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Photoinduced copper-catalyzed C–N
coupling with trifluoromethylated arenes

Jun Huang1,3, Qi Gao1,3, Tao Zhong1, Shuai Chen1, Wei Lin1,2, Jie Han1 &
Jin Xie 1

Selective defluorinative functionalization of trifluoromethyl group (–CF3) is an
attractive synthetic route to the pharmaceutically privileged fluorine-
containingmoiety. Herein, we report a strategy based on photoexcited copper
catalysis to activate the C–F bond of di- or trifluoromethylated arenes for
divergent radical C–N coupling with carbazoles and aromatic amines. The use
of different ligands can tune the reaction products diversity. A range of sub-
stituted, structurally diverse α,α-difluoromethylamines can be obtained from
trifluoromethylated arenes via defluorinative C-N coupling with carbazoles,
while an interesting double defluorinative C-N coupling is ready for difluor-
omethylated arenes. Based on this success, a carbazole-centered PNP ligand is
designed to be an optimal ligand, enabling a copper-catalyzed C–N coupling
for the construction of imidoyl fluorides from aromatic amines through dou-
ble C-F bond functionalization. Interestingly, a 1,2-difluoroalkylamination
strategy of styrenes is also developed, delivering γ,γ-difluoroalkylamines, a
bioisostere to β-aminoketones, in synthetically useful yields. The DFT studies
reveal an inner-sphere electron transfer mechanism for Cu-catalyzed selective
activation of C(sp3)–F bonds.

The unique physical and biological properties of fluorinated compounds
have led to their wide application in pharmaceuticals1, agrochemicals2

and materials3. With their high lipophilicity, metabolic stability and
unique electronic features, CF2 groups have attracted increasing atten-
tion (Fig. 1a)4. In recent decades, deoxyfluorination5,6, site-selective
fluorination7–9 and fluoroalkylation10–15 reactions have been used to con-
struct this interesting motif. Meanwhile, selective functionalization of
one C–F bond in trifluoromethyl groups has also gained great momen-
tum because it can provide elegant access to a series of privileged
compounds derived from commercially available trifluoromethylated
arenes16–33. Recently, radical defluoroalkylation34–36, defluoroarylation37,
defluorohydrogenation38–40 and defluorocarboxylation32 reactions have
been achieved, all of which constructed C–C or C–H bonds from C–F
bonds in a trifluoromethyl group. A very recent work from Xu’s group
disclosed a radical coupling pathway for the formation of C–X (X=O, S,

Se) bonds with reactive Ar-XH (pKa ~6)41. However, to the best of our
knowledge, catalytic defluorinative C–N coupling from C–F bond in tri-
fluoromethylated arenes has been reported very rarely (Fig. 1b)25,42–44.

Remarkably, α,α-difluoromethylamines are bioisosteres for
amides45, and this would be significant in new drug discovery. Several
issues, however, have hindered the construction of such structures
and these include: (1) the bond dissociation energy (BDE) of C–F bond
in CF3 is strong

46 but the BDEs of the remainingC–F bonds significantly
decreases once the F atoms have been substituted. For example, the
BDEs of the C–F bonds in PhCF3, PhCHF2, and PhCH2F are 118, 107 and
99 kcalmol−1, respectively47, which often contributes to undesired
over-defluorination; (2) the reactions of the difluoromethyl radical are
generally limited to radical addition or a HAT process and thus con-
struction of CF2–X bond calls for merging strategies such as the
combination of transition metal catalysis. For example, Zhang and co-
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workers have reported an elegant photoinduced Pd-catalyzed
defluorinative arylation, and the combination of transition metal cat-
alysis unlocked new reaction pathways for selective functionalization
of C(sp3)–F bond37. In recent years, Cu-mediated radical coupling with
light excitation has become an emerging field48,49. A series of pio-
neering copper-catalyzed C–N couplings via a radical pathway using
Ar–X (X =Cl, Br, I)50,51 or activated aliphatic halides (R–X, X =Cl, Br,
I)52–59 has been disclosed by Fu and Liu respectively. However, the
activation of more inert C–F bonds56 to construct C–N bonds is still
very challenging (Fig. 1c). Inspired by these seminal works, we won-
dered if photoinduced copper-catalyzed defluorinative C–N coupling
of a CF3 group could afford difluoromethylated products, whose
synthesis otherwise would be difficult.

