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Design automationofmicrofluidic single and
double emulsion droplets with machine
learning

Ali Lashkaripour 1,2 , David P. McIntyre 3,4, Suzanne G. K. Calhoun 5,
Karl Krauth2, Douglas M. Densmore 3,4,6 & Polly M. Fordyce 1,2,7,8

Droplet microfluidics enables kHz screening of picoliter samples at a fraction
of the cost of other high-throughput approaches. However, generating stable
droplets with desired characteristics typically requires labor-intensive
empirical optimization of device designs and flow conditions that limit
adoption to specialist labs. Here, we compile a comprehensive droplet dataset
and use it to train machine learning models capable of accurately predicting
device geometries andflowconditions required to generate stable aqueous-in-
oil and oil-in-aqueous single and double emulsions from 15 to 250μm at rates
up to 12000Hz for different fluids commonly used in life sciences. Blind
predictions by our models for as-yet-unseen fluids, geometries, and device
materials yield accurate results, establishing their generalizability. Finally, we
generate an easy-to-use design automation tool that yield dropletswithin 3μm
(<8%) of the desired diameter, facilitating tailored droplet-based platforms
and accelerating their utility in life sciences.

Dropletmicrofluidics enablesmassively parallelminiaturized assays by
stably dispersing nanoliter to picoliter samples of a liquid (the dis-
persed fluid) within an immiscible carrier liquid (the continuous fluid)1.
Single emulsion (SE) water-in-oil or oil-in-water droplet systems have
unlocked opportunities in single-cell omics2–4, directed evolution5,6,
chemical synthesis7, and drug and antibody discovery8,9. Double
emulsion (DE) droplets commonly consist of anaqueous corewrapped
in an oil shell that is dispersed in an aqueous outer continuous fluid10

and have been used for controlled drug delivery11,12, production of
microparticles with core-shell structures13,14, and in the food and cos-
metics industries15,16. Due to their aqueous outer fluid and high stabi-
lity, DEs can also be sorted using commercial fluorescence-activated
cell sorting (FACS) machines, enabling off-the-shelf screening in dro-
plet microfluidics at kHz throughput17–20.

Despite the benefits of droplet microfluidics, adoption of this
technology in life sciences has been limited primarily to specialized

groups or commercially available products with limited functionality
(e.g., 10×Genomics Chromiummachines21,22). Amajor limiting factor is
that droplet stability, size, and generation rates dictate downstream
assay performance but are difficult to predict. The effective con-
centration rates of species in droplet assays scales inversely with the
3rd power of droplet diameter, and single-cell encapsulation and the
efficiency of FACS sorting are highly size-dependent17,23. Precise con-
trol over the generation rate is similarly crucial for the development of
integrated multi-component microfluidic platforms24.

Droplets are most commonly made using flow-focusing geome-
tries that yield highly monodisperse droplets over a wide range of
diameters and generation rates and require low continuous-to-
dispersed flow rate ratios25–28. However, the complex and highly non-
linear dynamics ofmulti-phase flows and the large number of effective
parameters in flow-focusing geometries have made it difficult to
establish an analytical solution or a generalizable scaling formula that
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can accurately predict droplet diameter and rate across a broad range
of flow conditions and fluid properties29,30. These limitations are exa-
cerbated in life sciences, where biological assays require buffers with
varying properties (e.g., interfacial tension and viscosity) that sig-
nificantly impact the resultant droplet diameter and generation
rate31,32. As a result, generating droplets with desired properties typi-
cally requires multiple resource-intensive design iterations and
empirical tests33,34, and this process becomes even more challenging
when integrating other components upstream or downstream of a
droplet generator24,35. Thus, a tool capable of accurately predicting
device geometries and flow rates required to create droplets with
desired properties could dramatically simplify device design, facilitate
multi-component devices, and facilitate broader adoption of these
platforms in life sciences34.

Machine learning models trained on experimental data were
recently demonstrated to enable accurate prediction of SE droplet
generationperformance36. However, previouslyproposedmodels only
account for variations in flow rates and device geometries37,38 or
surfactants39. As a result, previous models offer limited utility in life
science applications.

Here, we leverage machine learning and a comprehensive
experimental dataset including both SE and DE droplets comprised of
many different fluids to train models that accurately predict droplet
diameter andgeneration rate across a diverse range offluidproperties,
geometries, flow rates, and device surface properties. In addition, we
demonstrate that our models generalize to additional device geome-
tries, fluids, and materials by experimentally validating “blind” pre-
dictions using additional device geometries, fluid compositions, and

materials. Finally, we integrate these predictive models with an auto-
mated search algorithm to create a design automation tool for SE and
DEdroplets. This online andopen-source tool, calledDAFD3.0 (Design
Automation of Fluid Dynamics), can return the necessary design and
flow rates to achieve the user-specified diameter and rate for different
fluids, while also predicting other characteristics such as performance
range and stability (Fig. 1).

Results
Comprehensive droplet generation dataset
To generate a comprehensive dataset detailing the impacts of device
designs, flow rates, and fluid properties on droplet diameters and
generation rates, we curated and combined two previously gener-
ated SE and DE experimental datasets32,37. This comprehensive data-
set includes 46 different polydimethylsiloxane (PDMS) and
polycarbonate device designs (43 SE and 3 DE generators with 49
flow-focusing geometries combined), 8 different dispersed fluids,
and 6 different continuous fluids for generating aqueous-in-oil and
oil-in-aqueous droplets of 15–250 μm in diameter at rates of
5–12,000Hz (Fig. 2).

We previously generated aqueous-in-oil (DI water andmineral oil)
SEs using 43 devices and multiple flow rate combinations37. This
dataset varied the orifice width from 75 to 175μm and systematically
explored the remaining geometric parameters according to the orifice
width (Fig. 2a). The devices were then tested at a range of capillary
numbers and flow rate ratios (seeMethods for definitions) and yielded
droplets of 25–250μm at 5–500Hz in the dripping regime (474 data-
points total). To improve generalizability, we first converted the orifice
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Fig. 1 | Pipeline for collating data and training models to enable performance
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from 15 to 250μm at rates of 5–12,000Hz. b Schematic of model training to pre-
dict: (1) droplet diameter based on device geometry, fluid properties, and flow
rates, and (2) droplet generation rates based on predicted diameters and con-
servation of mass (see Methods). c Predictive models were integrated with a cus-
tomsearchalgorithm toconvert user-specifieddesireddroplet characteristics to an
optional device design and flow rates. This open-source software tool, DAFD 3.0, is
available at: dafdcad.org. Source Data are provided as a Source Data file.
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dimensions of each device to hydraulic diameter (Dh):

Dh =
2 �W or � H
W or +H

, ð1Þ

whereWor is orifice width and H is channel height. We then computed
normalized droplet diameter D produced by each device:

D=
D
Dh

, ð2Þ

where D is the observed droplet diameter. The diverse range of flow
rates (Fig. 2a.i) and device design parameters (Fig. 2a.ii) resulted in
droplets with normalized diameters ranging from 0.35 to 1.5
(Fig. 2a.iii).

