types (p <0.01), including doxorubicin
(p = 2.8e−08), M3541 (p = 2.2e−06); peposertib (p = 1.3e−05), and oxa-
liplatin (p = 3.4e−05)) (Supplementary Fig. 1). Analogously, only two
combination treatments out of the 465 combinations we tested
showed significant variation in response across different cancer types:
peposertib-gamma-ionizing-radiation (a DNA-PKi-IR combination
showing significant cross-cancer type variance in terms of both effi-
cacy (p = 3.38e−3) and synergy (p = 7.82e−5)), and M4076-berzosertib
(an ATMi-ATRi combination showing variance only in terms of synergy
(p = 2.39e−05)) (Fig. 3a, b). As in the results on the raw efficacy and
synergy values (see previous sections), also no correlation of cross-
cancer variance significance values between efficacy and synergy
scoreswasdetected (Pearson’s r = −0.028,p = 0.54) (Fig. 3c), indicating
again that the two scores are measurements of different pharmaceu-
tical properties.

For all monotherapy and combination therapies that showed
significant differences in responses across cancer types,we carried out
statistical post hoc analysis includingDunn’s test, to identify individual
cancer types with variable responses to individual drugs and drug
combinations (Fig. 3d–f, Supplementary Fig. 2 and Supplementary
Data 4 and 5). Of the four significantly variable mono-therapeutic
agents, doxorubicin showed significantly higher efficacy in hemato-
logical cancers than other cancer types, while M3541 demonstrated
lower efficacy in both pancreas and melanoma cancers than other
cancer types (Supplementary Fig. 2b). For peposertib and oxaliplatin,
the difference of efficacy was only significant between bladder and
ovary/hematological cancers, as well as between sarcoma and hema-
tological cancers (Supplementary Fig. 2b). For the combination treat-
ments, the peposertib-gamma-ionizing-radiation combination
displayed significantly higher efficacy in hematological cancers com-
pared to bladder cancers (Fig. 3d, e). Last, in the case of M4076-ber-
zosertib, shows a significantly lower synergy in hematological cancers
compared to pancreas, prostate, melanoma, and sarcoma cancers
were observed (Fig. 3f). Interestingly, no significant correlation
between average treatment efficacy or synergy and the significance of
variance in different cancer types (across monotherapies (Pearson’s
r = −0.01, p = 0.92 and Spearman’s r = −0.075, p =0.478) and combi-
nation therapies, as well as for both efficacy (Pearson’s r =0.01,
p =0.835 and Spearman’s r = 0.01, p = 0.8) and synergy (Pearson’s
r = −0.04, p =0.37 and Spearman’s r = −0.021, p = 0.64)) could be
identified, indicating that the cancer type specificity and overall aver-
age treatment response are independent pharmaceutical
characteristics.

Discussion
We present a comprehensive combination treatment screening data-
set focusing onDDR inhibitors, which allows us to identify interactions
between DDR inhibitors and a broad range of anti-cancer drugs and
map themolecular dependencies of their relationships. DDR inhibitors
are an increasingly important class of targeted therapies explored for
the treatment of cancer, and the results will help inform and recom-
mend effective treatments depending on available genomic
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information. In our data, both the sequencing as well as combination
treatment response data were generated from the same cell culture
lines, avoiding potential issues resulting from differing molecular
backgrounds between screened and sequenced cell lines thatmay bias
the analysis.

We identified inhibitors to four biological pathways that achieve
strong combination efficacy in the screened cell lines when combined
with any of the investigated DDR kinase inhibitors: the DNA topoi-
somerase pathway (TOP1 and TOP2 inhibitors), the serine/threonine-
protein kinase PLK1 pathway (PLK1 inhibitors), the p53-inducible
ribonucleotide reductase pathway (gemcitabine and cytarabine) and

cell cycle checkpoints (in particular, CHK1 inhibitors). In addition, we
found that PARP inhibitors achieve strong synergistic effects in com-
bination with the ATR and ATM inhibitors, a finding that is currently
being investigated for ATRi in ongoing clinical trials38,39.

Concerning drug combination synergy, we identified peposertib-
gamma-ionizing-radiation (ionizing radiation) (DNA-PKi-IR) and
M4076-berzosertib (ATMi-ATRi) as combination treatments that show
cross-cancer type variability in efficacy and synergy. Peposertib-
gamma-ionizing-radiation is a DDR inhibitor combination that has
been actively under preclinical evaluation22,40,41 and shows robust
response in cervical cancer xenograft model42 and enhances the
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Fig. 2 | Top DDR inhibitor combination treatments that achieve the highest
efficacy and synergy across all cell lines in the high-throughput treatment
screening in this study. Boxplots showing the treatment responses of drug
combinations with the top 50 averaged (a) efficacy and (b) synergy responses in all
62 cancer cell lines (n = 62).Drug combinations are shownon the left side.Mode-of-
actions of the DDR inhibitors are denoted by red (ATR inhibitor), blue (ATM inhi-
bitor), green (DNA-PK inhibitor), and yellow (ATR inhibitor-ATM inhibitor