Here, we report copper-catalyzed divergent defluorinative C–N
coupling of trifluoromethylated arenes with carbazoles and aromatic
amines. A photoexcited copper-complex can accomplish the inner-
sphere electron transfer with the C–F bond in Ar-CF3 to generate the
difluoromethyl radical as key intermediates (Fig. 1d). These radicals
can interact with the generated R2N-Cu

II-species for radical C–N cou-
pling. An interesting double defluorinative C–N coupling has been
realized for difluoromethylated arenes. When primary aromatic
amines are used as the nitrogen source with a carbazole-centered PNP
ligand, a continuous defluorination process would occur to afford
versatile imidoyl fluorides in synthetically useful yields. In addition, 1,2-
difluoroalkylamination of styrenes can be realized to furnish useful β-
aminoketones bioisosteres, γ,γ-difluoroalkylamines. This protocol
offers a divergent C–N coupling for the synthesis of synthetically
interesting α,α-difluoromethylamines, imidoyl fluorides and γ,γ-
difluoroalkylamines from electron-deficient trifluoromethylated are-
nes and aromatic amines. The broad reaction scope, excellent

functional group tolerance and gram-scale ability enable this strategy
to be promising for the construction of value-added products.

Results
Reaction optimization
To initiate this study, the defluorinative C–N coupling reaction of 1,3-
bis(trifluoromethyl)-benzene (1a) and carbazole (2a) was selected as
the model reaction with which to optimize the reaction conditions
(Table 1). The standard conditions include the use of CuBr as catalyst
and nBu3P as the ligand with tBuOLi as an inorganic base under LED
irradiation (λmax = 390 nm). This delivered the desired defluorinated
product (3a) in 72% isolated yield in 1 h (Table 1, entry 1). It was found
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Table 1 | Optimization of reaction conditions.a

Entry Variation of standard conditions Yield

1 none 73% (72%)

2 tBuOK instead of tBuOLi trace

3 MeCN instead of MTBE N.D.

4 Et2O instead of MTBE 71%

5 CuCl instead of CuBr 72%

6 CuI instead of CuBr 14%

7 no nBu3P 13%

8 no CuBr N.D.

9 no light N.D.

Standard conditions: CuBr (2mol%), nBu3P (4.8mol%), 1,3-bis(trifluoromethyl)-benzene 1a
(0.5mmol), carbazole 2a (0.1mmol), tBuOLi (0.2mmol), MTBE (4mL), LEDs (λmax = 390nm), rt,
1 h. GC yield with dodecane as internal standard is shown and isolated yield is shown in par-
enthesis.
MTBEmethyl tert-butyl ether, N.D. not detected.