We also previously generated aqueous-oil-aqueous DEs using 3
PDMS devices with different geometries using multiple flow rates (197
datapoints total). These experiments used several biologically relevant
fluids with applications in cell culture, cell lysis, andmolecular biology
(e.g., PCR, NGS, and scATAC-Seq) including 6 different inner, 1 middle,
and 4 outer fluids (Table 1)32. The 3 devices had orifice widths of 15,
22.5, and 30μm at flow-focuser 1 (FF1) and 30, 45, and 60μm at flow-

focuser 2 (FF2), respectively, with a normalized channel depth (i.e.,
aspect ratio) of 1. A serpentine flow resistor between FF1 and FF2 lar-
gely decoupled the generation dynamics of FF1 and FF2 and enabled
easy surfacemodification; the orifice at FF2was twice aswide anddeep
as the orifice at FF1 to ensure a mostly dripping-dripping mode of DE
generation for higher chances of stable DE generation and better
control over inner and outer diameters32,35,40. The resultant droplet
diameters ranged from 15.5 to 54.2μm and generation rates varied
from 1800 to 11,800Hz. To create a generalizable predictivemodel for
droplet generation and to effectively model DE generation, we con-
sidered DE generation as two independent SE generation events at FF1
and FF2, with FF1 generating aqueous-in-oil SEs and FF2 generating oil-
in-aqueous SEs. We also normalized DE inner and outer diameters
using the hydraulic diameters at FF1 and FF2, respectively (i.e., the
orifice at which droplets are generated). Normalized inner diameters
varied from 0.92 to 1.6 (15.5–42.1μm) and normalized outer diameters
ranged from 0.84 to 1.06 (27.4–54.2μm), as shown in Fig. 2b.

We then curated and combined the SE and DE datasets by using
standardized definitions of capillary number and geometric para-
meters (see Methods) to create a comprehensive dataset of micro-
fluidic droplet generation that covers a diverse design space of
capillary numbers, flow rate ratios (Supplementary Fig. 1), geometries,
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overmultiple flow rate ratios and capillary numbers to generate SEs with diameters
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Scale bars represent 50μm. Source Data are provided as a Source Data file.
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fluid properties, and output performance (Table 2). As orifice length
minimally impacts droplet generation in the dripping regime, we did
not consider it as a design parameter41. This enabled us to model flow-
focusing geometries with and without an orifice constriction (a simple
straight channel, where orifice length cannot be clearly defined). As
droplet diameter and generation rate are independent of surface
properties or device material as long as surface properties favor dro-
plet generation (i.e., continuous fluid completely wetting the
channel)42–44, wedid not consider devicematerial or surface properties
as a design parameter. This dataset is the largest experimental dataset
available for microfluidic droplet generation in the dripping regime
and includes aqueous-in-oil and oil-in-aqueous droplets, different
biologically relevant fluids, and various device materials (Supplemen-
tary Table 1).

Droplet diameter and generation rate prediction
We trained scaling law, neural network, and boosted decision tree
models to predict SE and DE droplet diameters and generation
rates. While scaling laws (i.e., empirically fitted scaling formulas) are
simple and have been traditionally used for this task, they are often
inaccurate or fail to generalize to unseen fluids and size scales37,39.
We therefore also trained machine learning models and compared

their accuracy and generalizability to scaling laws. To improve
generalizability, we made all design parameters dimensionless
when possible. This involved using capillary number, viscosity ratio,
and flow rate ratio to account for fluid properties (i.e., viscosity and
interfacial tension) and flow rates. We also normalized all geometric
parameters (channel depth, dispersed and continuous inlet widths,
and outlet channel width) by the orifice width (except for the orifice
width itself) (Fig. 3a). In all models, we first predicted normalized
droplet diameter based on input parameters and then used the
hydraulic diameter of the orifice to calculate an actual droplet dia-
meter:

Dp =Dp � Dh , ð3Þ

where Dp is predicted droplet diameter, Dp is predicted normalized
diameter, and Dh is the hydraulic diameter of the orifice.

To evaluate the accuracy of models and prevent overfitting, we
randomly split the comprehensive dataset into a training set (80%) and
a testing set (20%) for 15 different training sessions and calculated the
average performance of each model against the test set. For each
model, wefirst predicteddroplet diameters and thenused these values
to calculate predicted generation rates based on dispersed fluid flow

Table 1 | Eleven different fluid combinations in the dataset make it possible to investigate the effects of fluid properties on
droplet generation

Dispersed fluid Continuous fluid Interaction

Fluid Viscosity
(mPa ⋅ s)

Fluid Viscosity
(mPa ⋅ s)

Interfacial tension
(mN/m)

Device
material

Fluids included in the comprehensive dataset

1. M9 bacterial media 0.861 HFE 7500 oil + 2.2% ionic Krytox 1.61 12.84 PDMS

2. M9 bacterial media + 25 mM glucose 0.967 HFE 7500 oil + 2.2% ionic Krytox 1.61 11.60 PDMS

3. PBS 0.931 HFE 7500 oil + 2.2% ionic Krytox 1.61 0.543 PDMS

4. PBS + 1% Tween-20 0.988 HFE 7500 oil + 2.2% ionic Krytox 1.61 0.319 PDMS

5. PBS + 0.9% NP40 1.003 HFE 7500 oil + 2.2% ionic Krytox 1.61 1.41 PDMS

6. PBS + 10% PEG 6000 mw 3.431 HFE 7500 oil + 2.2% ionic Krytox 1.61 0.461 PDMS

7. DI water 1.001 NF350 mineral oil + 5% Span 80 57.2 5.0 PCa

8. HFE 7500 oil + 2.2% ionic Krytox 1.61 PBS+1% Tween-20 + 2% Pluro-
nic F68

1.303 0.318 PDMSb

9. HFE 7500 oil + 2.2% ionic Krytox 1.61 M9 salts + 2% Pluronic F68 1.412 0.522 PDMSb

10. HFE 7500 oil + 2.2% ionic Krytox 1.61 M9 salts + 25 mM glucose + 2%
Pluronic F68

1.563 0.458 PDMSb

11. HFE 7500 oil + 2.2% ionic Krytox 1.61 PBS + 10% PEG 6000 mw + 2%
Pluronic F68

6.395 0.455 PDMSb

Unseen fluids for assessing the generalizability of models

12. DMEM complete cell media + 16% Optiprep 1.25 2% dSurf HFE 7500 oil 1.61 9.74 PDMS

13. RPMI 1640 complete cell media + 20% Optiprep +
0.1% Pluronic F127

1.36 2% dSurf HFE 7500 oil 1.61 6.16 PDMS

14. 2% dSurf HFE 7500 oil 1.61 RPMI 1640 complete cell media +
5% Pluronic F127

2.82 4.61 PDMSb

15. Surfactant-free HFE 7500 oil 1.31 Trimethylolpropane trimethacry-
late (TMPTMA)

42 3.10 PDMSb

16. Trimethylolpropane trimethacrylate (TMPTMA) 42 50% glycerol in water 6 15.3 PDMSb

17. 52% w/w glycerol in water (surfactant-free) 7 Silicone oil 4.6 29 Glass

18. 52% glycerol in water + 50 mM dodecyl-
trimethylammonium bromide

7 Silicone oil 4.6 10 Glass

19. 52% glycerol in water + 5 mM hexadecyl-
trimethylammonium bromide

7 Silicone oil 4.6 7.3 Glass

Thesefluidsarecommonlyused acrossdifferent life scienceapplications. Theviscosityof thedispersedfluidsvaried from0.86 to3.4mPa ⋅ s and theviscosity of thecontinuousfluids varied from 1.61
to 57.2 mPa ⋅ s. The interfacial tension between the dispersed and continuous fluids ranged from 0.318 to 12.84mN/m. In addition, generated data and previously published data on droplet
generation using 8 unseen fluid combinations were used to assess the generalizability of models to unseen fluids.
aPolycarbonate.
bPDMS made hydrophilic with plasma treatment.
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rate and conservation of mass (assuming stable droplet generation
with a uniform diameter):

Qd = F � Vd ð4Þ

F =
6 � Qd

π � D3 : ð5Þ

Here, Qd is the dispersed fluid flow rate, F is the generation rate, Vd is
the droplet volume, and D is the droplet diameter. To predict the
generation rate at FF2 of DE generators based on outer diameter, we
set the flow rate of the dispersed fluid to the totalflow rate of inner and
middle fluids (as is required to satisfy conservation of mass).

