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Is Protein BLAST a thing of the past?
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Will protein structure search tools like Alpha-
Fold replace protein sequence search with
BLAST? We discuss the promises, using struc-
ture search for remote homology detection, and
why protein BLAST, as the leading sequence
search tool, should strive to incorporate struc-
tural information

Main
BLAST1 is widely used in molecular biology to search for nucleotide
and protein sequences. Three decades after BLAST was introduced,
there were major breakthroughs in structure prediction, and tools
such as RoseTTAFold2 and AlphaFold3 emerged. Consequently, every
protein sequence in the major sequence databases now comes with a
model of how it folds in 3D. While this does not affect (non-coding)
nucleotide sequences, it begs the question ofwhether a searchover 3D
protein structures will replace a search over protein sequences. Is
Protein BLAST a thing of the past?

While BLAST searches are a powerful tool in function prediction,
they are limited. Sequences can degrade significantly and still fold into
similar 3D structures that perform the same or similar functions.

Different sequences, same structures. An impressive example of
such a protein pair can be found in adhesion molecules of algae and
bacteria4, specifically in the diatom adhesion protein CaTrailin_4 and
the bacterial ice-binding protein FfIBP. The pair has no sequence
similarity detectable by BLAST (E-value 0.30, where E-values > 0.001
are not considered significant). In fact, even more refined sequence-
based tools such as HHblits5 cannot establish a relation, either. Yet, the
predicted structure of CaTrailin_4 and the known structure of FfIBP
resemble eachother closely asboth adopt a beta helical fold consisting
of two units held by an alpha helix - a topology characteristic for ice-
binding proteins4 (see Fig. 1a–c).

Such structural similarities can be measured by the so-called
template modelling score (TM-score), which combines RMSD (root
meansquare deviation) and alignment length in an interpretable score.
A TM-score greater than 0.5 implies that two structures are likely to
adopt the same fold6,7 and are evolutionarily related. For an indepen-
dent evaluation of this cut-off, see Supplementary Note 2. A TM-score
of 0.6—above the 0.5 cut-off—is achieved for CaTrailin_4 and FfIBP.
Thus, structure comparison can uncover this striking similarity, which
remains elusive for BLAST and other sequence-based tools such as
HHblits.

Another example concerns DNA recombination, a fundamental
process in replication in which single-strand annealing proteins (SSAP)
play a central role. For more than two decades, it has been suspected
and controversially discussed whether RecT/Redβ, ERF, and RAD52
form three different or just one superfamily. The former view is sup-
ported by sequence analysis which shows no demonstrable similarity

between RecT/Redβ, ERF, and RAD52. In fact, Rad52 and Redβ have no
similarity detectable by BLAST (E-value 0.38). Taking structure into
account changes the picture. Al-Fatlawi et al. juxtapose representative
structures of RecT/Redβ, ERF, and RAD52 side by side and show that
despite the lack of sequence similarity, the structures contain one core
structural element8. It is central in oligomerization as it generates a
ring and helix structure, respectively. Consequently, it is very well
conserved across RecT/Redβ, ERF, and RAD52, and it is detectable by
structural similarity (TM-score of 0.5) despite the lack of any sequence
similarity (see Fig. 1d–f).

Structure prediction to the rescue. These examples suggest that
AlphaFold may be able to step in where BLAST cannot find significant
similarity. Hence, the question arises: How can this be achieved sys-
tematically? To this end, there are tools such as Foldseek9, DALI10, and
3D-AF-Surfer11, which scan and compare structures using auto-
encoders, distance matrix alignment, and dedicated fingerprints,
respectively. While these tools exist, they still need to be more wide-
spread and straightforward enough to compete with BLAST searches
over sequence databases. A synergy is needed that integrates them
into a classic BLAST sequence search. A first step in this direction has
been recently taken by a study comparing reciprocal best BLAST hits
and reciprocal best structural hits12 and by nearest neighbour search
on machine learning embeddings of sequences13.