Article https://doi.org/10.1038/s41467-023-44097-y

Nature Communications |         (2023) 14:8292 2



N
O

O

CF3

Me

Bn

F
N

F F

N

F F
F3C

O

CF3

N

F F

NO

F3C

Late-stage application

N

F F
F3C

3ee, 54%

O

N

F F
F3C

3aa, 60% 3cc, 52%

O
N

F F
F3C

3bb, 57%

S

N

F F
F3C

3w, 55%

O

O

N

F F
F3C

3z, 54%

N

N

F F
F3C

3k, 59%

O O

N

F F
F3C

3l, 43%
TMS

N

F F

F3C
O

Cl

N

F F

3s, 17%c

N

F F

3c, 87%

F3C

N

F F
F3C

3a, 72%

N

F F

3q, 52%b

NC

N

F F
F3C

3u, 74%

N

F F
F3C

3v, 63%
tBu

tBu

Ph

Ph

N
N

F F

N
N

F F

3p, 35%a

N

F F

3r, 40%b

MeO2C

N

F F

3b, 77%

CF3

3o, 63%a

N

F F
F3C

3d - 3j

R

N

F F
F3C

MeO

3m, 58%

N

F F
F3C

3y, 50%

F

N

F F
F3C

3ff, 67%

O

N

F F
F3C

N

3x, 54%

3dd, 49%

N

F F
F3C

O

3gg, 43%

N

F F
F3C

3hh, 15%a

N

F F
F3C

3n, 76%a

S

F F

N

3t, 33%a

nPr

Scope of trifluoromethyl-arenes/alkenes

4

N

F F

F3C
O F3

Scope of carbazoles

CCDC : 2212746

derived from Murrayafoline A 
3oo, 56%a

derived from Aprepitant precursor
3mm, 49%a

derived from Fluoxetine 
3nn, 44%a

CF2H

N N

3ii, 73%
CF2H

N N

3jj, 66%

CF2H

N N

3kk, 60% 3ll, 65%

CuBr (2 mol%)
nBu3P (4.8 mol%)
tBuOLi (2 equiv.)

 LEDs, rt, 1 h

+

H
N

N

F F

F

F H
R1

R1

1 (5 equiv.)

2 (1 equiv.)

or N N

R1
R1

F

F F

or H

F F

3

H

N

 the 2nd C-N bond formation

HF2C

CuII

L

N

tButBu

tBu tBu

OO

CF2H

N N
PhPh

Ph Ph

Ph
Ph

H

N

HF2C

via

or

3d, R = OMe,  64%
3e, R = Cl,  71%
3f, R = CF3,  70%
3g, R = Ph, 63%
3h, R = allyl, 50%
3i, R = TMS, 64%
3j, R = PPh2, 50%
5 mmol scale: 3h, 52%, 1.04 g (12 h)
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yields unless otherwise indicated.
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that the replacement of tBuOLi with tBuOK resulted in only a trace
amount of product (entry 2). It was considered that tBuOLi may have
better solubility in methyl tert-butyl ether (MTBE) and also that the
lithium ion could be a hard acid to facilitate the elimination of the
fluoride60. A series of different solvents were examined and it was
found that ethers, such as diethyl ether and methyl tert-butyl ether
gave better yields (entries 3 and 4).WhenCuCl replacedCuBr (entry 5),
a comparable yield of 72% was obtained but CuI as catalyst furnished
the product (3a) in only 14% yield (entry 6). In the absence of nBu3P as
ligand, a decreased yield of 13% was obtained (entry 7). The control
experiments showed that this reaction cannot occur in the absence of
either the catalyst, CuBr or light irradiation (entries 8 and 9).

Substrate scope
With the standard reaction conditions in hand, we investigated the
scope of substrates. As shown in Fig. 2, a variety of trifluoromethyl
arenes can afford the desired C–N coupling products (3a–3s) in
moderate to good yields. A series of synthetically useful functional
groups, such as chloride (3e), terminal alkene (3h), silane (3i), alkyne
(3l), thioether (3n), nitrile (3q) and ester (3r) tolerate the reaction
conditions well. The gram-scale experiment was also carried out
without compromising the reaction efficiency and the product (3h)
was obtained in 52% isolated yield at 5mmol scale. When the

trifluoromethylated arenes bearing a triarylphosphine moiety were
subjected to the standard conditions, the reaction was not affected
and the desired product (3j) was obtained in 50% yield. Heterocyclic
substrates such as trifluoromethyl pyridines can also give corre-
sponding products (3o, 3p) inmoderate yields albeitwith an increased
catalyst loading (10mol%) and longer reaction time (12 h). Interest-
ingly, when the arenes bearing an electron-withdrawing group at the
para-position relative to the trifluoromethyl groupwereemployed, the
alkylphosphine ligand (nBu3P) failed to promote the desired coupling
reaction.We speculated that electron-rich ligands aredisfavored to the
crucial coupling process, thus hindering the formation of products37,61.
Importantly, an electron-deficient ligand can accelerate this process.
When an electron-poor phosphite ester ligand, P(OAr)3
(Ar = 2,4-tBu2C6H3) was used in place of nBu3P, the desired products
(3q, 3r) were formed in moderate yields. When benzotrifluorides was
subjected to this protocol, the product (3s) could only be obtained in
17% isolated yield. In addition, α-(trifluoromethyl)styrene is also a
suitable substrate to deliver the target product (3t) in good selectivity.