Fitting several previously published scaling laws45–50 to the com-
prehensive dataset yielded predictions with a mean absolute percen-
tage error (MAPE) range of 17.7–47.6% for diameter predictions and
58.7–3023% for rate predictions (Supplementary Note 1, Supplemen-
tary Table 2 and Supplementary Figs. 2–12). Among these models, the
Liu et al. scaling law showed the best accuracy and used flow rate ratio,
viscosity ratio, and capillary number as inputs (Fig. 3b)45. These inputs
may not always affect diameter independently and the impact of flow
rate ratio can vary from low to high capillary numbers41. Therefore, we
also proposed a scaling law that accounts for some level of parameter
dependence. This scaling law was able to predict diameter and gen-
eration rate with a MAPE of 13.6% and 46.9%, respectively (Fig. 3c).
Including additional parameters as inputs either prevented finding a
solution or reduced accuracy.

Next, we trained a neural network that takes capillary number,
flow rate ratio, and five geometric parameters (orifice width, nor-
malized channel depth, normalized outlet width, normalized dis-
persed fluid inlet width, and normalized continuous fluid inlet
width) as inputs and predicts normalized droplet diameter. We did
not include viscosity ratio as an input for the neural network as it
resulted in a slightly lower accuracy when predicting blind data with
as-yet-unseen fluids and geometries (discussed in Generalizability
to unseen geometries and fluids section), despite achieving a
slightly higher accuracy for the comprehensive dataset

(Supplementary Note 2 and Supplementary Table 3). We chose a
wide and shallow network structure, with 2 hidden layers of 512 and
16 nodes, respectively, which is more suitable for small datasets
compared to deep and narrow structures (i.e., more hidden layers
with fewer nodes)51. The trained neural network significantly out-
performed the scaling laws over 15 randomized sessions, with MAPE
of 7.4% for diameter and 22.6% for generation rate (Fig. 3d, see
Supplementary Fig. 13 for 14 additional training sessions).

We then trained boosted decision trees to predict normalized
droplet diameters using viscosity ratio, capillary number, flow rate
ratio, and the five geometric parameters as inputs. Across 15 rando-
mized training sessions, boosted decision trees showed an MAPE of
5.4% for predicting diameter and 16.6% for generation rate (Fig. 3e, see
Supplementary Fig. 14 for 14 additional training sessions). Overall,
boosted decision trees (closely followed by the neural network)
enabled the most accurate performance prediction in flow-focusing
aqueous-in-oil and oil-in-aqueous droplet generation across different
fluids with diameters of 15–250μm at rates of 5–12,000Hz; models
showed higher accuracy for predicting the inner diameter of DEs
compared to their outer diameter (Supplementary Fig. 15). Other sta-
tistical metrics including coefficient of determination (R2), mean
absolute error (MAE), and root mean square error (RMSE) also
demonstrate the significantly higher accuracy of machine learning
models compared to scaling laws (Table 3).

Machine learning models show even greater improvements for
predicting generation rate. Literature scaling laws resulted in a
negative R2 (i.e., predictions were worse than just predicting the
mean outcome for all outcomes) and a MAE of 1367 Hz (MAPE of
58.7%) for predicting generation rate, compared to R2 = 0.98 and an
MAE of 220 Hz (MAPE of 16.6%) for boosted decision trees and
R2 = 0.97 and MAE of 260 Hz (MAPE of 22.6%) for neural network.
For both machine learning models, the MAPE for generation rate
was approximately three times the MAPE for diameter. This is
mathematically expected according to the conservation of mass. As
the generation rate inversely scales with the 3rd power of diameter,
assuming a relatively small error in diameter prediction and using a
Taylor series expansion yields a 3-fold larger MAPE for rate

Table 2 | The comprehensive dataset includes 868 datapoints on single and double emulsion generation with different fluids

Parameter Unit Lower bound Upper bound Unique values

Output performance

Droplet diameter μm 15.5 245.1 825

Generation rate Hz 5 11,774 838

Droplet diameter normalized by hydraulic diameter N.A. 0.35 1.60 833

Fluid properties

Dispersed fluid viscosity mPa ⋅ s 0.861 3.431 8

Continuous fluid viscosity mPa ⋅ s 1.303 57.2 6

Interfacial tension mN ⋅m−1 0.318 12.84 11

Viscosity ratio (continuous/dispersed) N.A. 0.47 57.2 11

Geometric parameters

Orifice width μm 15 175 10

Normalized channel depth N.A. 1 3 13

Normalized continuous fluid inlet width N.A. 1 4 15

Normalized dispersed fluid inlet width N.A. 1 4 13

Normalized outlet channel width N.A. 1 6 15

Flow parameters

Flow rate ratio (continuous/dispersed) N.A. 0.69 22 187

Capillary number N.A. 0.014 9.399 206

This dataset includes both aqueous-in-oil and oil-in-aqueous dropletswith a broad range of output performance. This is achieved byvaryingeffective parameters inflow-focusingdroplet generation
including device geometry, fluid properties, and flow rates.
Entries in bold represent a category of design parameters.
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Fig. 3 | Boosted decision trees and neural networks accurately predict SE and
DE droplet diameters and generation rates. a To develop generalizable models,
we converted fluid and flowproperties and geometric parameters to dimensionless
inputs (flow rate ratio (Φ), viscosity ratio (λ), capillary number (Ca), and normalized
geometric parameters (X), see Methods) and split the comprehensive dataset into
80% train and 20% test sets across 15 randomized sessions. In each case, we trained
and compared performance of b a previously published scaling law45, c a proposed
scaling law, d a neural network and e boosted decision trees. MAPEs for predicting

rate were approximately 3 times the MAPEs for diameter, as expected from con-
servation ofmass. Red dashed line indicates the 1:1 line, each graymarker indicates
model-predicted values for datapoints included either within the training set (light
gray) or the test set (dark gray) of a single representative model. f Relative
importance of different parameters in predicting droplet diameters with boosted
decision trees; bars represent the average significance and error bar total length
represents twostandarddeviations across 15 random training sessions. SourceData
are provided as a Source Data file.

Table 3 | Performance prediction accuracy for each model

Parameter MAPE R2 MAE RMSE

Droplet diameter prediction

Boosted decision trees 5.38 ±0.34% 0.96 ±0.00 4.62 ± 0.41 μm 8.29 ±0.73 μm

Neural network 7.45 ± 0.42% 0.95 ± 0.01 5.98 ± 0.38μm 9.88 ±0.49μm

Proposed scaling law 13.65 ± 0.68% 0.88 ±0.02 9.89 ± 0.62μm 14.96 ± 1.14 μm

Literature scaling law 17.67 ± 0.45% 0.89 ±0.01 10.85 ± 0.38 μm 14.51 ± 0.80 μm

Generation rate prediction

Boosted decision trees 16.58 ± 1.05% 0.98 ±0.00 219.7 ± 12.7 Hz 452.5 ± 19.5Hz

Neural network 22.59 ± 1.4% 0.97 ± 0.00 260.1 ± 14.3 Hz 499.9 ± 22.9Hz

Proposed scaling law 46.86 ± 4.60% 0.83 ± 0.03 676.9 ± 80.7 Hz 1182.6 ± 90.1Hz

Literature scaling law 58.68 ± 3.09% –0.02 ±0.24 1367.5 ± 590.9Hz 2774.7 ± 582.1 Hz

Metrics are reported for a 20% test set, using the average ± the standard deviation for 15 different randomized training and testing sessions.
MAPE Mean absolute percentage error, R2 coefficient of determination, MAE mean absolute error, RMSE root mean square error.
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prediction (Supplementary Note 3)37. Scaling laws deviate from this
rule likely because their error in predicting diameter is not suffi-
ciently small to neglect higher order approximations in Taylor ser-
ies expansion.

