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Prediction and stratification of longitudinal
risk for chronic obstructive pulmonary
disease across smoking behaviors

Yixuan He 1,2,3, David C. Qian4, James A. Diao5, Michael H. Cho 6,
Edwin K. Silverman3,6,7, Alexander Gusev 8, Arjun K. Manrai5,
Alicia R. Martin 1,2,3,9 & Chirag J. Patel 5,9

Smoking is the leading risk factor for chronic obstructive pulmonary disease
(COPD) worldwide, yet many people who never smoke develop COPD. We
perform a longitudinal analysis of COPD in the UK Biobank to derive and
validate the Socioeconomic and Environmental Risk Score which captures
additive and cumulative environmental, behavioral, and socioeconomic
exposure risks beyond tobacco smoking. The Socioeconomic and Environ-
mental Risk Score is more predictive of COPD than smoking status and pack-
years. Individuals in the highest decile of the risk score have a greater risk for
incident COPD compared to the remaining population. Never smokers in the
highest decile of exposure risk are more likely to develop COPD than previous
and current smokers in the lowest decile. In general, the prediction accuracy of
the Social and Environmental Risk Score is lower in non-Europeanpopulations.
While smoking status is often considered in screening COPD, our finding
highlights the importance of other non-smoking environmental and socio-
economic variables.

Chronic obstructive pulmonary disease (COPD), characterized by
persistent obstruction to airflow in and out of the lungs, is the third
leading cause of death globally1. While tobacco smoking is widely
recognized as the singlemost important risk factor for COPD, it is now
well-established that 20%-30% of COPD cases worldwide consist of
never smokers, and only 25% of continuous smokers will develop
incident COPD2–5. This suggests that other risk factors such as non-
smoking exposures and genetic markers also play important roles in
pathogenesis.

Heritability estimates for COPD typically range between
20–50%6,7, and several large genome-wide association studies (GWAS)
have uncovered significant genetic risk loci8–10. Recently, a composite

polygenic risk score (PGS) consisting of over 2 million genetic variants
across the genome has been demonstrated to predict incident COPD
and age of diagnosis better than previously published genetic risk
scores11–14. However, a large proportion of phenotypic and disease
variance is still unexplained and likely attributable to environmental
exposures15.

To date, studies of COPD have primarily focused on the relation-
ships between a single or a small group of environmental or socio-
economic factors without considering the dense correlations of the
exposome16–20. There does not exist any metric to summarize the
cumulative effects of socioeconomic and environmental exposures
beyond smoking for COPD. Previously, polyexposure risk scores which
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summarize the cumulative risk of many exposures have been con-
structed for other common diseases such as type 2 diabetes and cardi-
ovascular diseases and have provided more meaningful predictive
performance and risk classification than single risk factors21,22. We
hypothesize that a similar risk score accounting for socioeconomic and
environmental factors beyond smoking will also improve COPD predic-
tion and identify individuals with the highest risk of developing COPD.

COPD disproportionately affects individuals in ethnic minority
groups—some of the strongest environmental risk factors for COPD,
such as tobacco use and occupational exposures to fumes and che-
micals, as well as heritability and susceptibility loci differ greatly in
prevalence between populations23–28. Despite these differences, most
studies have focused on individuals of European ancestry. In genetic
studies where the reference population has consisted of individuals of
European ancestry, the predictive performance of PGS is attenuated in
non-European ancestry populations29,30. It is unclear whether this will
also be true for environmental and socioeconomic factors.

In this study, we constructed and validated the COPD Socio-
economic and Environmental Risk Score (SERS) in a longitudinal
cohort analysis that is conditional on smoking behaviors in the UK
Biobank (UKB).We sought to determine whether SERS can predict and
stratify disease risk across different smoking behaviors, especially
among individuals who have never or rarely smoked.We evaluated our
score in a held-out set consisting of multiple racial and ethnic groups
to determine the generalizability of socioeconomic and environmental
risk factors across populations.

Results
Baseline characteristics of the study population
A schematic of our study design is shown in Fig. 1. After excluding
related individuals with missing information or who had previous/

current COPD diagnoses, our study sample consisted of 320,115 indi-
viduals (median age 57, with 209,600 females). Of these, 6422 parti-
cipants had incident COPD over a median follow-up time of 8.09 years
(interquartile range, 1.25 years).

