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Genome-wide association study meta-
analysis of blood pressure traits and
hypertension in sub-Saharan African
populations: an AWI-Gen study

Surina Singh 1,2 , Ananyo Choudhury 1, Scott Hazelhurst 1,3,
Nigel J. Crowther 4, Palwendé R. Boua 1,5, Hermann Sorgho5,
Godfred Agongo6,7, Engelbert A. Nonterah 7,8, Lisa K. Micklesfield 9,
Shane A. Norris 9,10, Isaac Kisiangani 11, Shukri Mohamed 11,
Francesc X. Gómez-Olivé 12, Stephen M. Tollman 12, Solomon Choma13,
J-T. Brandenburg1,14,15 & Michèle Ramsay 1,2,15

Most hypertension-related genome-wide association studies (GWASs) focus
on non-African populations, despite hypertension (a major risk factor for
cardiovascular disease) being highly prevalent in Africa. The AWI-Gen study
GWAS meta-analysis for blood pressure (BP)-related traits (systolic and dia-
stolic BP, pulse pressure, mean-arterial pressure and hypertension) from three
sub-Saharan African geographic regions (N = 10,775), identifies two novel
genome-wide significant signals (p < 5E-08): systolic BP near P2RY1
(rs77846204; intergenic variant, p = 4.95E-08) and pulse pressure near
LINC01256 (rs80141533; intergenic variant, p = 1.76E-08). No genome-wide
signals are detected for the AWI-Gen GWAS meta-analysis with previous
African-ancestry GWASs (UK Biobank (African), Uganda Genome Resource).
Suggestive signals (p < 5E-06) are observed for all traits, with 29 SNPs asso-
ciating with more than one trait and several replicating known associations.
Polygenic risk scores (PRSs) developed from studies on different ancestries
have limited transferability, with multi-ancestry PRS providing better predic-
tion. This study provides insights into the genetics of BP variation in African
populations.

Hypertension (HTN) is a major risk factor for cardiovascular diseases
(CVD) such as coronary heart disease, heart valve diseases, atrial
fibrillation, aortic syndromes, cerebral stroke and renal failure1,2.
Between 1990 and 2019, HTN prevalence almost doubled for adults
(aged 30–79 years) and in 2022 affected 1.25 billion people living in
low- and middle-income countries3. This increase is attributed
to population growth and ageing and is predicted to increase to
1.56 billion people by 20254,5. In addition, HTN is a leading risk factor

for premature deaths and disability worldwide6,7, accounting for
17.9 million deaths in 20188. It is present in ~22% of the global popu-
lation, with the highest prevalence observed in Africa (27%), particu-
larly in urban communities and in older people9.

HTN prevalence and awareness differ between and within sub-
Saharan African countries10. There is a paucity of data on the pre-
valence, treatment and control of HTN in many African countries and
therefore its contribution to related conditions, such as hypertrophic
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cardiomyopathy, is not fully understood11,12. Major research focuses on
genetic associations with HTN, due to its high prevalence and the fact
that it doubles the risk for CVD8,13. Familial studies have shown HTN
associations amongst immediate familymembers, with genetic factors
explaining approximately 30–50% of blood pressure (BP) variation
amongst individuals14,15. However, these studies have limitations in
identifying genetic variants responsible for the increased risk of
developing HTN.

Genome-wide association studies (GWASs) have explained 27% of
the genetic heritability for BP16. The GWAS Catalog17,18 includes data
from the first BP/HTN case-control studies conducted in 2007 for
HTN19 and BP as a quantitative trait20. The GWAS Catalog currently
includes several thousand independent genetic associations with BP-
related traits, based on 380 studies and 586 associations with HTN
based on 120 studies (https://www.ebi.ac.uk/gwas, accessed 17
November 2022).

Early GWASs outlined the complexity of studying BP-related traits
and emphasized the importance of large sample sizes to enable the
detection of genetic associations19,20. Large-scale GWAS discovery
meta-analyses have shown significant genetic associations with BP and
HTN16,21,22. The largest BP GWAS to date by Evangelou et al.16 included
over 1 million individuals of European ancestry from the UK Biobank
(UKBB) and the International Consortium of Blood Pressure (ICBP),
identifying over 1000 independent genetic signals (535 novel) with BP-
related loci.

Only a small number ofGWAS forgenetic associationswith BP and
HTN have been performed on the African continent. Despite HTN
being highly prevalent in Africa23, most studies have focused on Eur-
opean populations21. Studies on African-ancestry populations include
mainly African American (AA) populations24–28, with the first GWAS for
HTN in AA conducted in 2009 by Adeyemo et al.29 Hendry et al.30

studied a black South African population (n = 1947 with ~700 women
who are also present in our study) with samples genotyped using the
Metabochip (~200,000 single nucleotide polymorphisms (SNPs) pre-
viously associated with cardiometabolic traits). They found genetic
associationswith systolic and diastolic BP in genes of interest (NOS1AP,
MYRF and POC1B) and in some intergenic regions (DACH1|LOC440145
and INTS10|LPL) 30f.

African populations have high genetic diversity, allele frequency
differences and low linkage disequilibrium (LD) when compared to
other populations31 and therefore GWASs from sub-Saharan Africa
have the potential to discover novel BP-related SNPs. However, it is
important to recognize and adjust for extensive population structure
across different African regions32,33 in genetic association studies and
to use genotyping arrays, such as the Human Heredity and Health in
Africa (H3Africa) SNP array, that is enriched for common genetic var-
iants in African populations34.

In this study, the sub-Saharan African cohort of older adult par-
ticipants referred to as the Africa Wits-INDEPTH partnership for
Genomic Studies (AWI-Gen)35,36, was used and DNA samples were
genotyped with the H3Africa SNP array (Fig. 1). The study aimed to
identify genetic associations with four continuous BP-related traits
(systolic BP (SBP), diastolic BP (DBP) and mean-arterial pressure
(MAP)) and one categorical trait (HTN), in three sub-Saharan African
regions represented in the AWI-Gen study (Supplementary Data 1). To
boost power, the findings were meta-analyzed with other studies that
included African or African-ancestry participants. Fine-mapping,
genetic risk score analysis and transferability were also assessed.