Subsequently, the scope of the nitrogen-containing partners was
investigated. It was found that the carbazoles bearing various func-
tional groups such as methoxy (3w), amine (3x), fluoride (3y), N-, O-,
S-containing heteroaromatics (3z, 3aa, 3bb), chloride (3dd), epoxide
(3ee) and alkene (3gg) all gave the desired products in moderate to
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good yields. When multisubstituted indole was subjected to the reac-
tion, the product (3hh) was produced in only 15% yield. Unfortunately,
anilines cannot successfully react in copper-catalyzed defluorinative
C–Ncoupling.We rationalized that the conjugated system in carbazole
would facilitate the excitation process of the formed [L-Cu-N-carba-
zole] species41, thus promoting the desired defluorinative C–N
coupling.

Interestingly, the difluoromethylated arenes are also good cou-
pling partners in Cu-catalyzed defluorinative C–N coupling. Because
the difference between the difluoro- and monofluoro-variants, double
defluorinative C–N coupling processes could take place for difluor-
omethylated arenes. Following such reactions, the desired products
(3ii–3ll) were obtained in yields of 60–73%. We speculated the second
C–N formation couldexperienceeither the radicalpathwayvia theα-N-
benzylic radical or the ionic mechanism via the iminium ions. Impor-
tantly, this protocol can be applied to the late-stage modification of
complex trifluoromethylated arenes and carbazoles.As shown in Fig. 2,
the Aprepitant precursor, the Fluoxetine derivative and the carbazole
alkaloid, Murrayafoline A are good substrates, which can afford the
corresponding products (3mm–3oo) in synthetically useful yields.

Mechanistic studies
To gain further insight into the reaction mechanism, control experi-
ments were conducted and the results are shown in Fig. 3. To confirm
whether a radical process is involved or not, 2,2,6,6-Tetra-
methylpiperidinooxy (TEMPO) was added into the model reaction
(Fig. 3a). As expected, the reaction was completely inhibited and
TEMPO-trapped difluorobenzylic radical adduct (5) was obtained with
45% isolated yield (Eq. 1). When 1.5 equiv. of (1-cyclopropylvinyl)ben-
zene (6)was added to themodel reaction under standardconditions, it
was found that the desired product (3a) was formed in 12% yield and

the radical ring-opening product (7) was detected in 26% NMR yield
(Eq. 2). Thus, it demonstrates that the reaction proceeds with a radical
pathway. The wavelength of experimental LEDs ranged from 360 to
420 nm with λmax = ~390nm (Supplementary Fig. 4). To identify the
light-absorbing species in the catalytic cycle, UV-Vis absorption
experiments were conducted. It indicated that trifluoromethylated
arenes (1a), carbazole (2a), CuBr, CuBr/nBu3P or2a/tBuOLi all have very
weak absorptions in the range of 360–420 nm, while the mixture of
CuBr, nBu3P, carbazole (2a) and tBuOLi has significant UV-Vis absorp-
tion with two new peaks at 373 and 393 nm (Fig. 3b). Consequently, we
speculated that the [L-Cu-N-carbazole] species generated in-situwould
absorb the light, and then promote the single electron reduction of
trifluoromethylated arenes. Luminescence quenching experiments
further confirmed that photoexcited [L-Cu-N-carbazole]* could be
quenched by 1,3-bis(trifluoromethyl)-benzene (1a) (Fig. 3c). Light turn-
on/off control experiments suggested that the reaction requires con-
tinuous irradiation of light, and almost no conversion occurred in the
absence of light (Fig. 3d). On the other hand, the plots of kinetic
experiments suggested a first-order kinetic dependence on [Cu] and
[1a] but a zero-order kinetic dependence on [2a] (Fig. 3e). These
mechanistic results indicate that carbazole unit would play a crucial
role in this single electron transfer process between photoexcited [L-
CuI-N]* species and trifluoromethylated arenes. Inspired by this, we
wondered if we could investigate one phosphine-based ligand bearing
one carbazolemoiety, whichmay further extend the N-sources in such
defluorinative transformations.