Developing the COPD socioeconomic and environmental risk
score (SERS)
We first tested univariate associations in an EXposurewide association
study (EXWAS)31 between 83 factors in the categories of “Socio-
demographics”, “Lifestyles and environment”, “Residential air pollu-
tion”, and “Residential noise pollution” and COPD incidence. There
were 26 factors that were significant (P <0.05) after correcting for
multiple hypothesis testing (Supplementary Fig. 1). We used the
EXWAS summary statistics todevelop theCOPDSERS. (Supplementary
Data 1, Supplementary Fig. 1). After applying the PXStools algorithm,
the final SERS for longitudinal COPD development consisted of 11
exposures: “Type of accommodation lived in”, “Own or rent accom-
modation lived in”, “Alcohol drinking status”, “Bread type”, “Current
employment status”, “Nitrogen dioxide (2006)”, “Types of transport
used”, “Types of physical activity in past 4 weeks”, “Major dietary
changes in the past 5 years”, “Attendance/disability/mobility allow-
ance”, “Time spent watching TV”. Since we were interested in devel-
oping a SERS that considered factors independent of smoking
behaviors, we did not include smoking status or pack-years as an input
exposure but instead adjusted for them in our association testing and
SERS derivation. In themultivariablemodel, socioeconomic status and
air pollution factors, such as having disability allowance (hazard ratio
(HR) = 1.72, 95%CI 1.46–2.03, P <0.0001), renting compared to owning
(HR = 1.66, 95%CI 1.41–1.95, P <0.0001), and NO2 levels (HR= 1.01, 95%
CI 1.00–1.01, P = 1.77 × 10−4), were most significantly associated with
increased risk of COPD (Supplementary Data 2). Consuming white

Fig. 1 | Study design. COPD Chronic obstructive pulmonary disease, SERS Socioeconomic and environmental risk score, UKB UK Biobank, EXWAS EXposure wide
association study.
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bread compared to multigrain (HR = 1.14, 95% CI 1.04–1.26,
P = 8.10 × 10−3), being unemployed (HR = 1.49, 95%CI 1.09–2.03,
P =0.0123), and being a previous alcohol drinker (HR = 1.23, 95%CI
1.03–1.47, P = 0.0224) were also significantly associated with increased
risk of COPD.Walking compared to driving a car as the primary source
of transportation was significantly associated with decreased risk of
COPD (HR =0.790, 95%CI 0.69–0.91, P = 7.22 × 10−4).

SERS stratifies the risk of COPD in smoking and non-smoking
populations
We first assessed COPD risk stratification by SERS and smoking beha-
viors (Fig. 2, Supplementary Fig. 2) in the European ancestry popula-
tion (EUR). We binned individuals by SERS percentiles. Incidence of
COPD spanned from 0.28% to 21.64% across SERS percentiles. Com-
pared to the remaining population, individuals in the highest quintile
and decile of SERS had HR of 5.25 (95% CI 4.73–5.84, P < 0.0001) and
7.24 (95%CI 6.51–8.05, P <0.0001), respectively, for COPD (Fig. 2). The
HR of each SERS quintile compared to the first quintile in the EUR
evaluation subset can be found in Supplementary Data 3.

SERS predicted incident COPD with a C index of 0.770 (95% CI
0.756–0.784) (Fig. 3), which was significantly higher than both smok-
ing status (C index 0.738, 95%CI 0.725–0.752) and pack-years (C index
0.742, 95% CI 0.727–0.756). In the joint model (C index 0.766 95% CI
0.752–0.780), all three factors were significantly and positively asso-
ciated with COPD, with pack-years (P <0.0001) being the most sig-
nificant, followed by SERS (P <0.0001), being a current smoker
(P < 0.0001), and being a previous smoker compared to a never smo-
ker (P = 3.02 × 10−2). We also assessed the interaction between SERS
and smoking behavior. Including interaction terms between SERSwith
pack-year and smoking status in the joint model did not significantly
improve themodel performance (C index remain unchanged at 0.770,
95% CI 0.756–0.784), but all interaction terms were significantly
associated with COPD incidence (P <0.05).