Results
Participants in the AWI-Gen cohort had a mean age (SD) of 51.8 (8.2)
years, with more women (54.7%) (Table 1). The average BMI of the
cohort was 25.1 (6.7) kg/m2 (defined as overweight (body mass index
(BMI) between 25.0 to 29.9 kg/m2). The average resting heart rate was
within thenormal range (<100beats perminute). Themajority of study

participants fell within the normal to pre-HTN BP category (126.9/
83mmHg; 3818 HTN cases, 6918 HTN controls), with most self-
reported as not using anti-hypertension medication (AHM) (76.8%)
(Supplementary Data 2). Among individuals identified as having HTN,
more had stage 1 (17.2%), were not using AHM (16.3%), didn’t have
parents with HTN (12.7%) and were unaware of their HTN status and
not controlling for HTN (11.5%). The discovery GWASs for the five BP
traits (SBP, DBP, HTN, PP, and MAP) was conducted on 10,700 sub-
Saharan African participants with 13,976,041 SNPs. For each BP-related
trait, quality control (QC) was performed and adjustments were made
for the use of AHM (Supplementary Fig. 1). The power calculation
revealed that the current study has at least 80% power to detect
an effect size beta of ~0.60 for SNPs with MAF >0.10 (Supplemen-
tary Fig. 2).

Genetic associations with BP traits
Genetic associations with each of the five BP traits are shown using
Miami and Manhattan plots (Fig. 2). Association studies were per-
formed in two stages: Stage 1 –meta-analysis of theGWAS for the three
geographic regions represented in the AWI-Gen cohort (N = 10,775);
Stage 2 – meta-analysis of Stage 1 with GWASs from other studies on
African and African-ancestry populations (UKBB African-ancestry
(UKBBa, N = 3058) and Uganda Genome Resource (UGR, N = 6400)).
There was no indication of genomic inflation as observed by the QQ-
Plots (Supplementary Fig. 3), since the genomic inflation factor (GIF),
lambda (λ), was <1.05 for all five BP traits, indicating adequate control
for population sub-structure (Supplementary Fig. 4).

Independent GWASs for each AWI-Gen region (East, West, and
South) were conducted (Supplementary Fig. 5). Prior to the Stage 1
meta-analyses, genome-wide (GW) associations (p < 5E−08) for 38
independent SNPs, with 9 SNPs associated withmore than one BP trait
(referred to as sharedSNPs), were found in the three independent AWI-
Gen regions (Supplementary Data 3). Thus, 12 signals each for East
(2 shared SNPs) and South (4 shared SNPs), and 14 signals for West
(2 shared SNPs) were identified. Due to regional differences, themega-
analyses (a single GWAS for the entire AWI-Gen study for each trait),
when compared to the AWI-Gen meta-analyses, gave different GW
associations with different associations identified across regions
(Supplementary Fig. 5). A meta-analysis of the three independent
regions GWASs was done using Han and Eskin’s random-effects (RE2)
model (Stage 1).

Stage 1GWAS. Suggestive associated genomic regions (or loci) (p < 5E
−06) from the Stage 1 discoveryGWAS (identified in FUMA), are shown
in Supplementary Data 4. Across the five traits, 129 independent
genomic regions were identified, with 29 genomic associating with
more than one BP-trait (see bold font SNPs in Supplementary Data 6).
When comparing the GWAS by region, the replication of suggestive
signals (p < 5E−04) differed across the East, West and South African
regions (Supplementary Data 6).

The GW significance threshold (p < 5E−08) was reached for SBP
with rs77846204 (imputed intergenic variant in RP11-38P22.2, p = 4.95E
−08) (Table 2), driven by the West (p = 4.16E−07) and East (p = 3.24E
−04) AWI-Gen region GWASs (Supplementary Fig. 6, Supplementary
Data 6). This SNP was associated with both DBP (p = 1.66E−06) and
MAP (p = 1.51E−07) (see bold SNPs in Supplementary Data 6) and had a
high allele frequency in previous studies37 for all ancestries (MAF > 0.2,
Ancestries: African, Admixed American, East Asian, European, African
Americans). GW significancewas also reached for PP with rs115808349
(imputed intergenic variant in ELL2P2, p = 1.76E−08), driven by the East
AWI-Gen region (p = 2.25E−05) (Supplementary Fig. 6, Supplementary
Data 6) and had low allele frequency for all ancestries (MAF <0.005),
with the except for African populations (0.05).

Several suggestive independent genomic regions (Supplementary
Data 4) wereobserved across the five BP-related traits (40SBP, 25DBP,
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Fig. 1 | Workflow summary for datasets and analyses. Stage 1 GWAS was con-
ducted for all five BP-related traits, and a meta-analysis was performed using the
summary statistics of the GWAS for each AWI-Gen region (East, South, West) –
sample sizes are indicated in brackets. Stage 2 GWAS was conducted for SBP and
DBP only, and was ameta-analysis of the Stage 1 results with other African-ancestry
summary statistics i.e. UGR45 and UKBB. Replication of associations was assessed

using the GWAS Catalog17, PhenoScanner37 and summary statistics from other
studies16,38. Transferability across studies was conducted via PRS based on African-
ancestry (UGR, UKBBa), Multi-ancestry i.e. PAGE46 and European-ancestry i.e. UKBB
& ICBP16 cohorts (discovery) used to assess the distribution of SBP and DBP risk
according to PRS quintiles in the AWI-Gen cohort (target).
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21HTN, 33 PP, and31MAP). The strongest signals (lowestp-values) that
reached suggestive significance were: DBP, rs6494981 (intergenic
TMCO5B, p = 9.40E−08), which was also a suggestive signal for MAP
(p = 1.59E−06, shared SNPs); HTN, rs113112741 (intronic MAML3,
p = 7.12E−08); MAP, rs73315125 (intergenic FDPSP6, p = 8.02E−08),
which was also a suggestive signal for SBP (p = 6.35E−08) and DBP
(p = 1.13E−06, shared SNPs).