To explore the potential of such an advanced tool, we wanted to
understand how membership in the same superfamily is linked to
sequence and structure similarity. Thus, we obtained 11,211 domains in
1954 with superfamilies from the SCOPe database14. These form
62,278,380 domain pairs, of which 225,931 (0.36%) are in the same
superfamily and can hence be considered homologues.

How many of these homologous pairs can be found directly by
sequence and by structure, respectively? At an E-value cut-off of 0.001,
BLAST recovers 16,300 (7%) out of the 225,931 pairs. Relaxing the cut-
off to 1, the number increases to 25,634 (11%). But even at an E-value
of < 10, it does not exceed 15%. These figures greatly improve if one
considers more sensitive sequence-based methods such as hidden
Markov models. In fact, HHblits is able to retrieve 175,682 pairs (78%)
under optimal conditions, which is even better than the 164,468 (73%),
which are found through structure comparison (TM-score > 0.5).

However, what about the 62,052,449 pairs which are not in the
same superfamily? Among these pairs, there are zero, 9,053, and
72,329 with an E-value of less than 0.001, 1, and 10, respectively.
HHblits identify among these 25%, while the false detection of struc-
tural alignment was limited to below 2%. Expressed as the area under
the curve, HHblits achieves an AUC of 77% and the structure compar-
ison95%comparedwith44% inBlast. AhigherAUCscore indicates that
the classifier is more effective at correctly assigning higher scores to
proteins in the correct superfamily compared to proteins in other
superfamilies. See Supplementary Note 1–3.

As encouraging as the 95%AUC for structure comparisonmay be,
the availability of high-quality structures may be a limitation. It is
estimated that 30% of all eukaryotic proteins contain disordered
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regions of 50 or more consecutive amino acids15, which can be
expected to be of poor quality in 3D structure prediction. These
regions would be amenable to sequence searchwith BLAST, while they
would not be suitable for a direct structural search. To assess howsuch
a large percentage extends to the whole of the AlphaFold database, we
computed the average confidence score for all AlphaFold structures.
We found that 80% of all AlphaFold structures have a pLDDT con-
fidence score of 70% or better, meaning that they are modelled well
with generally good backbone prediction (see Supplementary Note 4).
Thismeans that there is substantial structural data availablewhich is of
suitable quality.

BLAST, a thing of the future. BLAST perfectly addresses many needs
of biomedical researchers such as detection of variants and closely
related sequences.However, the specificproblemof remotehomology
detection is hard for pure sequence search. Here, structure can go
much further than sequence12. We have evaluated this relationship of

sequence and structural similarity by a demonstration analysis of
millions of pairs of domains. Taken together, the analysis suggests that
BLAST with a stringent E-value is very precise at finding homologues
but is not comprehensive. Hidden Markov models are more sensitive
but with limited specificity. Structure comparison balances these two
extremes. If BLAST search incorporates structural data, it could extend
the number of hits which have similar predicted structures andmay be
candidate homologues without jeopardizing the quality of results.

It is not obvious how to integrate structural data into sequence
search, but one approach that appears feasible would be to not use
structure data directly but indirectly through so-called embeddings13,
which are intermediate sequence representations generated by neural
networks andwhich form the basis for structure predictionwith neural
networks.

However, homology detection building on embeddings and
structural data will only contribute to transforming molecular biology
ifmade available in an easy-to-usemanner and ifwidely adoptedby the

Fig. 1 | FfIBP (a)/CaTrailin_4 (b) and Rad52 (d)/Redβ (e) have a poor E-value around 0.3. Yet, their structures superpose very well (c, f), suggesting that they may be
distant homologues.
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community. Prominent institutes such as the NCBI, EBI, and Riken
should now strive to employ fast structure search as implemented in
FoldSeek9 or the use of embeddings to extend classic BLAST-based
protein sequence searches so that Protein BLAST continues to be a
thing of the future.
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