In the EUR evaluation set, COPD incidence was 548/47,190 (1.44
per 1000 person years) in never smokers, 504/17,835 (3.57 per 1000
person years) in previous smokers, and 373/5675 (8.43 per 1000 per-
son years) in current smokers. Current (HR = 6.10, 95% CI 5.35–6.96,
P <0.0001) and previous (HR = 2.56, 95% CI 2.27–2.89, P <0.0001)

Fig. 2 | Disease stratification and prediction by SERS across smoking statuses.
A Incidence of COPD in each percentile of the evaluation set (N = 70,702). The top
quintile is colored in dark orange. B COPD incidence for each pack-year quintile.
The distribution of SERS for individuals in each quintile is shown above each point.
C Cumulative incidence plots for never smokers (N = 47,190; top), previous

smokers (N = 17,835; middle), and current smokers (N = 5675; bottom) stratified by
SERS (orange shades) quintiles. The distribution of SERS for each smoking status is
shown in each panel. All displayed p values are two-sided without adjustment for
multiple comparisons. Source data are provided as a Source Data file.
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smokers had amuch higher risk of COPD compared to never smokers.
Higher pack-years of smoking were also associated with a higher
incidence of COPD and greater risk of COPDwith anHR of 1.36 (95% CI
1.34–1.38, P < 0.0001) per ten pack-years smoked. SERS was modestly
correlated with pack-years (r2 = 0.373, P <0.0001), but SERS was able
to stratify COPD risk across smoking behaviors with better granularity.
For each smoking status category (never smoker, past smoker, or
current smoker), we binned individuals into percentiles by SERS.
Regardless of smoking status, COPD incidence increased as SERS
increased (Supplementary Fig. 3). Between the highest and lowest
SERS deciles, COPD incidence spanned 0.6–2.2% among never smo-
kers, 0.6–9.5% among past smokers, and 0.5–21.0% among current
smokers.We also estimated the 10-year cumulative incidence of COPD
stratified by SERS (Fig. 2C). In never smokers, previous smokers, and
current smokers, individuals in the highest deciles of SERS had an HR
of 2.40 (95% CI 1.94 to 2.99, P < 0.0001), 5.14 (95% CI 4.13–6.40,
P <0.0001) and 5.40 (95% CI 4.48–6.50, P <0.0001), respectively, for
developing COPD compared to the remaining population. SERS also
outperformed pack years in previous and never smokers—in previous
smokers, the C-indices for pack years and SERS were 0.717 (95% CI
0.721–0.767) and 0.744 (95% CI 0.721–0.767), respectively. In current
smokers, the C-indices for pack years and SERS were 0.703 (95% CI
0.678–0.729) and 0.777 (95% CI 0.756–0.798), respectively.

Having demonstrated the ability of SERS to predict and stratify
risk within smoking status categories, we then investigated if SERS is
able to predict COPD risk across different smoking behaviors. Never
smokers in the highest SERS decile had an HR of 4.95 (95% CI
1.56–15.69, P = 6.65 × 10−3) and 2.92 (95%CI 1.51–5.61, P = 1.38 × 10−3)
compared to current smokers in the bottom decile and quintile of

SERS, respectively. Never smokers in the highest SERS decile also had
higher risks for COPD compared to previous smokers in the bottom
decile (HR= 4.54, 95% CI 2.39–8.60, P <0.0001) and bottom quintile
(HR = 3.49, 95%CI 2.26–5.39, P < 0.0001) of SERS.We also found that in
individuals who had future COPD incidence, one decile increase in
SERS resulted in, on average, 0.26 years shorter time to disease
(P = 7.21 × 10−4) (Supplementary Figs. 4, 5).