Stage 2 GWAS. The number of SNPs included in the analyses
increased from 13,952,382 (Stage 1) to 14,845,228 for the Stage 2
GWAS. No GW associations were detected in the Stage 2 analysis for
any of the traits. Stage 2 GWAS suggestive independent associated
genomic regions (p < 5E−06), are shown in Supplementary Data 5 and
include 40 independent genomic regions (17 SBP, 23 DBP (40 inde-
pendent SNPs)). Most of these signals were driven by the Uganda
Genome Resource (UGR) dataset (p < 5E−04, Supplementary Data 7).
Only one SBP (rs17428471) and five DBP (rs114007149, rs141245590,
rs474277, rs617549, rs556594) independent signalswere also identified
in the Stage 1 GWAS, reaching suggestive significance. The signals with
the lowest p-values that reached suggestive significance were: SBP,
rs115702999 (ncRNA_exonic HECW2:AC020571.3, p = 2.77E−07); DBP,
rs6009081 (intronic PPARA, p = 5.75E−07).

Replication of Stage 1 and 2 GWAS outcomes
Exact replication was conducted to examine whether any of the cur-
rent study’s GW significant signals (p < 5E−08) occur at least at a
modest replication threshold (p < 5E−04) (Stage 1 andStage 2) in anyof
previous BP GWASs16,17,37,38. The absence of replication of the two GW
SNPs (p < 5E−08) for SBP (rs77846204, beta = −1.99, p = 4.95E−08) and
PP (rs115808349, beta = −2.92, p = 1.76E−08) in previous BP GWASs
(p < 5E−04) suggests both the signals to be novel to this study.

It was also investigated whether any of the GW significant SNPs
detected in previous BP GWASs16,17,37,38 (p < 5E−08), showed p-values
(with the same beta direction) below this replication threshold (p < 5E
−04) in the current study (Supplementary Data 8). At this threshold,
replication of 592GW significant SNPs, within 131 identified genomic
regions (p < 5E−08) from previous studies were found (500 Stage 1, 115
Stage 2, 23 both Stages). Details of replication for each previous study
(i.e. GWASCatalog17,Warren et al.38 and Evangelou et al.16) are reported
in Supplementary Data 8. Several SNPs that were associated withmore
than one BP trait were identified, with most replicated SNPs from
European-ancestry studies. Thirteen replicated SNPs for Stage 1 and
three replicated SNPs for Stage 2, were from four trans-ethnic studies
that included African ancestry participants25,39–42 and all SNPs (except
for rs9821489) were associated with more than one BP trait. One
replicated SNP, rs17428471, which replicated for a trans-ethnic
(including African-ancestry) study40 for both stages, also replicated
from an African-ancestry study25.

Fine-mapping and functional analysis
For SBP, the regional plot (Fig. 3) around P2RY1 showed that within a
1MB flanking region of rs77846204, there were other SNPs previously
reported to be associated with SBP and PP39,43,44 (Supplementary
Data 9).Other SNPs in this regionwere also associatedwith CVD-linked
traits such as HDL cholesterol, lung function/post-bronchodilator
(FEV1, associated with lung function), liver function tests and type 2
diabetes. Five SNPs from this region were included in the 95% credible
set and the lead SNP (rs73022036) also showed the highest probability
of being the causal SNP (logbf > 2) (Supplementary Data 10).

For PP, though the regional plot around LINC01256 (rs115808349)
(Fig. 3) shows a second peak with rs62317311 (chr 4), that reached
suggestive significance (p = 8.92E−07), only the lead SNP was included
in the credible set (Supplementary Data 10). Markers within a 1MB
flanking region of rs115808349, were previously associated with
resistance to AHM in HTN (Supplementary Data 9), as well as traits

such as total PHF−tau (SNP × SNP interaction), protein quantitative
trait loci (liver) and mood-related traits. Five SNPs from this region
were included in the 95% credible set and the lead SNP (rs115808349)
also showed the highest probability of being the causal SNP (logbf > 2)
(Supplementary Data 10).

Regional plots for the top signal (lowest p-value) that reached
suggestive significance of association for BP traits in the Stage 1 and 2
GWASs (p < 5E−06) are shown in Supplementary Fig. 7.

Functional mapping of position, eQTL (matched cis-eQTL SNPs)
and chromatin interaction (i.e. 3D DNA–DNA interactions) are repor-
ted in Supplementary Data 11 and Supplementary Data 12. The two
intergenic SNPs with GW significance had no predicted functional
impact.

PRS
Polygenic risk scores (PRSs), developed from three ancestries
(African45, European16 and multi-ancestry46) GWASs (discovery) were
applied to the individuals in the AWI-Gen cohort (target, N = 10,676)
for SBP and DBP (shown in Fig. 4). Due to a lack of comparative data,
this could not be performed for the other three BP-related traits ana-
lyzed in this study.

All PRSs developed from studies in the different ancestries,
showed an increase in predicting higher BP levels as the quintile scores
increased (Fig. 4a). The highest change in effect size (mm/Hg) was
observed in the PRS from the multi-ancestry population, whereas the
lowest change was observed in the African-ancestry PRS derived from
the UKBBa dataset for both SBP and DBP.