combination) in the boxplot, whilemode-of-actions of the partnerdrugs are shown
at the right side. The interquartile range (25th to 75th percentile) and median lines
are show, withwhiskers extending to 1.5 times the interquartile range. c,d show the
top 10 target genes with the highest average (c) efficacy and (d) synergy in com-
bination with ATR, ATM, and DNA-PK (PRKDC) inhibitors. Each target gene of a
partner drug is denoted by a node in the diagram, and the combination response
(efficacy or synergy) is denoted by the relative strength of the connection.
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response of immunotherapy43. Meanwhile, ATM and ATR loss-of-
function have been proposed as being in a synthetically lethal
relationship44 and ATMhas been identified as predictive biomarkers of
single-agent ATRi in multiple tumor types45–47. Both combinations
show synergy in vitro (0.14 bliss score for peposertib-gamma-ionizing-
radiation combination and 0.11 bliss score for M4076-berzosertib
combination), indicating the potential of further investigation of the
proper indication of both combinations in clinical use.

Our investigation has yielded crucial evidence shedding light on
the potential of DDR targeted combination therapies, highlighting
their significant clinical prospects. However, it is essential for future
studies tometiculously evaluate the toxicity and adverse events linked
to such combined treatment approaches, ensuring patient safety and
precise dosage calibration. The concept of synthetic lethality, which
forms the foundation of DDR-targeted combination therapy, inher-
ently enhances efficacy while concurrently increasing the risk of

toxicity and adverse events48,49. For example, PARP inhibitors, both as
monotherapies and as components of combination regimens, have
been extensively researched due to their pioneering role in DDR tar-
geted therapy, with a clinical history spanning over a decade50–53. The
simultaneous administration of the PARP inhibitor olaparib with the
ATR inhibitor ceralasertib, for instance, has been correlated with the
onset of anemia, neutropenia, and thrombocytopenia54,55. Further-
more, certain combinations elucidated in our current study have
previously been reported to increase the incidence of toxicity and
adverseevents. TheATR inhibitor berzosertib, usuallywell-tolerated as
a single-agent therapy, has shown an increased prevalence of adverse
events and hematological toxicities, including anemia, nausea, and
neutropenia, when combined with carboplatin56, gemcitabine57,58, or
topotecan59 in early-phase clinical trials. Despite the progress we have
made in our research, we acknowledge that our efforts are still limited
to the preliminary phase of in vitro high-throughput screening.
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Fig. 3 | Results from cross-cancer type variance test of DDR inhibitor combi-
nation treatment response. a, b Kruskal–Wallis test shows the significance of
cross-cancer type variance of DDR inhibitor combinations tested in this study.
−log10(p) from the cross-tissue variance test for (a) efficacy (AoC score) and (b)
synergy (Bliss) of the top 50 combinations are shown, and the significance
threshold (p =0.01) is marked by a dashed line. c shows the correlation between
cross-cancer-type variance significance in AoC score and Bliss score for all com-
bination treatments tested in this study. Each dot in (c) denotes a combination
treatment. d–fHeatmap shows the results from post hoc analysis by Dunn’s test on
the significantly variant combination treatments (peposertib-gamma-ionizing-

radiation and M4076-berzosertib) from the Kruskal–Wallis test, and the right lane
shows the distribution of responses (AoC or Bliss scores) in different cancer types
(boxplots show the 25, 50 and 75 percentiles with whiskers extending to 1.5 times
the interquartile range; for each cancer types the total numbers of cell lines are:
bladder = 4; brain = 3; breast = 6; colon = 8; hematological = 10; liver = 2; lung = 5;
melanoma= 3; ovary = 5; pancreas = 4; prostate = 2; sarcoma= 10). As M4076-
berzosertib only shows the cross-cancer-type variance in the Bliss score, only the
post hoc test result on the Bliss score is shown for this combination. All statistically
significant values from the variance test are two-sided.
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Therefore, a comprehensive exploration of in vivo toxicity associated
with all the synergistic combinations unveiled in this study awaits
future clinical trials.

Methods
Cell culture and drug response detection
This study is carriedout on cell lines only andcomplieswith all relevant
ethical regulations of Merck Healthcare KGaA and the University of
Michigan. All dose-response experiments were conducted atOncolead
GmbH & Co. KG (Karlsfeld, Germany). Cell lines were purchased
directly from the ATCC, NCI, CLS and DSMZ cell line collections. The
cell lines were grown in the media recommended by the suppliers in
the presence of 100 U/ml penicillin G and 100μg/ml streptomycin
supplied with 10% FCS.

Cells were grown in a 5% CO2 atmosphere. Cell growth and
treatment were performed in 96-well microtiter plates CELLSTAR®
(Greiner Bio-One, Germany). Cells harvested from exponential phase
cultures by trypsinization or by splitting (in the case of suspension
growing cells) were plated in 90μl of media at optimal seeding den-
sities. The optimal seeding density for each cell line was determined to
ensure exponential growth for the duration of the experiment. All cells
growing without anticancer agents were sub-confluent by the end of
the treatment, as determined by visual inspection.