Combining genetic, environmental, and socioeconomic factors
to predict COPD
To assess the complementarity and additivity of polygenic risk, we
computed a composite genome-wide PGS from published weights of
2.5 million SNPS that is predictive of incident COPD and age of
onset11,13,14. In our study population, we found that the PGS had lower
predictive accuracy than smoking behaviors or SERS in the entire
evaluation cohort (C index = 0.663, 95% CI 0.649–0.678) as well as
within each smoking group (Fig. 2, Supplementary Fig. 6). The com-
posite PGS is able to also stratify risk of COPD. Individuals in the top
decile of PGS had an HR of 1.69 (95% CI 1.51–1.89, P <0.0001) com-
pared to the rest of the population (Supplementary Data 4). In never
smokers, previous smokers, and current smokers, individuals in the
highest deciles of PGS had anHR of 1.74 (95%CI 1.38–2.18, P <0.0001),
1.66 (95% CI 1.25–2.21, P = 4.56 × 10−4) and 1.90 (95% CI 1.51–2.39,
P <0.0001), respectively, for developing COPD compared to the
remaining population. PGS was also unable to stratify non-smokers
who had a higher risk of COPD than previous or current smokers.

To measure gross gene-environment correlation, we estimated
the Pearson correlation coefficient between SERS and PGS. Socio-
economic and environmental factors were independent of genetic
risks (P =0.3) in the EUR evaluation population. To further investigate
genetic and environmental interactions in COPD, we classified indivi-
duals into five categories based on whether they were in the top or
bottom quintiles of SERS and PGS: high SERS and high PGS, high SERS
and low PGS, low SERS and high PGS, low SERS and low PGS, or none of
the above. 209/2761 (7.6%) of individuals with both high SERS and PGS
were later diagnosed with COPD, while 4/2755 (0.15%) of individuals
with both low SERS and PGS were later diagnosed with COPD. Indivi-
dualswith high SERS andhigh PGShadanHRof 4.80 (95%CI 4.14–5.56,
P <0.0001) for COPD compared to the rest of the population (Sup-
plementary Fig. 7). To investigate how either SERS or PGSmay identify
risk not implicated by the other score, we compared individuals with
high SERS and low PGS, and individuals with low SERS and high PGS.
Individuals with high SERS and low PGS had an HR of 4.50 (95% CI
3.08–6.57, P <0.0001) for COPD compared to individuals with low
SERS and high PGS, suggesting that low cumulative exposure riskmay
mediate high cumulative genetic risk. Of all individuals who were later
diagnosed with COPD (1,380), there were 435 (31.5%) individuals with
only high SERS, 175 (12.7%) with high PGS, and 209 (15.1%) individuals
with both high SERS and high PGS (Supplementary Fig. 8).

Evaluate prediction models in diverse populations
In the testing set, there were 14,296 total non-European ancestry
individuals: 6099 individuals of Central/South Asian (CSA) ancestry,
4568 of African (AFR) ancestry, 1851 of East Asian (EAS) ancestry, 1127
ofMiddle Eastern (MID) ancestry, and 651 of AdmixedAmerican (AMR)
ancestry. COPD incidence wasmuch lower in these populations. There
were 9 (1.78%) AMR incident cases, 38 (1.09 per 1000 person years)
AFR cases, 61 (1.30 per 1000 person year) CSA cases, 19 (1.30 per 1000
person years) EAS cases, 20 (2.27 per 1000 person years) MID cases,
and, for a total of 147 (1.34 per 1000 person year) incidents cases in
non-European populations.

We calculated SERS for non-European ancestry populations using
weights derived from the EUR reference population, which predicted
COPD riskwith a C index of 0.739 (95%CI 0.695 to 0.760) for SERS and
PGS, respectively. We then randomly subsampled 1500 individuals

Fig. 3 | Performance of each predictionmodel. The C-indices and 95% confidence
intervals for predicting COPD by various models in the entire EUR evaluation set
individuals (N = 70,702) and across different smoking status subgroups (in never
smokers N = 47,190, previous smokers N = 17,835, and current smokers N = 5675).
All models include baseline factors sex, age, age2, sex × age, and the first four
principal components of genetic ancestry. Data are presented asmean valuesof the
C-indices with 95% confidence intervals. SB smoking behaviors, SERS socio-
economic and environmental risk score, PGS polygenic risk score. Source data are
provided as a Source Data file.
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from each of the four largest ancestry groups: EUR, CSA, AFR, and EAS
each for subsequent analyses. SERS had worse prediction in all three
non-European population subgroups compared to the European
ancestry subgroup. (Fig. 4a). We investigated the distribution of
smoking status (Fig. 4b) and two SERS exposures, qualifications, and
accommodations in the entire evaluation population (Fig. 4c–d). The
CSA population had the largest proportion (85.8%) of never smokers,
followed by AFR (81.5%), EAS (84.1%), and EUR (66.7%). In the UKB
population, CSA, AFR, and EAS ancestry populations consistently had
the highest proportion of never-alcohol drinkers and being in paid
employment. The absolute values can be found in Supplemen-
tary Data 5.