Table 1 | AWI-Gen study characteristics (N = 10775)

Characteristics Number of partici-
pants (n)

Mean (SD)/Percen-
tage (%)

Age (years) 10775 51.8 (8.2)

Sex (%)

Female 5892 54.7

Male 4883 45.3

Participants: Site by region

East 1771 16.4

Nairobi 1771 16.4

South 5177 48.0

Agincourt 2253 20.9

Dikgale 1143 10.6

Soweto 1781 16.5

West 3827 35.5

Nanoro 1983 18.4

Navrongo 1844 17.1

SBP (mmHg) 10707 126.9 (22.6)

DBP (mmHg) 10709 83 (16.7)

PP (mmHg)a 10703 43.9 (12.3)

MAP (mmHg)a 10703 97.7 (18.0)

HTN Statusa,b 10708

Controls (No HTN) 7634 71.3

Cases (HTN) 3074 28.7

BP Statusb 10708

Hypotension (Low BP) 512 4.8

Normal BP 3724 34.6

Pre-HTN 3398 31.5

Stage 1 HTN 1850 17.2

Stage 2 HTN 1224 11.4
aBased on systolic blood pressure (SBP) and diastolic blood pressure (DBP) values.
bReported hypertension (HTN) status that was adjusted for the use of anti-hypertension
medication (AHM).
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The variance explained between phenotype and risk score esti-
mated, using adjusted R2 i.e. R2 (%), was highest for themulti-ancestry
PRS (0.22% for SBP and 0.36% for DBP) and lowest for the African-
ancestry PRSs for both SBP (for UKBBa: 0.07%) and DBP (for UGR:
0.04%) (Fig. 4b, Supplementary Data 13). The PRSs generated for the
different ancestries (discovery database, with AWI-Gen as the target
database), were significant (p < P-value threshold (PT)) for SBP in UGR
African-ancestry, for DBP in European-ancestry and both SBP and DBP
in UKBBa and multi-ancestry PRS, indicating transferability (see Sup-
plementary Data 13). The multi-ancestry PRS had the highest number
of SNPs for SBP (326,601 SNPs) and the second highest for DBP (69,071
SNPs). The predictivity of the PRS for SBP andDBP, usingAUROC (Area
Under the Receiver Operating Characteristic curve) and AUC (under
the ROC Curve) metrics, suggested statistical significance at the 95%
confidence interval (AUC lower bound >0.5) i.e. the ability to accu-
rately distinguish patients with andwithout elevated BP, except for the
UKBBa (AUC =0.5, lower-upper bond =0.484–0.51) and Evangelou
(AUC=0.51, lower-upper bond = 0.497–0.522) discovery datasets for
SBP (Supplementary Data 13).

Discussion
HTN is a complex multifactorial disease that involves interactions of
multiple variants in many genes, together with environmental risk
factors, thereby making the identification of genetic associations
complicated. AWI-Gen is a population-based cross-sectional cohort
fromAfricawith a high prevalence ofHTN, showing low awareness and
control of high BP, suggesting a lack of effective treatment10.

The strengths of this study include following the same standard
procedures and analysis parameters for all AWI-Gen participants
across the different geographic regions of Africa and the same geno-
type array and imputation panels, for a GWAS performed in a popu-
lation with a high prevalence of HTN. The AWI-Gen discovery GWAS is
based on participants from three different African regions that exhibit
significant population structure, requiring adjustments during the
analysis. To address this limitation, three region-based GWASs were
conducted for the East, South and West African regions and meta-
analyzed for the AWI-Gen dataset (Stage 1 GWAS). The dataset was of
modest sample size, with limited power to identify associations with
markers with low minor allele frequency and small effect sizes. To
address this limitation, at least partially, the AWI-Gen data was meta-
analyzed with published summary statistics from GWASs performed
on African and African-ancestry cohorts. The availability of suitable
African datasets to replicate the novel associations was a major chal-
lenge. Therefore, replication was conducted using both modest Afri-
can datasets and large European datasets. Finally, the comprehensive
evaluation of risk models was dependent on the availability of suitable
independent African datasets, with the UGR cohort45 and UKBBa being
the most closely related datasets available. Several suggestive signals
(p < 5E−06) were identified in the Stage 1 and 2 GWAS (Supplementary
Data 4), with the identification of two novel SNPs that reached GW
significance for SBP and PP in the Stage 1 discovery GWAS (Table 2).

Regional GW associations across Africa were observed in this study
(Supplementary Data 3).

Li et al.47, based on a machine-learning algorithm to predict new
HTN-related genes, predicted the P2RY1 gene. This gene harbors our
novel SBP GWsignal (rs77846204; p = 4.925E−08), to be one of the top
20 possible HTN genes (Posterior Probability = 0.9750)41. This SNPwas
not GW significant in the fixed effects (FE) model (p = 2.58E−05)
(Supplementary Data 4, Supplementary Data 6, see Supplementary
Note 2.1) due to the variability of effect between regions (Supple-
mentary Fig. 6). Though, indirectly this supports a possible functional
connection between the P2RY1 gene and the trait. Similarly, Sung et al.,
201948, based on a gene-interaction analysis of smoking with PP and
MAP traits in multi-ancestry populations, identified rs147998309
(chr4:133596832) to be associated with PP and current smoking status
in African-ancestry. This SNP is located within 300 kb of our GW sig-
nificant association for PP rs80141533 (near LINC01256, p = E−08). As
these SNPs are not in LD, we expect them to be novel. Nevertheless,
this detection of association in the same genomic region and
strengthens the possibility of involvement of this gene/genomic
region in PP. The rs115808349 SNP also reached GW significance for
the FE model (p = 1.25E−08) (Supplementary Data 6, see Supplemen-
tary Note 2.1). The lack of multiple large African-ancestry datasets and
diversity within each African region could contribute to the lack of
replication of the meta-analysis with larger African-ancestry popula-
tions. Currently, most African GWASs are limited to cohorts from
Uganda, Nigeria and South Africa and studies that include admixed AA
populations49. Similar to this study, genetic associations linked with
BP-related traits in African populations have been found to be limited
to those populations25,26,49,50. There is a need for larger GWAS of con-
tinental African populations, to better investigate the role of these
SNPs in BP regulation among Africans.