Cells were allowed to stay for another 48 h prior to compound
treatment. The treatment was performed for 120 h and stopped by the
addition of trichloroacetic acid followed by using a total protein
staining protocol (Sulforhodamine B (SRB) staining)60. The bound SRB
was solubilized with 100μl of 10mM Tris base. Optical density was
measured at 492, 520, and 560nm. Compound dilutions were per-
formed in DMSO and diluted 1:100 in the RPMI medium. Combined
treatment has been performed simultaneously. Ninety μl of cells were
treated by mixing with 10μl of the compound-containing media
(resulting in a final DMSO concentration of 0.1%). In the case of com-
bination, both agents were mixed together in DMSO at equal volumes
so that the final concentration of DMSO was 0.2%. In addition, all
experiments contained a few plates with cells that were analyzed
immediately after the 48 h recovery period. These plates contained
information about the cell number, Tz, at time zero, i.e., before treat-
ment, and served to calculate the cytotoxicity.

The calculation nomenclature used was introduced by DTP of the
NCI61. The first step in data processing was calculating an average
background value for each plate, derived from plates and wells con-
taining mediums without cells. The average background optical den-
sity was then subtracted from the appropriate control values
(containing cells without the addition of a drug), from values repre-
senting the cells treated with an anticancer agent, and from values of
wells containing cells at time zero. Thus, the following values were
obtained for each experiment: control cell growth, C; cells in the
presence of an anticancer agent Ti and cells prior to compound
treatment at time zero, Tz (or T0, in some publications).

The selection of the concentration range for all agents was based
on previous experiments using a panel of 62 cell lines. A four-fold
dilution and 5data pointswere sufficient to cover the complete activity
range for most of the agents (Supplementary Figs. 8 and 9).

Dose-response evaluation measures
The non-linear curve fitting calculations were performed using algo-
rithms and visualization tools using four-parameter log-logistic
regression62,63.

To obtain an estimate of treatment efficacy that encompasses
both potency and maximum effect, the relative area over the curve
(AoC) was computed by estimating the area under the fitted dose-
response curve by the trapezoidal rule within ranges of relative growth
rates compared to untreated controls between 0% and 100%, and

within ranges of drug concentrations between 1 nM and 1mM, and
dividing the estimated area by the sum of areas below and above the
curve. The relative AoC measure used in this work thus captures both
the potency of a compound combination (usually measured by IC50 or
GI50) aswell as themaximumeffect on cellular growth (asmeasured by
the minimum of the curve); the relative AoC is of particular usefulness
for capturing the efficacy of DDR inhibitors, many of which often have
a comparatively low maximum effect less than 50% growth inhibition
at realistic concentrations, whichmakes IC50 and GI50 less practically
relevant.

Combination effects for the different compound combinations
are calculated using the Bliss independence model64,65 under the
assumption of independent modes of action of the combination
partners. Bliss excess was calculated as the average excess of the
observed effect EOBS (i.e., the relative reduction of growth rate com-
pared to untreated controls) over the calculated linear combination of
the monotherapy treatments effects (E1 + 2 = E1 + E2 − E1 E2) for all con-
centrations used:

Blissexcess =
1
n

Xn

i= 1

EOBSi
� E1 + 2i ð1Þ

In this formulation, the Blissexcess is a continuous value between −1
and 1 where values higher than about 0.2 are usually considered
synergistic, and values below about −0.2 are usually considered
antagonistic.

Statistics and reproducibility
The reproducibility ofmeasured response (i.e. AoC andBliss score) are
measured by Pearson’s correlation within the replicated experiments.
No data were excluded from the analyses.

Quantification and statistical analysis for drug response
variance test
For hierarchical clustering based on drug responses, we used heat-
map.2 function of gplots module (3.1.3) from R (4.2.3) for hierarchical
clustering using Euclidean as the distance function and ward.D2 as the
cluster function.

We used Python (≥3.8) module scipy (1.11.3) to carry out the
Kruskal–Wallis test to test if a drug has different responses between
different cancer types. Kruskal–Wallis test is especially suitable for this
situation as a non-parametric test, so it won’t be affected by the dif-
ferent sample sizes of the subsets. For the significantly tissue-specific
drugs (p <0.01), we also used scipy to carry out post hoc tests,
including Dunn’s test, Mann–Whitney Pairwise test, Conover–Iman
test and bootstrapping for 10,000 times to locate the significantly
different tissue types. Bonferroni correction was performed to adjust
the above multiple comparisons.

Inclusion and ethics
This work adheres to the principles of inclusivity and ethical conduct.
We have sought diverse perspectives, ensuring fair representation and
acknowledging all contributors. Additionally, all underlying research
was conducted ethically, with integrity, and in compliance with
applicable guidelines and regulations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The DDR combination in vitro screening data collected in this study
are shared at and can be freely downloaded from: https://osf.io/
8hbsx/. Source data are provided with this paper.
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Code availability
The source code of all statistical analyses is available from GitHub:
https://github.com/GuanLab/DDR_combination_analysis.
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