Discussion
Wedeveloped a SERS associated with time to COPD that is trained and
evaluated on socioeconomic, environmental, and behavioral variables
beyond smoking. The score is able to identify individuals with the
highest risk of disease across smoking statuses.

Cigarette smoking iswell-established as the greatest risk factor for
COPD. However, a striking proportion of 20%–30% of COPD cases
worldwide consists of never smokers2,3. Previous studies have investi-
gated the associations between a small set of exposures such as air
pollution and occupational exposures (e.g., gas and chemicals)18–20 and
COPD. However, individuals are simultaneously exposed to an exten-
sive breadth of other factors. Thus, considering broader categories of
environmental exposures to assess risk for COPD21,32 may be useful to
screen populations beyond smoking.

In this study, we used a data-driven approach to build the COPD
SERS, which includes 11 indicators of alcohol consumption, air

pollution, diet, employment, household information, physical activity,
and sociodemographics information, that captures holistic socio-
economic and environmental risk beyond smoking status. Our
approach re-highlighted previously reported associations between
COPD risk and socioeconomic and environmental factors such as air
pollution33,34, alcohol consumption35,36, physical activity37,38, and
employment status39. Other risk factors that showed strong associa-
tions with COPD in our univariate XWAS procedure were not included
in our final SERS model as our approach implements a shrinkage and
selection procedure that favors interpretability and independence
over complexity. For example, while several correlatedmeasures of air
pollution such as PM2.5, PM10, NO, and NO2 are established risk fac-
tors for COPD, previous studies have shown NO2 to have the highest
risk for COPD34. In our data-driven procedure, PM2.5, NO, and NO2
were all significantly associated with COPD incidents in univariate
association, but only NO2 was retained for the final multi-
variable model.

SERS achieved marginally better predictive ability for COPD than
smoking status and pack years in the total population. However, within
smoking status subgroups, SERS outperformed pack years. SERS was
also able to identify never smokerswith higher risk of COPD.While risk
models for COPDhave been proposed40, none, to our knowledge, have
used longitudinal biobank-level data to assess the independent risk of
smoking, socioeconomic, and environmental factors on incident
COPD. For instance, Chen at al.41 modeled FEV1 and FVC decline using
data from four thousand participants in the Framingham Offspring
Cohort. Their model is composed of 20 factors including pack years,
laboratory blood measurements (e.g, white blood cell count), and
diseases and symptoms and achieved C-statistics between 0.86 and

Fig. 4 | Prediction of COPD across ancestry groups by SERS. A Prediction
accuracy of 1500 individuals randomly subsampled from each of the three largest
non-European ancestry subgroups relative to European ancestry individuals with
standard error bars. Data are presented as mean values with 95% confidence
intervals. Distribution of (B) smoking status (left to right: Never, Previous, Current),

(C) alcohol status (left to right: Never, Previous, Current), and (D) employment (left
to right: In paid employment or self-employment, Retired, Looking after home and/
or family, Unable to work because of sickness or disability, Unemployed, Doing
unpaid or voluntary work, Full or part-time student, None of the above) across all
ancestry groups. Source data are provided as a Source Data file.
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0.87. Guo et al.42 developed a COPD prediction model consisting of
early life factors, genetic polymorphisms, and smoking history using
cross-sectional data from roughly 700 Chinese individuals. Future
modeling approaches should test how complementary, or not, phe-
notypic or blood measures are with SERS-like factors in prediction
of COPD.