In contrast to this study’s discovery GWAS, the GWASs of both the
UKBBa and UGR45 cohorts did not make adjustments for AHM. The
UGR cohort also did not include the first 10 principal components
(PCs) as covariates and performed an inverse normal transformation.
Other potential African studies had to be excluded, due to the lack of
data availability, diversity of populations or pooled admixed African-
ancestry datasets49. Some datasets had large proportions of partici-
pants with traits that could potentially influence HTN status and were
therefore excluded from the meta-analyses (these included the Africa
America Diabetes Mellitus Study (AADM), Durban Case Control Study
(DCC) and Durban Diabetes Study (DDS) cohorts each with ~50% dia-
betic participants45). Having diabetes could affect BP, since it causes
the walls of the blood vessels to stiffen which could lead to HTN, with
many studies reporting a correlation between diabetes and HTN51–53.
The lack of knowledge of related HTN co-factors, such as the pre-
valence andmedication used for diabetes not being recorded, is cause
for concern when trying to determine genetic association with HTN51.
Failure to replicate SNPs that reached GW significance in this study
could also be due to small sample sizes, which would affect the power
of each study to detect associations. In addition, protocols for

Table 2 | Genome-wide associations (p < 5E−08) from Stage 1 AWI-Gen GWAS for BP traits

Trait Lead SNP CHR:POS Nearest genea Type EA RA EAF BETA SE P-value

SBP rs77846204 3:152582544 RP11-38P22.2 intergenic A C 0.19 −1.99 1.24 4.95E−08

PP rs115808349 4:133259109 ELL2P2 intergenic T C 0.05 −2.92 0.85 1.76E−08

Genome-wide associated signals (p < 5E−08) from the Stage 1 discovery GWAS.
Position is given for Build 37 (GRCh37/hg19).
Beta, SE: EAF and P-value (two-tailed) calculated using RE2 (Han and Eskin’s random-effects) model implemented in METASOFT v2.0.170.
P-value, Stage 1 meta-analysis P-value for RE2 (Han and Eskin’s random-effects).
Beta and SE for Random Effects (RE) as provided by METASOFT v2.0.170.
CHR chromosomes, POS gene position, SNP single nucleotide polymorphism, EA effect allele, RA reference allele, EAF effect allele frequency, Beta effect size estimates for continuous traits i.e.
systolic blood pressure (SBP) and pulse pressure (PP), SE standard error.
aNearest annotated gene(s) given.
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phenotype (measurement errors) and genotype (array and imputation
panels used) data, allele frequency, LD (variants with the causal SNPs)
and effect sizes (attributed gene-environmental interactions) may also
differ45,49. The low replication rate of GW associations (Supplementary
Data 8) found in European studies may be attributed to the low power

of the small studies to detect small effect variants. The smaller sample
size for African-ancestry studies is only powered to detect large effect
associations49.

Similar to this study, several BP-related traits are associated with
the same SNPs, and are mapped to non-coding genomic regions,
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making functional mapping challenging54. Blood pressure multi-trait
analyses, using the SHet and SHom approaches (which account for the
correlation of the multi-traits and overlapping or related samples
among the cohorts), provide greater power to detect BP associations

with the SHet method resulting in more associations compared to
SHom26,55. Blood pressure-related traits are closely linked with other
CVD risk factors such as insulin resistance, obesity, kidney function,
atherogenic dyslipidemia, stroke and coronary artery disease56.
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GWASs (discovery studies) and applied to the AWI-Gen cohort (target), using
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Heterogeneous regional patterns and associations have been identi-
fied between HTN and obesity within continental Africans57. The
influence of these CVD risk factors on BP-related traits, along with
other gene-gene, gene-environment, and lifestyle effects among dif-
ferent geographic regions within Africa, could limit the relatively small
AWI-Gen sample population’s ability to accurately identify genetic
associations and should be further investigated.

Since an individual’s genetic data is stable throughout life, it can
be used to potentially predict future disease risk. The PRSs derived
frommulti-ancestry populations providedhigher risk prediction of BP-
related traits in the AWI-Gen cohort compared to PRSs from other
African ancestry populations (Fig. 4). In contrast, PRSs derived from
African ancestry populations had higher risk prediction for lipid traits
in sub-Saharan Africans compared to European and multi-ancestry
scores. This shows that BP-related traits are more complex to under-
stand and the low transferability of PRS to Africans could be attributed
to the smaller sample size, differences in LD, allele frequency andgene-
environmental factors. The lack of predictivity of current PRSs for key
cardiometabolic traits such as HTN highlights the urgent need for
additional data and efforts to build larger African-based PRSs. Poor
transferability has been demonstrated for existing European-based
PRS to African ancestry populations for most phenotypes4,58–61. This
stresses the importanceof further research to optimize PRS prediction
in non-European populations, specifically African populations, with
increased sample sizes to enhance PRS prediction58,60. Machine learn-
ing, using GWAS summary statistics, was found to improve the risk
prediction of PRSs for traits that influence the risk of HTN (diabetes,
obesity/BMI and height) and this suggests that it may also enhance
PRSs for hypertension62,63. The lack of interpretability of machine
learning encourages the development of hybrid techniques, such as
combining Mendelian randomization with machine learning post-
GWAS approaches, to identify causal inferences of associated
variants64,65.

FutureGWASs should focus on regional differences in continental
Africa with large sample sizes per region to better understand
these associations. The SNPs that were associated with multiple BP-
related traits should be explored further, along with conducting BP
multi-trait analyses to increase study power26,55. Gene–gene and
gene–environment interactions of BP-related traits should also be
explored to better understand genetic heritability (where only 3–6%
can currently be explained by GWASs)21. Pharmacogenomics studies
that focus on drug–gene interactions and treatment outcomes may
lead to improved clinical treatment guidelines54.

In conclusion, two signals of GWsignificancewere observed in the
AWI-Gen GWAS for SBP and PP (Stage 1), with no GW significant
associations detected in a meta-analysis with other African-ancestry
studies (Stage 2). Several suggestive signalswere observed for all traits
in analyses for both Stages 1 and 2, with 29 SNPs associated with more
than one trait, and several replicating known associations. Limited
transferability was observed from PRSs developed from studies in
different ancestries, with the best prediction using a multi-ancestry
PRS. The identification of new genetic associations with BP-related
traits will contribute to understanding the genetic etiology of BP var-
iation in African populations and could help provide additional bio-
logical insights.