Boosted decision trees are interpretable and can reveal the rela-
tive significance of design parameters for a dataset (Methods: Para-
meter significance study). To determine key parameters in different
scenarios of droplet generation, we trained and evaluated decision
trees on different subsets of the comprehensive dataset. Flow rate
ratio, orifice width, capillary number, and viscosity ratio were most
important for predicting normalized droplet diameter in the com-
prehensive dataset (Fig. 3f.i). For aqueous-in-oil SE droplets, flow rate
ratio remained the most important, followed by capillary number
(Fig. 3f.ii). For DE droplets, normalized inner diameters were mostly
determined by viscosity ratio and flow ratio (Fig. 3f.iii) while normal-
ized outer diameters were affected by all parameters, with capillary
number being the most significant (Fig. 3f.iv).

Prediction of stable and unstable DE generation
Producing stable single-coreDEdroplets requires that generation rates
at FF1 and FF2 be matched. If the rate at FF1 exceeds that of FF2, some
DEs end up with multiple cores; conversely, if the rate at FF1 is lower
than that at FF2, some droplets do not contain a core (Fig. 4a). As
generation rates depend critically on device geometry and fluid
properties, identifying conditions required to generate stable single-
core DEs for unseen reagent combinations is typically a time-
consuming process involving several design iterations and flow rate
optimizations for inner, middle, and outer fluids. Here, we tested if
machine learning models trained to predict diameter and generation
rate could streamline this process by classifying whether particular
device geometry and flow rate combinations lead to stable or unstable
DE generation (i.e., single-core DEs or multiple/missing core DEs). To
accomplish this, we leverage the fact that our models can consider DE
generation as a combination of two independent droplet generation
events (i.e., generation of aqueous-in-oil droplets and oil-in-aqueous
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Fig. 4 | Models’ performance in predicting stable single-core and unstable DE
droplet generation regimes. a DE generation was modeled as two events of
droplet generation at FF1 (aqueous-in-oil) and FF2 (oil-in-aqueous); the threshold
for unstable DE generation (multiple core or missing core) was set to a generation
rate difference (GRD) of 15%. bComparison of predicted and calculated GRD at FF1
and FF2 for (i.) the neural network, (ii.) boosted decision trees, and (iii.) consensus
model over the 197 stable datapoints. Green boxes indicate regions with predicted
GRD <15% and experimentally stable DEs; predictions are shown for a single
representative model. (iv.) The effect of GRD threshold on the true positive rate of
stable DE generation predictions (i.e., correctly predicted to be stable) for different
models; values represent average accuracies and error bars indicate two standard
deviations over 10 randomized training sessions. c Comparisons between errors in

model-predicted generation rates at FF1 and FF2. Markers show comparisons for a
single representative model and dashed line indicates 1:1 line. d Comparisons
between observedmode of instability vs. predicted GRD for (i.) the neural network,
(ii.) boosted decision trees, and (iii.) the consensus model. Correct predictions
appear in green shaded areas, incorrectpredictions appear in red shadedareas, and
GRDspredicted to lead to stabledroplets are indicatedby lighter shading. (iv.) Plots
quantifying accuracy in predicting themode of instability and (v.) the true negative
rate (i.e., percentage of unstable DE generation data that were correctly predicted
to be unstable) for different GRD thresholds. Plot values indicate average accuracy
of predictions and error bar’s total length indicates two standarddeviations over 10
randomized training sessions. Source Data are provided as a Source Data file.
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droplets) and the physical knowledge that generating stable DEs
requires minimizing the difference in generation rates at FF1 and FF2.

We assessed our machine learning models by (1) predicting the
stability of 197 datapoints in the comprehensive dataset that resulted
in stable DE generation, (2) generating 37 additional datapoints on
unstable DE generation using 5 different fluid combinations, and (3)
predicting the instability and mode of instability for the additional
datapoints. For the 197 stable datapoints, we observed a maximum
generation rate difference (GRD) of 15% between the experimentally
calculated generation rates at FF1 and FF2. As non-single-core DEs
result when FF1 and FF2 generation rates are mismatched, it is some-
what surprising that stable DEs can be produced with mismatches of
this magnitude. This discrepancy likely stems from small inaccuracies
in experimentally measured diameters, which scale by a power of 3
when calculating generation rates. We therefore classified any set of
conditions with a predicted absolute GRD of <15% as yielding stable
droplets:

GRD ð%Þ= 100 � F1 � F2

F1
: ð6Þ

Here, F1 and F2 are generation rates at FF1 and FF2, respectively,
calculated using inner and outer diameters and conservation of mass.

Using these criteria, the neural network correctly predicted con-
ditions that generate stable, single-core DEs for 83.8% of stable DE
datapoints over 10 randomized training sessions (Fig. 4b.i). Despite
predicting diameters and generation ratesmore accurately than neural
networks, boosted decision trees correctly classified conditions as
producing stable DEs for only 78.5% of cases (Fig. 4b.ii); in the
remaining cases, conditions that generated stable droplets were pre-
dicted to be unstable. This performance difference likely stemmed
from differing degrees of correlation between model-predicted rate
errors at FF1 and FF2 (R2 = 0.51 and R2 = 0.11 for the neural network and
boosted decision trees, respectively, Fig. 4c.i, ii). To take advantage of
the high accuracy of boosted decision trees in predicting generation
rates and the high accuracy of the neural network in predicting DE
stability, wedeveloped a consensusmodel that averages predictions of
each model (i.e., mean of diameters). This consensus model correctly
predicted stability for 86.4% of datapoints while also reducing gen-
eration rate prediction errors (Fig. 4b.iii, c.iii). Increasing the GRD
threshold for DE stability yielded higher true positive rates in pre-
dicting stable DE generation for all models (Fig. 4b.iv).
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Fig. 5 | Generalization of machine learning models to fluids, geometries, and
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Next, we tested if these models (trained on the entire compre-
hensive dataset instead of a randomly selected 80%) could predict
unstable DE generation for previously unseen data despite only being
trainedon conditions that lead to stableDE generation. Specifically, we
generated 37 additional datapoints using 5 different fluids (Supple-
mentary Fig. 16) to make DE droplets with multiple or missing cores,
and tested if thesemodels correctly predicted unstable DE generation
and its mode of instability. While machine learning models accurately
predicted the mode of instability (i.e., GRD >0 : multiple cores or GRD
<0 : missing cores) for unstable DEs (neural networks, boosted deci-
sion trees, and the consensus model-predicted modes of instability
correctly in 85.4%, 71.4%, and 80.0%of cases across 10 random training
sessions, respectively, they were less able to predict if the degree of
instability precluded stable DE generation (neural networks, boosted
decision trees, and the consensusmodel-predicted absoluteGRD> 15%
for 61.3%, 39.2%, and 51.1% of unstable generation cases across 10
random training sessions, respectively) (Fig. 4d.i–iv). Decreasing the
GRD threshold for DE instability increased the true negative rate of all
models in predicting unstable DE generation (Fig. 4d.v). Varying the
GRD threshold for stability/instability can help maximize chances of
finding a flow rate combination that yield stable DEs or minimize

chances of operating at flow conditions that yield unstable DEs (Sup-
plementary Fig. 17). The prediction performance of this classification
could likely be improved in the future either by training a regime
classifier on a dataset that includes an equal representation of stable
and unstable DE generation cases.