We compared SERS against a composite genome-wide PGS from
published weights of 2.5 million SNPS that has been previously
demonstrated to be the most predictive genetic risk score for inci-
dence and age of onset of COPD to date11,13,14. In our study population,
we found that the PGS had significantly lower predictive accuracy than
smoking behaviors or SERS in the entire evaluation cohort as well as
within each smoking group. PGS was also unable to identify never
smokers with an elevated risk of COPD compared to individuals who
were previous or current smokers. SERS and PGSwere not significantly
correlated with each other, and participants with both elevated SERS
and PGS had a much greater risk for disease compared to those with
only one elevated score. We also investigated whether SERS and PGS
may rescue the risk conferred by the other score. Such phenomena
would be expected under a liability threshold model, in which genetic
and environmental effects combine to determine an individual’s total
disease liability43. Individuals with high SERS and low PGS had anHR of
4.50 for COPD compared to individuals with low SERS and high PGS,
suggesting that the effects of genetic risk on COPD depend on the risk
conferred by environmental factors. These results are supported by
COPD genetic loci related to nicotinic acetylcholine receptors and
smoking-related behaviors (e.g., CHRNA3 and AGPHD1)44.

COPD is a disease that has well-documented disparities between
groups worldwide. While PGS has been shown to be far more accurate
in European than non-European ancestry groups29, it was unclear if a
similar trend would hold for socioeconomic and environmental fac-
tors. Unlike PGS, which decays in accuracy from the study populations
as a function of ancestry and genetic distance, SERS performance is
driven by cultural, racial, socioenvironmental, and other phenomena.
We investigated the generalizability of SERS for predicting COPD risk
in non-European ancestry populations by evaluating the performance
of SERS in several subsets of non-European ancestry populations in the
UKB. The prediction accuracy was consistently lower in the non-
European ancestry populations compared to the European evaluation
set. In our study population, there were differences in the makeup of
some of the most important factors of SERS. For example, CSA, AFR,
and EAS ancestry populations had a much smaller proportion of
alcohol drinkers and a much higher proportion of being in paid
employment compared to the EUR ancestry population.We recognize,
however, that the smaller sample size of non-European individuals in
the UKB results in lower power and confidence in our conclusions, and
that certain exposure factors such as bread type, may not be familiar
and generalizable to every population. Future studies should strive to
validate our results in larger datasets withmore diverse characteristics
and ancestry backgrounds, such as in the All of Us Research Program45.
Furthermore, participants included in the UKB may not be repre-
sentative of the general population as they tend to be older and are
prone to healthy volunteer selection bias46. We recognize that an
inherent challenge with generalizing results from case-control studies
is that ascertainment induces positive correlations between genetic
and environmental effects where none may exist in the unascertained
population47. While SERS has the potential to guide surveillance and
facilitate personalized care for COPD, our results should be replicated
and carefully validated in datasets and randomized experiments with
longer-term follow-up that collect similar environmental and beha-
vioral instruments.

There are notable limitations to using biobank-derived samples
with linked diagnosis information to study the association between
exposures and COPD. First, there is substantial underdiagnosis and
misdiagnosis of COPD in clinical care48. While our study used

spirometry as additional diagnostic criteria, only a fraction of patients
had repeated follow-up measurements. Participants with COPD diag-
nosed from hospital admission records may also consist of more
severe cases. However, these participants are crucial to study as severe
diseases requiremore resources and experiencegreatermorbidity and
mortality. The model’s predictive performance for milder COPD
symptomsmay bemore uncertain. It is also important to be aware that
EHR documents the time of diagnosis but not necessarily the time of
disease onset. While easy to measure, self-reported exposures may be
prone to measurement error and recall bias49. In our study, we
assumed that these errors occur at random across all variables con-
sidered in the SERS. We excluded exposure variables with >10% miss-
ingness, but future studies with more completeness of variables, such
as by imputing missing exposure information, would be valuable. One
of the most significant challenges in single cohort observational stu-
dies such as the UKB is deducing the direction of causality or potential
confounding exposure variables. By excluding individuals who at
baseline had a past or current diagnosis of COPD, we are more con-
fident that the socioeconomic and environmental risk factors in our
study conferred risk for COPD. However, it is possible that some
exposures in the SERS (e.g., response to major dietary changes in the
past 5 years)may be explained by other comorbidities. Further studies
using causal inference approaches such as Mendelian randomization
can better inform the directions of effects between exposures and
disease50,51. This is particularly relevant when considering scenarios
where diagnostic biases are likely, such as whether smokers are more
likely to be diagnosed with COPD regardless of underlying genetic
liability. Understanding genetic associations is especially important for
considering interventions as it can inform biological pathways and
mechanismsofCOPD. Inour study, ourmodel gives themost generous
estimate for the PGS as the original GWAS used in developing the PGS
contained some overlapping samples from the UKB. Despite this, our
estimates of prediction are consistentwith previous reports of AUC for
predictingCOPD11.While the composite PGSweused is basedonmulti-
trait analysis of quantitative spirometry GWAS, it has been demon-
strated tobemorepredictive ofCOPDcases and time todiagnosis than
other existing PGS. It is, however, unclear how much could be
improved by considering amulti-trait analysis of genetically correlated
traits, such as GWAS of COPD, asthma, and other phenotypes relevant
to lung function52.