Methods
The summary workflow is shown in Fig. 1.

Ethics statement and consent
Ethical approval was obtained from the Human Research Ethics
Committee (HREC) (Medical) of the University of the Witwatersrand
(Protocol Number: M190927). This was a sub-study to the AWI-Gen
study (Protocol Numbers: M121029, M170880, M2210108). Each of the

participating sites also obtained ethics approval from their respective
ethics committees. AWI-Gen sample data was used as permitted by the
informed consent provided by the study participants and according to
the H3Africa policies and guidelines (www.h3africa.org).

Study participants
Participants were from the AWI-Gen study (10,775 participants, with
the majority (89.3%) aged between 40–60 years), located in three
African regions (East, West, South) from six sites within four countries
(Fig. 1) i.e. East - Kenya (Nairobi); West - Burkina Faso (Nanoro) and
Ghana (Navrongo); and South - South Africa (Agincourt, Dikgale,
Soweto). Exclusion criteria for the study were: pregnant women, close
relatives of existing participants (first and second-degree relatives),
recent immigrants (who migrated <10 years ago into the region) and
individuals with physical impairments preventing measurement of BP.
Further study cohort details can be found in Ramsay et al.35 and Ali
et al.36.

Singh et al.49 was used as a reference to identify previous GWAS
for BP-related traits in African populations, identifying only one study
with summary statistics for SBP and DBP in a continental African
population i.e. Gurdasani et al.45.

BP measurements
The outcome variables were SBP, DBP, HTN, PP and MAP. A digital
sphygmomanometer (Omron M6, Omron, Kyoto, Japan) was used for
BP measurements, which were taken three times at 2-minute intervals,
with the last twomeasurements used to calculate the average SBP and
DBP levels. PP and MAP were measured and calculated as continuous
traits i.e. PP was calculated as the difference between the SBP and DBP
and MAP was calculated as the sum of DBP and a third of the PP. HTN
(binary trait)was classified according to theSeventhReportof the Joint
National Committee on Prevention, Detection, Evaluation, and Treat-
ment of High BP (JNC7) guidelines66 (see Supplementary Data 1).

Hypertensive individuals (3683 cases; 6018 controls) were defined
by the following conditions: individuals previously diagnosed with
HTN and/or individuals taking medication for HTN and/or individuals
having either SBP equal/above 140mmHg or DBP equal/above
90mmHg10. Adjustments were made for those taking AHM where
15mmHg were added to SBP and 10mmHg were added to DBP
(N = 2293), as done in previous African studies26,39,40.

QC was performed on the phenotype data using Stata V15 (Sta-
taCorp, College Station, Texas, 77845, US)67 to assess outliers and
distribution (Supplementary Fig. 1). The Winsorise very extreme value
approach was used to assess outliers i.e. the values should be
<6 standard deviations (SD) above or below the mean, but no such
values were observed (Supplementary Fig. 1).

Genetic data and imputation
QC. Genotypedata of ~11,000 sampleswas generatedon the 2.3MSNP
H3Africa genotyping array designed to include common African
variants (https://chipinfo.h3abionet.org). The H3ABioNet/H3Agwas
QC pipeline workflow68 (https://github.com/h3abionet/h3agwas/tree/
master/qc) was used to conduct QC analysis as previously described58

(see Supplementary Note 1). After QC ~ 1.7 million SNPs and
10,903 samples remained.

Imputation. Genotype imputation was conducted to increase the
coverage of genomic variation and allow fine-mapping. The African
Genome Resources reference panel (EAGLE2 + PBWT pipeline) at the
Sanger Imputation Server (https://imputation.sanger.ac.uk) was used
for genotype imputation to increase the coverage of the genome, to
narrow down the location of potential causal variants and to capture
most haplotype blocks. Post-imputationQC (i.e. removal of indels, rare
SNPs) resulted in 13,976,041 SNPs (MAF >0.01 and info score > 0.6)58.
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Onlyparticipantswith good-quality phenotype andgenotypedata
were used for the GWAS analyses (N = 10,775). The genome assembly
(base pair position) was the GRCh37/hg19.

Genetic association analysis
The discovery GWAS for the BP-related traits was conducted in two
stages (Fig. 1).

Discovery GWAS (Stage 1 AWI-Gen GWAS). Potential confounders
used as covariates in the GWAS were examined for significance by
running a general linear model, using STATA V1567. As the participants
originate from East, West and Southern Africa, there was significant
population structure across regions (Supplementary Fig. 4);moreover,
the preliminary analysis indicated relatedness among individuals from
some of the AWI-Gen cohorts. Therefore, adjustments based on PCs
(addressing genetic population structure) and kinship-matrix
(addressing relatedness) were used as covariates. Previously defined
confounders were also used as covariates, using Singh et al.49 as a
guideline to determine adjustments (except for BMI which was not
adjusted for in the previous studies which were included in the Stage 2
GWAS). All genetic association tests were adjusted for the covariates:
age, age2, sex and thefirst 10PCs (population structure andgeographic
region-based adjustments).

The H3ABioNet/H3Agwas Association pipeline workflow68 was
used to conduct the discovery GWAS (https://github.com/h3abionet/
h3agwas/). Novel associationsweredefined using theGWAS significant
threshold of p < 5E−08, with a suggestive threshold of p < 5E−06. Lin-
earmixedmodels (LMMs) were used to account for randomeffects for
relatedness. Matrix LMMswere run to test for genetic associations, for
an additive genetic model, for four continuous BP traits (SBP, DBP, PP
and MAP) and one binary trait (HTN), using the Bayesian LMM asso-
ciation testing approach in BOLT-LMMV2.3.2mixedmodel association
testing69. This approach accounts for relatedness, ancestral hetero-
geneity (in samples) and any other unaccounted structure within
the data.