Machine learning models can generalize to previously unseen
geometries and fluids
Training models that accurately generalize to unseen design para-
meters anddata sources is a commonchallenge indevelopingmachine
learning models52–54. Here, we directly tested the ability of each model
(literature scaling model, neural network, boosted decision trees, and
consensus model) to generalize by: (1) using each model to predict
droplet diameter and generation rate for as-yet-unseen fluids, device
geometries, and device materials, (2) comparing model predictions
with previously published diameter and generation rate measure-
ments, and (3) comparing blind model predictions with additionally
generatedmeasurements using anunseendevicegeometry and as-yet-
unseen fluid combinations. This evaluation of the accuracy of “blind”
model predictions provides a stringent test of the degree to which
each model can generalize.

Fig. 6 | Trainedmachine learningmodels and customsearch algorithms enable
design automation of SE and DE droplet generation. a Design automation of SE
droplet generation. (i.) DAFD 3.0 takes user-specified diameter, rate, fluid proper-
ties, and optional constraints as inputs and returns the necessary geometry and
flow rates required to generate the desired droplets. (ii.) DAFD-predicted and
measured droplet diameters after specifying desired SE diameters of 25, 30, and
35μm for an unseen fluid combination (left) and representative images of gener-
ated droplets (right). Measured droplets differed from specified droplets by a MAE
of 2.3μm (MAPE of 7.9%). Bars indicate averagemeasured diameter and error bars'
total length represents two standard deviations in diameter across 10 measured
droplets.bDesign automationof DE droplet generation. (i.) DAFD3.0 also converts
user-specified DE inner and outer diameters to the necessary geometries and flow

rates required to generate them. (ii.) DAFD-predicted generation rates as a function
of middle, inner, and outer flow rates are used to predict generation rate differ-
ences (GRDs) between FF1 and FF2 to identify likely stable (GRD <5%) and unstable
(GRD >5%, gray shaded areas) regimes. (iii.) Comparison between observed and
DAFD-specified DE inner (blue) and outer (orange) diameters for an unseen fluid
combination and 9 different flow rates (left); images show representative DE dro-
plets generated under each condition (right). For stable droplets, observed inner
and outer diameters differed from those specified by an MAE of 2.7μm (MAPE of
6.3%). Experiments were carried out once. Two sets of droplets generated 5min
apart were analyzed to report the mean diameter. Scale bars represent
50μm. Source data are provided as a Source Data file.
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First, we compared model predictions with previously published
but as-yet-unseen datasets including aqueous-in-oil SEs produced
using PDMS26 and glass55 devices and oil-polymer-aqueous DEs dro-
plets produced using PDMS devices56. In the first SE dataset, droplets
of complete DMEM mammalian cell media with added 16% optiprep
were generated using a PDMS device and HFE 7500 oil containing 1.5%
fluorinated surfactant for single-cell analysis (Fig. 5a.i)26. In the second
SE dataset, droplets of 52% glycerol in water with three different sur-
factant combinations were generated using a commercial glass device
(Dolomite) and silicone oil (Fig. 5a.ii)55. In the DE dataset56, core-shell
structures were formed using HFE 7500, trimethylolpropane tri-
methacrylate (TMPTMA), and 50%glycerol inDIwater as inner,middle,
andouterfluids, respectively (Fig. 5a.iii). These three datasets include a
total of 44 datapoints of droplet inner and outer diameters within the
diameter range of our models (15–250μm).

Next, we fabricated a DE generator device based on a previously
published design17 with unseen channel geometries (a normalized
channel depth of 1.33 instead of 1 and two aqueous inlets instead of a
single inlet) and used it to generate DEs with as-yet-unseen fluids sui-
table for mammalian cell encapsulation (complete RPMI 1640 cell
media with 20% optiprep and 0.1% pluronic F127 for inner fluid, dSurf
HFE 7500 for middle fluid, and complete RPMI 1640 with 5% pluronic
F127 for outer fluid). We generated DEs using 10 different flow rate
combinations (a total of 20 inner and outer diameters), yielding dro-
plets with inner diameters of 34.1–41.7μm and outer diameters of
51.2–57.5μm. Finally, after measuring the interfacial tension for each
fluid interface (required to calculate capillary number if not previously
reported, see Methods), we used the pre-trained models to predict
droplet diameters and generation rates of all datapoints (64 total) and
directly compared model predictions to experimental data.

As seen previously, predicted droplet diameters were least accu-
rate for the literature scaling law with MAPE of 45.7% (56.5% rate,
Supplementary Fig. 18) and a negative coefficient of determination.
Themachine learningmodelswere all consistentlymore accurate, with
the consensus model slightly outperforming others in terms of MAPE
(10.1% for diameter and 29.6% for rate, see Supplementary Fig. 18) and
coefficient of determination (R2 of 0.94 and0.95 for diameter and rate,
respectively) averagedover 15 randomized training sessions (Fig. 5b,c).
This ability to accurately predict data with as-yet-unseen fluids, geo-
metries (in case of DE generators demonstrated for devices with FF2
orifice widths that are 2-fold the width at FF1), and device materials
demonstrates an ability to generalize, likely due to the diversity of the
comprehensive dataset in terms of geometries, fluid properties, and
flow rates, the use of dimensionless inputs and output, and L2 reg-
ularization during model training57.

Design automation of SE and DE droplets
The ability to automate the design of devices for producing droplets
with desired diameters and generation rates can dramatically reduce
time spent fabricating, testing, and optimizing microfluidic devices.
We previously developed an online open-source tool (DAFD, for
Design Automation of Fluid Dynamics) that converted user-specified
droplet diameters and rates into a microfluidic design and flow rates
that delivered the desired performance37. However, the previous ver-
sion of this tool was limited to only aqueous-in-oil SEs, a single simple
fluid combination (DI water and mineral oil), large polycarbonate
devices (orifice width >75μm), and a maximum generation rate of
500Hz. Here, we present an open-source-tool, DAFD 3.0, that levera-
ges the consensus model (i.e., average of neural network and boosted
decision trees) and automated search algorithms to design devices
with differentmaterials capable of producing aqueous-in-oil and oil-in-
aqueous SE and DE droplets using a wide variety of different fluids.
This tool supports device orifice widths of 15–175μm and droplets of
15–250μm in diameter produced at rates of 5–12,000Hz.

For SE design automation, DAFD 3.0 takes the desired diameter
and rate alongside the viscosities and interfacial tension of dispersed
and continuous fluids as inputs and provides the necessary device
geometry and flow rates (while allowing for optional design con-
straints; Supplementary Fig. 19 and Methods). To test DAFD 3.0’s
accuracy and reliability for SEs, we specified that we wanted to pro-
duce SEs with diameters of 25, 30, and 35μm using an as-yet-unseen
fluid combination (RPMI 1640 complete cell media with added 20%
optiprep and 0.1% pluronic F127 as dispersed fluid and dSurf HFE 7500
as the continuous fluid) and constrained the possible geometry to
require the same pre-fabricated DE generator device used to assess
model generalizability in Fig. 5a.iv. We then used themodel-suggested
parameters to generate SEs with the DE generator by blocking the
outer fluid inlet and flowing dispersed and continuous fluids through
FF1. Introducing fluids using DAFD-suggested flow rates (Supplemen-
tary Table 4) yielded SEs of 27.5, 31.6, and 37.9 μm in diameter, very
close to model predictions with an overall MAE of 2.36μm and MAPE
of 7.94% (Fig. 6a).