In the light of recent achievements of PNP ligand53,62–65, we
assumed that this skeleton combined with carbazoles and trialkyl
phosphines would facilitate the desired defluorinative C–N coupling
reaction and further expand the scope of amine substrates. Conse-
quently, carbazole-centered PNP ligand (L1) was introduced to achieve
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copper-catalyzed C–N coupling of trifluoromethylated arenes and
anilines. To our surprise, the resulting α,α-difluoromethylamines was
immediately transformed to imidoyl fluorides through tandem C–N
coupling and defluorination under basic conditions (Supplementary
Table 10)66. Despite of the promising synthetic potential of imidoyl
fluorides, their synthesis is challenging and in general harsh reaction
conditions are required while with limited scope67–70. A series of
structurally diverse imidoyl fluorides (9a–9n) can be readily obtained
in synthetically useful yields from commercially available tri-
fluoromethylated arenes and aromatic amines as shown in Fig. 4. A
10mmol scale experiment was also tested and imidoyl fluorides (9b)
can be obtained in 57% isolated yield, further demonstrating its robust
synthetic practicality. It is worth noting that aniline with halogen such
as bromide (9i) was also compatible with this reaction. The hetero-
aromatic amines (9n) also tolerated this reaction conditions well.
When secondary amines such as N-methylaniline was employed as the
N-based nucleophile, the desired defluorinative C–N coupling product
(9o) could be detected with ~5% yield by GC-MS.

Provided by the unique reactivity of α,α-difluorobenzylic radical
intermediate in the defluorinative C–N coupling process, we ques-
tioned if alkenes could be introduced into the reaction system to
achieve 1,2-difluoroalkylamination reaction of the alkenes. Once suc-
cessful, it can afford a new route for the synthesis of γ,γ-difluoroalk-
ylamines, one of the bioisosteres to β-aminoketones. With this
consideration, several alkenes were investigated and styrenes were

found to be the most suitable radical receptor (Supplementary
Table 17). For the aliphatic alkenes, only trace amount of 1,2-difunc-
tionalization products can be detected and the formation of imidoyl
fluorides (9) remains the main reaction process. We rationalized that
the lower stability of corresponding alkyl radical, which may increase
the energy barrier to interact with copper-species71. A wide range of
useful functional groups such as silane (11c), chloride (11d and 11j),
bromide (11e and 11k), methoxy (11i) were found to be tolerated well,
producing expected 1,2-difunctionalized products in moderate yields
as shown in Fig. 5.Ortho-substituted styrenes (11m) had little influence
on the yield. Besides, 1,1-disubstituted olefins (11n and 11o), internal
alkenes and electron-withdrawing alkene were also suitable substrates
to furnish products (11p and 11q) in moderate yields. In addition, it is
interesting to find that phenylhydrazines can proceed this 1,2-difluor-
oalkylamination to deliver the expected product (11r) in 42% yield.