Independent GWASs for each AWI-Gen region (East, West, South)
were conducted and a meta-analysis of summary statistics was con-
ducted, using Han and Eskin’s random-effects (RE2) model (see Sup-
plementary Note 2.1), in METASOFT v2.0.170. This was implemented in
H3ABioNet/H3AgwasMeta-analysis pipeline workflow68 (http://github.
com/h3abionet/h3agwas/meta/meta.nf), to evaluate the robustness of
associations detected in a joint analysis of the AWI-Gen dataset
(Stage 1 GWAS).

A power calculation was conducted (study design = continuous
trait, independent individuals, hypothesis = gene-interaction, fixed
number of samples = 10,903), using Quanto V1.2.371. A graph for power
versus effect size (beta) at different allele frequencies (see Supple-
mentary Fig. 2) was constructed in R72.

Meta-analysis (Stage 2 GWAS). Previous studies, including only
African andAfrican-ancestry participantswere used for ameta-analysis
(sub-population of African participants from the UKBB (https://
biobank.ctsu.ox.ac.uk) and UGR45), to combine with the Stage 1 AWI-
Gen meta-analysis GWAS, to improve study power (Stage 2). Permis-
sion was obtained to access the genotype and phenotype dataset of
theUKBB (researchproject number: 63215). TheUKBBa (N = 3060)was
previously QCed and imputed, and a discovery GWAS was conducted,
following the same methodology used for the Stage 1 GWAS. Gurda-
sani, et al.45 consisted of four African-ancestry cohorts: UGR
(N = 6400), DDS (N = 1165), DCC (N = 1542) and AADM (N = 5231). Dia-
betes causes the walls of the blood vessels to stiffen, which leads to
high BP51–53, therefore AADM, DDS and DCC, which included ~50%
diabetic participants, were excluded.

The Stage 2 meta-analysis was conducted for SBP and DBP by
comparing the Stage 1 GWAS (meta-analysis of AWI-Gen GWAS by

region) with the UKBBa dataset (N = 3058) and the UGR cohort
(N = 6400)45 summary statistics, following the samemethodologyused
for the Stage 1 meta-analysis. Other BP-related traits (HTN, PP, and
MAP) could not be included due to the lack of data availability in
cohorts used in the Stage 2 GWAS.

Visualization and interpretation of genetic associations. Miami plots
were generated, to display significantly associated SNPs in associated
regions, using the qqman package in R73. Genomic control (λ) was
evaluated in R72 and quantile-quantile (Q-Q) plots were constructed in
FUMA74 as a QC check, to re-evaluate genetic inflation and confound-
ing biases such as cryptic relatedness and population stratification
(with the assumption that the regional groupings will be independent
of each other – see Supplementary Note 2.2). Several SNPs were
identified, that were associated with more than one BP-related trait,
meeting suggestive significance (p < 5E−06) in each trait.

Regional visualization of associated SNP regions was performed
using LD from AWI-Gen in LocusZoom V0.4.875, using a 1MB flanking
region, which was compared to data in the GWAS Catalog17.

Replication with previous findings
Replication of the Stage 1 and 2 GWAS with populations of similar
genetic ancestry was performed, using the exact replication strategy76.
Replication was also tested against the Stage 1 and 2 GWAS, using
previous studies: (1) GWAS Catalog17; (2) PhenoScanner37; (3) List of all
3800 published BP-associated SNPs; (4) European-only ancestry
population from Evangelou et al.16, consisting of the UKBB & ICBP
cohorts (currently the largest published study with 757,601 European
ancestry individuals). Warren et al.38 reported only genome-wide SNPs
(p < 5E−08) and summary statistics were not available. Therefore,
replication of suggestive SNPs (p < 5E−04) could not be assessed for all
studies. With the availability of summary statics for Evangelou, et al.16,
it was possible to include the replication of suggestive SNPs for bi-
directional replication analysis. Multiple rows of duplicate SNPs have
been included, since the same SNP was found to replicate (p < 5E−04)
for more than one trait and/or GW significant, for more than one
previous study. Any duplicate signals from the same study across the
previous study databases were removed.

Replication of the Stage 1 and 2 GWAS with previous studies, was
assessed by comparing GW associations (p < 5E−08) against SNPs with
suggestive associations (p < 5E−04). In addition, replication of GW
signals found in previous studies (p < 5E−08) were compared against
the Stage 1 and 2 GWAS suggestive associations (p < 5E−04).

The H3ABioNet/H3Agwas Replication pipeline workflow was
implemented to conduct replication analysis (https://github.com/
h3abionet/h3agwas/tree/master/replication). The exact replication
method was used to test for replication with the GWAS Catalog (see
Supplementary Note 2.3). (https://www.ebi.ac.uk/gwas/, accessed on
27 March 2022).

The GW associations (p < 5E−08) were also compared against the
PhenoScanner database37, since the GWAS Catalog is limited to GW
signals with p < 5E−08 with a few suggestive at p < 5E−06, to pick up
any missed or additional suggestive signals (p < 5E−04) found within
this database (http://www.phenoscanner.medschl.cam.ac.uk). Repli-
cation of the Stage 1 and 2 GWAS was also compared against a list of
3800 published BP-associated SNPs listed within Warren, et al.38

Exact replication was tested by using Evangelou et al. (2018)
summary full statistics data (currently the largest published study with
757,601 European ancestry individuals), for SBP, DBP and PP, to
determine which signals were uniquely identified in studies with
African-ancestry populations. Since both genome assemblies were
GRCh37/hg19, a direct comparison was evaluated in R72. The different
regions of the AWI-Gen datasets were also compared for South,
East and West Africa (which were found to be significantly different
sub-populations).
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Novel-associated SNPs were determined by searching for SNPs
within a 500 kb region of all SNPs with GW associations (p-value < 5E
−08) found in our study.