For DE design automation, our tool takes desired inner and outer
diameters and fluid properties (viscosities and interfacial tensions) of
three fluids as inputs and predicts DE inner and outer diameters gen-
erated using either six different default designs or a user-specified
geometry (if a suitable solution can be found). For DE generation,
DAFD 3.0 requires that: (1) the total flow rate at FF1 (i.e., the inner plus
middle fluid flow rates) equals the flow rate of dispersed fluid at FF2 to
uphold conservation ofmass, and (2) that the GRD at FF1 and FF2 to be
<5% to ensure stable DE generation (Fig. 6b.i, ii and Supplementary
Fig. 17). DAFD3.0 then ranks potential solutions basedon their average
deviation from the desired inner and outer diameters and returns a
single best set of flow rates (Supplementary Fig. 20 and Methods).

To test DAFD 3.0’s accuracy and reliability for DEs, we specified
that we wanted: (1) to generate DEs with inner and outer diameters of
25–40 and 45–55μm, respectively, using the same as-yet-unseen fluids
as used above for SEs (RPMI 1640 complete cell media with added 20%
optiprep and 0.1% pluronic F127 as inner fluid and dSurf HFE 7500 as
the middle fluid) and an outer fluid of 5% pluronic F127 and (2) to
constrain the design to the same DE device geometry used above
(Fig. 5a.iv). We then used the 9 suggested flow rate combinations to
generate DEs and quantified the resultant droplet diameters (Supple-
mentary Table 5). Consistent with prior observations that our models
cannot perfectly predict whether flow combinations yield stable
single-core droplets, 3/9 conditions at the extremes of inner droplet
diameter did not yield single-core DEs (highlighted in red in Fig. 6b.iii).
The flow rates suggested to create DEs with the largest inner diameter
(40μm inner diameter and either 50 or 55μm outer diameter) led to
no droplet formation at FF1, while the flow rates suggested to create
DEs with a 25μm inner diameter and a 55μm outer diameter led to
many DEs missing a core. Among stable datapoints, DAFD 3.0 was
highly accurate, generating DEs that were different from target dia-
meters by an MAE of 2.70μm (MAPE of 6.3%). The accuracy for inner
diameter (MAE of 1.5μm and MAPE of 4.8%) was higher than outer
diameter (MAEof 3.9μmandMAPEof 7.9%), potentiallydue to thebias
of training data toward aqueous-in-oil droplets and the minimal yet
non-zero dependence of outer diameter on the inner diameter
(Fig. 6b.iii). Finally, after validating DAFD 3.0’s ability in performance
prediction and design automation of SE and DE droplet generation
with as-yet-unseen fluids, we trained the machine learning models on
all datapoints generated and used here (including previously pub-
lished and additionally generated data) and integrated the updated
models with the online tool.

Discussion
Here, we establish that machine learning models can enable accurate
and generalizable prediction of droplet diameters and generation
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rates based on device geometries, fluid properties, and flow rates for
aqueous-in-oil and oil-in-aqueous SE and DE droplets (shown for DE
generators with FF2 widths 2-fold greater than the width at FF1). These
models cover droplet diameters of 15–250μm at rates of up to
12,000Hz and take a broad range of input design parameters,
including three orders ofmagnitude variation in capillary number, two
orders of magnitude variation in viscosity ratio, and more than one
order of magnitude variation in flow rate ratio and microfluidic chan-
nel size. This represents a notable improvement over previous models
for single-fluid aqueous-in-oil SEs that could only account for varia-
tions in flow rates and geometry for generation rates of up to 500Hz37

or surfactants for a single geometry (Supplementary Table 1)39. In all
cases, the trained neural network and boosted decision trees detailed
here outperform previously published scaling laws and machine
learning models in terms of accuracy and parameter range37,39,45–50.
Nonetheless, a consensusmodel basedonboth theneural network and
boosted decision trees resulted in better generalizability to as-yet-
unseen fluids and geometries.

Our models account for variations in fluid properties, flow rates,
and geometry by considering seven dimensionless inputs (capillary
number, flow rate ratio, viscosity ratio, normalized channel depth,
normalized dispersed fluid inlet width, normalized continuous fluid
inlet width, and normalized outlet width) and only the orifice width as
an input with units. Dimensionless inputs and a dimensionless output
(droplet diameter normalized by hydraulic diameter of orifice) and a
diverse training set enable generalizability to additionally created and
previously published data that the models were not trained on.
Moreover, our models’ accuracy in predicting stable and unstable DE
generationdemonstrates their utility for both aqueous-in-oil andoil-in-
aqueous droplets and validates our simplifying assumption that
dripping-dripping DE generation can be modeled as two independent
droplet generation events with only minimal loss in accuracy.

Predictive models can be integrated with custom search algo-
rithms to create design automation tools that return device geome-
tries and flow rates optimal for producing droplets with user-specified
characteristics. Our tool also enables rapid performance character-
ization of existing droplet generators. For instance, all flow rate com-
binations that result in stable DE generation and the diameters of the
resulting droplets can be quickly predicted. Using the consensus
model that averages predictions of the neural network and boosted
decision trees, we created an online and open-source software tool to
eliminate the need for design iterations when developing SE and DE
generators (DAFD 3.0). DAFD 3.0 requires the viscosities and inter-
facial tension of fluids used for droplet generation, which can be
readily measured using standard rheological and in-situ techniques32,58

or approximated using properties of similar fluids and the Good and
Girifalco model for interfacial tension (see Methods)59. DAFD 3.0’s
diverse training set and an improved training approach allowed it to
significantly outperform DAFD 1.037 in terms of accuracy, range of
design parameters, and generalizability to as-yet-unseen fluids and
geometries (Supplementary Note 4, Supplementary Table 7, and
Supplementary Figs. 21 and 22).

The generalizable predictive power of our models results in part
from training on two independently created datasets for microfluidic
droplet generation (Supplementary Fig. 22). We therefore envision
future versions of DAFD to benefit from publicly available datasets to
achieve higher accuracy and account for a broader range of para-
meters. Future repositories for microfluidic data in addition to repo-
sitories for device designs such asMetafluidics60 would greatly benefit
community-driven design automation efforts. Future integration of
our tool with other computer-aided design tools for microfluidics61,62

and real-time dynamic control schemes63,64 would enable automated
conversion of high-level user specifications to fabrication-ready
designs that robustly deliver the desired performance.

Sophisticated high-throughput microfluidic operations require
multiple integrated components to function optimally in tandem. As
the number of on-chip components increases, the possible design
space grows exponentially, making designing and optimizing such
platforms challenging33. A predictive understanding of microfluidic
components allows the realization of additional functionalities. For
example, here we establish that a predictive understanding of SE
generators allows performance prediction and design automation of
DE generators (a two-component device). Similarly, we expect that a
predictive understanding of droplet generators in conjunction with
deterministic lateral displacement arrays, inertial focusers, pico-
injectors, and cell and droplet sorters will dramatically accelerate the
design of high-throughput screening platforms.

Methods
Dimensionless numbers and flow rate calculations
Droplet generation can be considered as a competition between vis-
cous forces exerted by the continuous fluid and cohesive forces within
the dispersed fluid30. As a result, the capillary number (given by the
ratio of viscous forces to interfacial tension) is commonly used to
describe the characteristics of droplet generation. In flow-focusing
droplet generation, capillary number can be defined as given in Eq. (7):

Ca:=
μc � Uc

σc,d
, ð7Þ

where μc is the dynamic viscosity of the continuous fluid, Uc is the
characteristic velocity of the continuous fluid through the orifice (flow
rate of the continuous fluid divided by the cross-sectional area of
orifice), and σc,d is the interfacial tension between the continuous and
dispersed fluids.