Until recently, studying the cumulative effects of environmental
exposures has not been possible on a large scale. With the rise in
population-level “biobanks” and high-dimensional epidemiological
cohort’omics data, there are new opportunities to systematically
consider a greater range of non-genetic factors. Leveraging the data
available from the UKB, we constructed and validated the first COPD
risk score that summarizes the risk conferred by a broad set of
socioeconomic factors and non-smoking environmental exposures.

Methods
Ethics statement
Data for this study were obtained from the UKB Resource under
Application Number 22881. All participants from the UKB provided
written informed consent for anonymized data to be used for research
and publication. This study was conducted in accordance with the
criteria set by the Declaration of Helsinki. The Harvard Internal Review
Board deemed our investigation as Not Human Research (IRB16-2145).

The UKB is a large observational study of over half a million par-
ticipants between 40–69 years of age at the time of recruitment
between 2006 and 201053. In our analysis, we excluded individualswho
had a COPD diagnosis prior to the time of assessment, had missing
diagnosis or follow-up time, were related, or had missing covariates.
There were 320,115 individuals remaining. We used ancestry assign-
ments from the Pan-UK Biobank (PanUKBB) project54, which was
downloaded through the UKB portal as Return 2442. Based on the
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ancestry assignments, we identified 358,627 Europeans (EUR), 8284
Central South Asians (CSA), 6446 Africans (AFR), 2641 East Asians
(EAS), 1578 Middle Easterners, and 970 AMR. In brief, PanUKBB con-
ducted a pan-ancestry analysis of the UKB by comparing the genome
of UKB participants against two large diverse global datasets, the 1000
Genome Project and the Human Genome Diversity Project, and
assigned ancestry based on genetic similarity. The European partici-
pants were randomly divided into three subgroups, in a roughly 3:3:2:
ratio (association testing N = 113,714, derivation of SERS N = 113,291,
evaluation N = 93,110). The evaluation subset, used for assessing the
performances of the risk scores, also contained all non-European
individuals. We used the entire association testing subgroup to con-
duct the initial exposure-wide association study (XWAS) on COPD.
SERS was calculated for 84,998 individuals in the evaluation subgroup
who had complete exposure responses for the final SERS factors.

Phenotype ascertainment
We classified COPD based on a combination of linked hospital
admission records for International Classification of Disease (ICD) 9
codes of 490, 491, 492, 494, 496 ICD-10 codes of J41.X, J43.X, J44.X,
J98.2, J98.3, having a forced expiratory volume (FEV1)/forced vital
capacity (FVC) ratio of <0.70, or having self-reported COPD at baseline
or in repeated follow-up interviews.Weused the earliest recorded time
of linked admission records, self-report, or lung function assessment
of COPD as the time of event in our analysis. In the full population, we
identified 8,632 individuals diagnosed with COPD by self-report,
14,677 by ICD10 code, and 30 by ICD9 code. We excluded individuals
who had a COPD diagnosis at the time of the first assessment. There
were also 50,599 additional individuals who had an FEV1/FVC ratio of
<0.70 at the time of assessment who were excluded from our study
analysis.