Synthetic application
To further explore the synthetic utility of this reaction, Ni-catalyzed
remote migratory hydroarylation and epoxidation with
3-chloroperoxybenzoic acid (m-CPBA) of 3h gave the target products
(12, 13) in 68 and 88% yields, respectively (Fig. 6a). As to imidoyl
fluoride 9b, the corresponding products (14, 15) can be obtained in 91
and 89% yields through the substitution of methoxide and the cycli-
zation reaction of tetrabutylammonium azides. The defluorinative
C–N coupling strategy was used to introduce a difluoromethyl unit
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into the antihypertensive drug carvedilol. As shown in Fig. 6b, product
(16) can be obtained by stepwise defluorinative C–N coupling and
subsequent nucleophilic ring-opening reaction of 2-(2-methox-
yphenoxy)ethan-1-amine to the epoxide (3ee).

Theoretical study
Apossiblemechanism is proposed inFig. 7a.Upon light irradiation, the
catalyst [L1CuI] (17) is excited to [L1CuI]* species (18), which can
undergoeither anouter-sphere singleelectron transfer (OSET) process
with the highly electron-deficient trifluoromethylated arene (1) to
furnish the [L1CuII]+ intermediate (19) and a radical anion (20) or an
inner-sphere single electron transfer (ISET) to furnish [L1CuII-F] (21)
and the difluorobenzylic radical (22) directly. The radical anion (20)
from the OSET process would lose one fluoride to produce difluor-
obenzylic radical (22). When styrenes are employed, 22 is easily con-
verted to the more stable secondary benzyl radical (23). Through the
ligand substitution process, [L1CuII-F] (21) can be transformed to
[L1CuII-NHAr] species (24), which could interact with the difluor-
obenzylic radical (22) or the benzyl radical (23) to give the coupling
products 3 or 11, respectively. Although the difluorobenzylic radical
(22) or the benzyl radical (23) is less likely to proceed radical oxidative
addition to generate Cu(III)-intermediate for subsequent reductive
elimination55,56, its possibility to generate coupling products (3 or 11)
cannot be completely ruled out72. Specially, NH in the α,α-difluor-
omethylamines (3) becomes much more acidic with the influence of a
difluoromethyl group, and thus the easy elimination of one fluoride
would give rise to imidoyl fluoride (9) as the final product.

Based on our recent theoretical understanding of the
ISET process73.74 DFT calculations were performed to elucidate the
crucial SET process in the proposed mechanism. All computational
calculations were carried out by Gaussian 09B (see computational
details in Supplementary Information Section8). As depicted inFig. 7b,
ISET can facilitate one-step generation of [L1CuII-F] (21) and α,α-
difluorobenzylic radical (22), featuring a low energy barrier of only
5.8 kcal∙mol-1 (TS1), accompanied with a free energy drop of
-13.2 kcal∙mol-1. Notably, in theprecursor for ISET (INT1) at triplet state,
π-π stacking effect between the PNP ligand and the electron-deficient
trifluoromethylated arenes (1) facilitates the substrate-catalyst binding

between L1Cu and 1, thus promoting the crucial electron transfer
process (Supplementary Fig. 16).

On the other hand, the OSET pathway involved stepwise electron
transfer and the dissociation process of the C–F bond. The free energy
barrier for the electron transfer was estimated to be 10.7 kcal∙mol-1,
which is higher than that with ISET process. Consequently, the ISET
pathway exhibited superior kinetic favorability over the OSET one. It
would enrich copper-catalyzed electron transfer mechanism. Further
computational analyses were also performed to explore potential
pathways of C–N cross-coupling (Supplementary Fig. 16). These cal-
culations indicated that the reaction favored the ISET pathway, fol-
lowed by MECP (Minimum Energy Crossing-Point)75 mediated radical
capturing (RC) process.

Discussion
In summary, we have developed a divergent defluorinative C–N cou-
pling reaction of electron-deficient di- and trifluoromethylated arenes
and aromatic amines via photoexcited copper catalysis. Highly selec-
tive C–N coupling, tandem C–N coupling/defluorination and 1,2-
difluoroalkylamination of styrenes have been readily realized under
mild reaction conditions. This protocol can afford a variety of struc-
turally diverse α,α-difluoromethylamines, imidoyl fluoride and γ,γ-
difluoroalkylamineswith good functional group tolerance. DTF studies
of the mechanism identify the difluorobenzylic radicals produced via
inner-sphere electron transfer as the key intermediates for the sub-
sequent C–N coupling process. This protocol is a progressive step in
copper-catalyzed inert C–F bond activation. It should also represent an
important step forward to divergent transformations of tri-
fluoromethylated compounds into privileged fluorine-containing
moiety.