The flow rate of the continuous fluid can therefore be calculated
using capillary number, fluid properties, and device geometry as given
in Eq. (8):

Qc =
Ca: � σc,d �Wor � H

μc
, ð8Þ

where Qc is the flow rate of the continuous fluid, Wor is the orifice
width, and H is channel depth.

The flow rate of the dispersed fluid can be determined from the
flow rate of the continuous fluid and the flow rate ratio as follows:

Qd =
Qc

Φ
, ð9Þ

where Qd is the dispersed fluid flow rate, Qc is the flow rate of the
continuous fluid, and Φ is the flow rate ratio.

Some of the predictive models developed here also take viscosity
ratio as an input, defined using Eq. (10):

λ=
μc

μd
, ð10Þ

where μc is the dynamic viscosity of the continuous fluid and μd is the
dynamic viscosity of the dispersed fluid.

To improve the generalizability of our models to different size
scales, we converted the geometric parameters of a flow-focusing
device to dimensionless numbers by normalizing them by the orifice
width (except for orifice width itself);

X =
X

Wor
: ð11Þ
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Here, X is the dimensionless (normalized) geometric parameter, and X
can be channel height (H), dispersed inlet width (DIW), continuous
inlet width (CIW), or outlet channel width (OCW). Orifice length was
not considered as a design parameter in our models due to its negli-
gible effect on droplet size and rate in the dripping regime. This also
enables us to model flow-focusing geometries with unclear orifice
lengths (e.g., when the outlet channel has the samewidth as the orifice
width such that the orifice length could equally be considered to be 0
or equal to the length of outlet channel).

Measurement of fluid properties
Standard pendant drop tensiometrywith drop shape analysiswas used
tomeasure the interfacial tension between different pairs of dispersed
and continuous fluids, as reported in Table 1 and as previously
described32. Since the density of HFE 7500 oil is greater than the
density of inner and outer fluids used in this study, pendant oil dro-
plets were suspended within the inner or outer aqueous fluids to
measure the interfacial tension. Ametal capillary nozzle (27 gauge)was
used to suspend oil droplets within 5 mL of inner or outer fluid. A
custom MATLAB code was used to analyze the oil droplet shape and
calculate interfacial tension, as previously established65,66. Briefly,
shape analysis was conducted when the oil droplet was as stable as
possible. Since droplets were observed at equilibrium, cohesive forces
(interfacial tension) and gravitational deformation are balanced and
the simplified Young-Laplace equation can be equated to hydrostatic
pressure and solved to estimate interfacial tension. All reported
interfacial tension measurements were the average of 3–6
analyzed drops.

Here, we measured the dynamic viscosity of fluids using a com-
mercial rotational cone andplate rheometer, as previously described32.
Briefly, a 2° cone at 20 °C was used to conduct a logarithmic flow
sweep across a broad range of shear rates (2.86479–2864.79Hz). The
average viscosity in the linear regime was reported as the shear rate-
independent viscosity of the fluid.

In case of limited access to measurement equipment, the inter-
facial tension between two liquids can also be approximated with the
Good and Girifalco model59, using the surface tension of the two
liquids and their molar volume:

σc,d = σc + σd � 2Φðσc � σdÞ1=2: ð12Þ

Here, σc,d is the interfacial tension, σc and σd are the surface tension of
continuous and dispersed fluids, and Φ is the interaction coefficient,
defined as:

Φ=
4ðV c � VdÞ1=2
V c

1=2 +Vd
1=2

, ð13Þ

where, Vc and Vd are the molar volume of continuous and dispersed
fluids, respectively.

Device fabrication
SE droplet generators were rapidly prototyped using a low-cost
desktopmicromill (BantamTools) to ablatemicrofluidic channels with
the smallest dimension of 75μm out of a polycarbonate substrate, as
previously described67. DE droplet generators were fabricated through
standard photolithography followed by soft-lithography as previously
described32. Briefly, a silicon wafer with two different heights (the
height at flow-focuser 2 is double the height at flow-focuser 1) was
created using 2-layer SU8 deposition and standard photolithography17.
To cast PDMS devices from this master mold, we poured a 1:5 ratio of
PDMSon the wafer, degassed, and cured for 15min at 80 °C. Inlets and
outlets were punched using a 1 mm biopsy punch (Robbins Instru-
ments) and then this featured layer was placed on a blank slab of 1:10

PDMS (that was cured for 15min at 80 °C) and baked for 48 h at 80 °C
to bond the device to the blank slab (via off-ratio bonding) and render
the PDMS device hydrophobic (longer bake times result in smaller
pore sizes within PDMS and improve its hydrophobicity).

Single emulsion generation
Single emulsions in the comprehensive dataset were generated using a
microfluidic device made out of polycarbonate using a low-cost
desktop micromill, as previously described37. Single emulsions gener-
ated here for assessing the accuracy of design automation were made
using a double emulsion generator device (Fig. 5a.iv) while blocking
the inlet for the outer fluid and essentially only generating droplets at
FF1. Similarly, SEs can also be made using a DE generator device by
flowing the continuous fluid (here oil) through both middle and outer
fluid inlets. The dataset on SE generation is available in an Open Sci-
ence Framework repository: https://osf.io/938rs/.

Double emulsion generation
Double emulsions were generated using PDMS microfluidic devices
fabricated as described above32. A variety of inner and outer fluids
commonly used in life science applications were used as inner and
outer fluids. HFE 7500 fluorinated oil (Sigma-Aldrich) with a visc-
osity of 1.6 mPa.s with added 2.2% ionic PEG-Krytox surfactant (FSH
157, Miller-Stephenson) was used as the middle fluid (i.e., oil). The
surfactant added to the outer fluid varied depending on its prop-
erties (as detailed in Table 1); in all experiments, we added 2%
Pluronic F68 with or without added 1% Tween-20, except for the
complete RPMI 1640 cell media experiments, where only 5% added
Pluronic F127 (Sigma-Aldrich) was used to stabilize the DEs. The
majority of DE datapoints used to create a comprehensive dataset
and initially train models were taken from our previous study using
a single device geometry32.