Socioeconomic and environmental risk score derivation and
validation
SERS captures the cumulative impact of socioeconomic, environ-
mental, and behavioral exposure risks. Individuals receive a score
based on the weighted sum of many common non-genetic factors to
which theymaybeexposed.Weights are determinedby the strengthof
corresponding associations with the outcome of interest.

We derived SERS using methods from the R package
PXStools21,22.We first conducted an EXWAS for incident COPD in the
derivation subgroup31,32. We then iterated through a LASSO-based
stepwise selection procedure to identify independent features asso-
ciated with longitudinal COPD development in the testing subgroup.
We calculated the final SERS for the evaluation subgroup by taking the
weighted sum of the exposure variables. In each step, we adjusted for
sex, age, age2, age × sex, the first four principal components of genetic
ancestry, smoking status, and pack-years.

The initial set of exposure variables we included were indicators
of physiological state, environmental exposure, and self-reported
behavior collected during the first assessment visit period
(2006–2010).Wewanted to construct a risk score separate of smoking
effects, thus we did not consider any exposures in the “Smoking”
category. Altogether, we started with 102 unique variables in total.
Among these, we only considered variables that had less than 10%
missingness, resulting in 83 variables for our pipeline. We processed
our exposure data using the PHESANT software tool55. Variables
belonged to four data types: continuous, ordered categorical, unor-
dered categorical, and binary (Supplementary Data 1). We excluded
responses of “Prefer not to answer” and “Do not know”. For unordered
categorical variables, the response with the largest number of parti-
cipants was selected as the reference group. Individuals that respon-
ded “never smoked” were assigned a pack-year of zero. The final risk
score contained eleven independent exposure factors.

Polygenic score derivation
We reconstructed a composite PGS for lung function and COPD con-
sisting of roughly 2.5 million genetic variants11. In summary, Moll et al.
derived the most comprehensive and accurate composite PGSs for
COPD by training a logistic regression model based on two separate
PGSs for forced expiratory volume in 1 s (FEV1) and FEV1/forced vital
capacity (FVC) based on results from the GWAS of lung function from
UKB and SpiroMeta. The composite PGS consisting of roughly 2.5
million SNPs identified individuals with elevated risk for moderate-to-
severe COPD, emphysema subtypes associated with cigarette smok-
ing, and radiographic patterns of reduced lung growth. The PGS has
also been demonstrated to be associated with incident COPD and age
of onset in large population-based cohorts13,14.

Statistical analysis
Weconducted all analyses inR version 3.5.1.We placed individuals into
bins by their PGS and SERS percentiles and calculated the prevalence
ofCOPDwithin eachbin aswell as thehazard ratios forCOPD in the top
bins of PGS and SERS compared to the remaining individuals. We
performed multivariable Cox proportional hazards regressions of
COPD on combinations of risk scores and covariates to obtain
C-indices for each model. The base model contained only the covari-
ates sex, age, age2, age × sex, and the first four principal components of
genetic ancestry. The hazard ratios for membership in certain sub-
groups versus another subgroup were calculated by fitting a Cox
regression model with a binary indicator variable. To measure the
gross gene-environment correlation, we estimated the Pearson corre-
lation coefficient between PGS and SERS. The standard errors of rela-
tive prediction accuracy were calculated by taking the absolute
standard error multiplied by relative accuracy. To adjust for multiple
tests, we used the “p.adjust” function of the base stats R package for
Benjamini-Hochberg False Discovery Rate adjustment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank data are available by application via https://www.
ukbiobank.ac.uk/. Individual-level genotype data from the UK Bio-
banka are available under restricted access to preserve participant
privacy. Access can be obtained by researchers through the UK Bio-
bank Data Analysis Platform. The data for this project were accessed
through approved protocol 22881. Weights for the composite poly-
genic risk score were downloaded from http://www.copdconsortium.
org/polygenic risk-score. Source data are provided with this paper.

Code availability
No custom code was developed for this project. To derive SERS, we
used the previously developed PXStools software download from
https://github.com/yixuanh/PXStools. To calculate PGS, we used
PLINK1.90 downloaded from https://www.cog-genomics.org/plink/.
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