In silico functional analysis
FUMA74 was used for in silico functional analysis and annotation was
performed to select the most likely causal variants from the GWAS
summary statistics. The FUMA pipeline (https://fuma.ctglab.nl) was
used for functional gene mapping, using the SNP2GENE tool, for
positional, expression quantitative trait loci (eQTL) and chromatin
interaction mappings. Candidate SNPs were selected in the associated
genomic regions with R2 ≥0.6 to define independent significant SNPs
with GW (p < 5E−08) and MAF ≥0.01 for annotation (reference popu-
lation = 1000G Phase3 African; included variants in reference panel
(non-GWAS tagged SNPs in LD);maximumdistancebetween LDblocks
to merge into a locus = 250kb). Candidate SNPs functional con-
sequences were predicted by chromosome base-pair position, and
reference and alternate alleles, to databases containing known func-
tional annotations (see Supplementary Note 2.4).

Fine-mapping
Fine-mapping to identify potential causal variants was conducted by
comparing the GW associations and/or top association SNPs found in
Stage 1 and 2 GWAS, with previously reported BP loci. Lead SNPs
were defined as SNPs within a genomic region that had the lowest
p-value (per BP-trait) i.e. potential causal variants (at 95% confidence
interval). The H3ABioNet/H3Agwas Finemaping pipeline workflow68

was used for fine-mapping (https://github.com/h3abionet/h3agwas/
tree/master/finemapping), to identify potential causal variants and
credible sets (region set at 300 kb, using p-value z-scores to re-
estimate beta and se). Shogun stochastic search was performed to
identify credible sets of potential causal variants, at a 95% confidence
level, using FINEMAP V1.077 which employs Bayesian calculation of
posterior probability.

Polygenic risk score (PRS)
The PRS analysis was conducted using trait-specific effect-weighted
variants obtained from the discovery GWAS, using PRSice-2 V2.3.578

(see note Supplementary Note 3.1).
TheAWI-Gen study genotype datawas used as the target database

and could only be applied to SBP and DBP (due to BP-related trait data
availability) from previous study groups by ancestry. Previous studies
included: (1) African-ancestry only: A meta-analysis was conducted
with the UKBBa dataset (N = 3058) and the UGR cohort (N = 6400)45

summary statistics, using the Han and Eskin’s random-effects (RE2)
model in METASOFT v2.0.170, for the PRS African-ancestry only data-
set; (2) European-ancestry only: Evangelou et al.16 summary statistics,
which consisted of UKBB and ICBP cohorts (N = 757,601), was used for
the PRS European-ancestry only dataset; (3) Wojcik, et al.46 summary
statistics, which consisted of the Population Architecture using
Genomics and Epidemiology (PAGE) (N = 49,839 non-European indi-
vidualswith 17,152AA) cohort, wasused for theoverall Europeanmulti-
ancestry dataset (AA, Hispanic/Latino, Asian-ancestry, Native Hawai-
ian-ancestry, Native American-ancestry).

The prediction models were adjusted for the same covariates
used for the GWAS analysis i.e. age, age2, sex and the first 10 PCs,
generated within PRSice-2 V2.3.578. The adjusted R-squared (adj-Rsq)
was used to account for predictors that are not significant in a
regression model. The Adj-Rsq was computed using residuals after
adjustment (adj-Rsq). The best predictive PRS were estimated using
the highest adj-Rsq. The P-value threshold (PT) was determined in
PRSice-2 V2.3.578, by calculating the empirical P-value for each PRS
(algorithms described in Supplementary Note 3.3). Different PTs were

identified for each trait and compared using Rsq, where the best PT
was defined by the highest Rsq.

In addition, AUROC and AUC metrics were conducted using the
pROC79 package in R72, to evaluate the performance and reclassifica-
tion of a PRS model for the risk prediction. The risk stratification of
PRSs was evaluated using quintile plots (comparing the difference in
the mean of the phenotypic trait between the upper and lowest
quintile. When AUC (Area under the ROC Curve) lower bound >0.5, it
suggests statistical significance (with a 95% confidence interval) i.e. the
ability to accurately diagnose patients with and without elevated SBP
and DBP based on the test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The AWI-Gen data set is available from the European Genome-
phenome Archive (EGA) database (https://ega-archive.org/), with
accession number EGAS00001002482 (phenotype dataset:
EGAD00001006425; genotype dataset: EGAD00010001996, genome
assembly: GRCh37/hg19). The availability of these datasets is subject to
controlled access through, the Data and Biospecimen Access Com-
mittee of the H3Africa Consortium. The processed data generated in
this study are provided in Supplementary Material. The summary sta-
tistics reported in the paper are accessible on the GWAS Catalog
(https://www.ebi.ac.uk/gwas/). Permission was obtained to access the
genotype and phenotype dataset for UKBB (research project number:
63215) (as described in Methods). Publicly available databases include
(1) GWAS Catalog17 (https://www.ebi.ac.uk/gwas/; BP, EFO_0004325;
SBP, EFO_0006335; DBP, EFO_0006336; HTN, EFO_0000537; PP,
EFO_0005763; MAP: EFO_0006340), (2) PhenoScanner37 (http://www.
phenoscanner.medschl.cam.ac.uk/, Traits: BP, SBP, DBP, HTN, PP,
MAP).Other summary statistics reported in the paper are accessible on
the GWAS Catalog (https://www.ebi.ac.uk/gwas/) for (1) Gurdasani, et
al.45 African-ancestry UGR cohort (SBP: GCST009053, DBP:
GCST009052). (2) Evangelou, et al.16 European-ancestry UKBB & ICBP
cohorts (SBP: GCST006624, DBP: GCST006630, PP: GCST006629). (3)
Wojcik, et al.46 multi-ancestry PAGE cohort (SBP: GCST008044, DBP:
GCST008029). Source data are provided as a Source Data file. Source
data are provided with this paper.

Code availability
The H3ABioNet/H3Agwas GWAS pipeline workflow68,80 was employed
for QC, association testing, meta-analysis and fine-mapping (as
described in the methods section, available at https://github.com/
h3abionet/h3agwas).
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