We also generated additional data for droplets with a broader
range of inner and outer DE diameters to test model prediction
accuracy. The additional data were generated using two additional DE
generation devices that were either scaled down or scaled up versions
of the original device (orifice width at FF1 set to 15 or 30μm(insteadof
22.5μm) and orifice width at FF2 set to 30 or 60 μm (instead of 45μm)
while keeping normalized channel depth, normalizedoutlet width, and
normalized dispersed and continues fluid inlet widths to 1). Prior to
running experiments, each device was surface treated to render the
2nd half of the device (FF2) hydrophilic. This was achieved by taping
(Scotch tape) over the inner andmiddle fluids inlets (to protect the 1st
half of the device, FF1, frombeing exposed to plasma) and allowing air/
oxygen plasma to enter through the outer fluid inlet and the device
outlet (10min of plasma treatment)17,19. Fluids were introduced to the
microfluidic device using syringe pumps (Harvard Apparatus) using
0.015" I.D. and 0.043" O.D. LDPE polyethylene medical tubing
(BB31695-PE/2, Scientific Commodities). All fluids were filtered using
0.45μm polyvinylidene fluoride (PVDF) membrane filters (Millipore)
before loading. Within fewminutes after surface treatment, we flowed
the outer fluid (aqueous sheath) into the devices to ensure that the
flow-focuser 2 regionof the device remainedhydrophilic; 30 s after the
introduction of the outerfluid, we introduced themiddlefluid (oil) and
innerfluid. Theflow rates of themiddle and innerfluidswere initialized
with a value higher than the intended final value to speed up fluid entry
into the flow-focusers and then slowly lowered to the intended flow
rates. Once flow rates were set on syringe pumps, we waited 4-min
intervals before collecting droplets to ensure flow stability. Droplet
generation was imaged using a high-speed camera (ASI174MM, ZWO)
mounted on a stereo-microscope (AmScope). Once DEs were col-
lected, they were imaged inside a cell-counter chamber slide (Coun-
tess). The dataset on DE generation is available as an Open Science
Framework repository: https://osf.io/938rs/.
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Training machine learning models
The comprehensive dataset used to train models is relatively small
(~1000 datapoints) compared to datasets traditionally used to train
deep neural networks. We therefore used a shallow neural network
comprised of two hidden layers of 512 and 16 nodes with rectified
linear units (ReLU) activation functions51. We trained the model to
minimize a mean squared error loss using an Adam optimizer with a
learning rate of 0.0003 andbatches of size 3268.We also L2 regularized
the model parameters with a penalty term of 0.001 to prevent the
model from overfitting57. This model took 7 design parameters as
inputs (orifice width plus 6 dimensionless numbers: capillary number,
flow rate ratio, normalized channel depth, normalized dispersed fluid
inlet width, normalized continuous fluid inlet width, and normalized
outlet channel width). The model then predicted a dimensionless
droplet diameter (normalized by the hydraulic diameter of the orifice)
as the output. We did not include viscosity ratio as an input parameter
for the neural network since it resulted in slightly lower accuracy in
predicting unseen previously published and additionally generated
data, despite resulting in slightly higher accuracy when predicting the
comprehensive dataset used for initial training and testing.

We used the XGBoost package for implementing the boosted
decision trees69. Ourmodel consists of 100 boosted trees, trained to
minimize a mean squared error loss with an L2 regularization pen-
alty term of 1 and a learning rate of 0.3. To prevent individual trees
from overfitting, we limited tree depth to 6 and halted leaf node
splitting once their weight was below 1. This model took 8 design
parameters as inputs (orifice width plus 7 dimensionless numbers:
viscosity ratio, capillary number, flow rate ratio, normalized chan-
nel depth, normalized dispersed fluid inlet width, normalized con-
tinuous fluid inlet width, and normalized outlet channel width). The
model then predicted a dimensionless droplet diameter (normal-
ized by the hydraulic diameter of the orifice) as the output.

We assessedmodels by randomly partitioning the comprehensive
dataset into train and test sets comprising 80% and 20% of the original
dataset, respectively. Table 3 lists the average accuracymetrics against
the test set across 15 randomized training sessions. The scatter plots of
predictions for all figures depict results from a single representative
run. The source codes for training, testing, and validating the neural
network and the boosted decision trees are available on Open Science
Framework: https://osf.io/938rs/ and our GitHub repository: https://
github.com/CIDARLAB/DAFD-website.

Parameter significance study
For boosted decision trees, we defined parameter significance as the
average loss reduction across the node splits where the parameter
serves as the decision variable (also referred to as gain in XGBoost).We
calculated each parameter’s significance for 15 randomized training
sessions and report their averaged significance in Fig. 4f.i. We also
repeated our evaluation of parameter significance on subsets of the
comprehensive dataset, constraining each subset to only include cer-
tain datapoint types: single emulsions, double emulsion inner dia-
meters, and double emulsion outer diameters (depicted in Fig. 4f.ii, iii,
iv, respectively).

Single emulsion design automation
InDAFD3.0, usersfirst selectwhether to generate a design for singleor
double emulsions. For single emulsions, the user enters the desired
droplet diameter and/or generation rate, rheological properties of
fluids (e.g., viscosities, interfacial tension), and any constraints to the
geometric design or flow conditions of the droplet generator. A cus-
tom iterative optimization algorithm is then used to find a design and
flow rates that deliver the desired performance, as described
previously37. First, the closest experimental datapoint is found that fits
the design constraints. If this closest point fits all constraints and
produces a diameter and rate within 3 μm and 15Hz, respectively, the

experimental point is returned without design iterations. If the closest
point is not within these ranges, an iterative optimization process is
implemented. For a maximum of 5000 iterations, each parameter is
stepped up or down by a specific amount, unless this parameter is
constrained or its value passes the preset parameter bounds (Sup-
plementary Table 6). In this workflow, the average prediction of both
the neural network and boosted decision trees are used to predict
droplet diameter. Prediction accuracy is determined by a model error
cost function:

CðxÞ= j~Ddesired � ~Dxj+ j~Fdesired � ~Fxj ð14Þ

where C(x) is the cost of a design x, eD is the scalar normalized
droplet diameter, and eF is the scalar normalized generation rate.
Both droplet diameter and generation rate are scalar normalized to
a standard scalar to prevent bias from the larger range of possible
generation rates (hundreds to thousands) compared to diameters
(tens to few hundred). If the user only specifies diameter or rate,
only that value is included in the cost function. This process is
repeated until the cost function reaches zero, the maximum num-
ber of iterations is reached, or the change in the cost function is less
than a preset tolerance of 10−9. The geometric design parameters
and the flow conditions of the final solution is then returned to the
user alongside the predicted droplet diameter and generation rate.
In addition, the predicted diameters and generation rates for flow
rates up to ±25% of the designed value are provided to construct a
performance heat map as a device-specific operation guideline for
users. The source code for our SE design automation algorithm is
available on our GitHub repository: https://github.com/CIDARLAB/
DAFD-website.

Double emulsion design automation
Design automation of double emulsion generators requires pairing
two droplet generators in series. First, the user provides the
desired inner and outer diameters and the rheological properties of
their desired inner, middle, and outer fluids. Next, six preset
devices can be selected, with orifice widths of 15, 22.5, and 30 μm at
FF1 (30, 45, and 60 μm at FF2, respectively) and a normalized
channel depth of 1 or 1.33. If none of the six devices are selected by
the user, all are considered in the design automation workflow. The
user can also specify a custom double emulsion generator geo-
metry if preferred. After taking the user inputs, the entire flow
space of the two droplet generators is simulated (50–650 μL/h for
the inner aqueous fluid, 200–1200 μL/h for the middle fluid, and
1500–10,000 μL/h for the outer aqueous fluid). The dispersed flow
rate of flow-focuser 2 (FF2) is simulated across all unique combi-
nations of the total flow rate of FF1 (inner aqueous fluid flow rate
plus the middle fluid flow rate) to ensure that the final design is
compatible with conservation of mass. Each of the datapoints of
FF1 is then paired with points from FF2 that have matching flow
conditions and less than a 5% predicted generation rate difference
(GRD). Any designs outside of a 5% GRD are deemed unstable and
excluded from consideration. No solution is returned if no points
with a GRD less than 5% are found. The pairings with GRD <5% are
then ranked according to the total percentage error in their pre-
dicted inner and outer diameters from the user-specified values.
Top candidate designs are then recommended to the user, allowing
prioritization of designs that return a certain generation rate, or
specific inner or outer diameters. The source code for DAFD 3.0
and the design automation workflow are available at https://github.
com/CIDARLAB/dafd-website.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The comprehensive dataset created and curated in this study and its
subsets (SE and DE datasets) have been deposited in the Open Science
Framework (OSF) repository and are available at https://osf.io/938rs/
and DAFD’s website at http://dafdcad.org. Source Data are provided
with this paper.

Code availability
All source code generated and used in this study for performance
prediction and design automation SE and DE droplets are available at
https://github.com/CIDARLAB/DAFD-website (citable at https://doi.
org/10.5281/zenodo.1015678470) and the associated data necessary
for running the training models are available at https://osf.io/938rs/.
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