Methods
General procedure for defluorinative C–N coupling of
carbazoles
An oven-dried vial (8mL) equippedwith amagnetic stir bar, is charged
with CuBr (0.29mg, 0.002mmol, 2mol%), carbazole 2 (0.1mmol, 1
equiv.), tBuOLi (16.0mg, 0.2mmol, 2 equiv.), MTBE (4mL) and nBu3P
(1.2 µL, 0.0048mmol, 4.8mol%). The resulting reaction mixture is
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allowed to stir at rt for 30min. Subsequently, the trifluoromethylated
arene 1 (0.5mmol, 5 equiv.) is added. Then the vial is sealed with a
rubber cap and is irradiated under 390 nm LEDs for 1 h at rt with vig-
orous stirring. When the reaction is completed, the mixture is con-
centrated in vacuo. The crude product can be purified by flash column
chromatography on neutral Al2O3 with petroleum ether, ethyl acetate
and triethylamine as eluent to afford the desired coupling products.

General procedure for the tandem C–N coupling and
defluorination
An oven-dried vial (4mL) equippedwith amagnetic stir bar, is charged
with CuBr (1.43mg, 0.01mmol, 5mol %), L1 (7.0mg, 0.01mmol, 5mol
%), tBuOLi (48.0mg, 0.6mmol, 3 equiv.) and Et2O (2mL). The resulting
reaction mixture is allowed to stir at rt for 30min. Subsequently, the
trifluoromethylated arene 1 (0.6mmol, 3 equiv.) and aromatic amine 8
(0.2mmol, 1 equiv.) are added sequentially. Then the vial is sealedwith
a rubber cap and is irradiated under 390nm LEDs for 2 h at rt with
vigorous stirring. When the reaction is completed, the mixture is
concentrated in vacuo. The crude product can be purified by flash
column chromatography on neutral Al2O3 with petroleum ether and
ethyl acetate as eluent to afford the desired coupling products.

General procedure for the 1,2-difluoroalkylamination reaction
An oven-dried vial (4 mL) equipped with a magnetic stir bar, is
charged with CuBr (1.43 mg, 0.01 mmol, 5 mol %), L1 (7.0 mg,

0.01 mmol, 5 mol %), tBuOLi (48.0mg, 0.6mmol, 3 equiv.) and Et2O
(2 mL). The resulting reaction mixture is allowed to stir at rt for
30min. Subsequently, the trifluoromethylated arene 1 (0.6mmol,
3 equiv.), styrene 10 (0.6 mmol, 3 equiv.) and aromatic amine 8
(0.2 mmol, 1 equiv.) are added sequentially. Then the vial is sealed
with a rubber cap and is irradiated under 390 nm LEDs for 2 h at rt
with vigorous stirring. When the reaction is completed, the mix-
ture is concentrated in vacuo. The crude product can be purified
by flash column chromatography on silica gel with petroleum
ether and ethyl acetate as eluent to afford the desired coupling
products.

Data availability
Crystallographic data for the structures reported in this Article
have been deposited at the Cambridge Crystallographic Data
Centre, under deposition numbers CCDC 2212746 (3u), CCDC
2270870 (catalyst L1Cu), and CCDC 2281146 (9b). Copies of the
data can be obtained free of charge via https://www.ccdc.cam.ac.
uk/structures/. Data related to materials and methods, optimiza-
tion of conditions, experimental procedures, mechanistic experi-
ments, and spectra are provided in the Supplementary
Information. Source data containing the coordinates of the opti-
mized structures are present. All data are available from the cor-
responding authors upon request. Source data are provided with
this paper.
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