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High-dimensional phenotyping to define the
genetic basis of cellular morphology
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The morphology of cells is dynamic and mediated by genetic and environ-
mental factors. Characterizing how genetic variation impacts cell morphology
can provide an important link between disease association and cellular func-
tion. Here, we combine genomic sequencing and high-content imaging
approaches on iPSCs from 297 unique donors to investigate the relationship
between genetic variants and cellular morphology to map what we term cell
morphological quantitative trait loci (cmQTLs). We identify novel associations
between rare protein altering variants in WASF2, TSPAN15, and PRLR with
several morphological traits related to cell shape, nucleic granularity, and
mitochondrial distribution. Knockdown of these genes by CRISPRi confirms
their role in cell morphology. Analysis of common variants yields one sig-
nificant association and nominate over 300 variants with suggestive evidence
(P < 10−6) of associationwith oneormoremorphology traits.We thenuse these
data to make predictions about sample size requirements for increasing dis-
covery in cellular genetic studies. We conclude that, similar to molecular
phenotypes, morphological profiling can yield insight about the function of
genes and variants.

Cellular morphology is an important and informative cellular trait in a
variety of biological contexts, especially the study of disease. A classic
example is sickle cell anemia, which is named for the sickle-like mor-
phology of blood cells observed in patients afflicted with this
condition1. Like other traits such as gene expression, cellular mor-
phology is mediated by genetic variation. Genetic studies have impli-
cated various loci associated with red blood cell phenotypes such as
meanvolumeandhemoglobin content2,3. However, there is still limited
understanding of how human genetic diversity shapes cell morphol-
ogy. Profiling cell morphology in different cell types and across
genetically diverse populations could facilitate the identification of
morphology-associated genetic variants.

Induced pluripotent stem cells (iPSCs) provide a powerful tool for
capturing genetic diversity in living biological systems and large
publicly or commercially available collections provide access to cell
lines from donors of diverse ancestry and genetic backgrounds4–9.
These collections have enabled the study of how human common and
rare genetic variation impacts cellular function and behavior, with a
focus on gene expression and chromatin accessibility phenotypes10–15.
Studies exploring genetic factors that drive cell morphology have
shown promise but are limited by sample size and the resolution by
which morphological traits are quantified16. Additional efforts with
increased sample sizes and greater resolution of cell morphology
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measurements are critical to expanding discovery power for genetic
studies of cellular phenotypes.

Innovations in microscopy and image analysis have enabled the
measurement of thousands of morphological traits from a single cell,
constructing morphology based ‘profiles’. Cell Painting, for example,
leveragesmultiplexed dyes to enable themeasurement of traits across
many cellular compartments and organelles17,18. Cell Painting can
ascertain gene function by linking expression to cellular traits and has
been used to enable the prediction of functional impacts from lung
cancer variants19,20. Cell morphology profiling provides a great asset
for functional genomics studies compared to methods such as gene
expression, beingmuchmore affordable and easily scalable at the bulk
and single cell level. We hypothesized this approach could be lever-
aged in combination with iPSC technology to elucidate relationships
more broadly between cell morphology and genetic variants.

Here, we identified the morphological impacts of genomic var-
iants, or cell morphological quantitative trait loci (cmQTLs), by gen-
erating high-throughput morphological profiling and whole genome
sequencing data on iPSCs from 297 unique donors. Leveraging Cell
Painting data on >5 million iPSCs derived from these donors, we
quantified 3418 cellmorphological traits and assessed their associations
with rare and common genetic variants genome-wide. We identified
trait-associations with rare-variant burden in several genes including
WASF2, PRLR, and TSPAN15 which we then functionally validate using
CRISPR interference. Additionally, we nominated one common variant
convincingly associated with morphology and found suggestive evi-
dence for over 300 loci. Finally, we leveraged these results to make
predictions about sample size requirements for increasing discovery
power for both common and rare variants in future cellular genetic
studies. These findings show that similar to gene expression, the mor-
phology of cells is mediated by genetic variation and highlights the
utility of image-based methods for functional genomics.

Results
Morphological profiling and whole-genome sequencing on
iPSCs from 297 unique donors
To study associations between genetic variants and morphological
traits, we assembled a cohort of iPSC lines from 297 unique donors for
which we generated image-based profiling and whole-genome
sequencing data (Fig. 1). We obtained pre-derived cell lines from the
CIRM iPSC repository5. Age, sex, medical history, ethnicity, and

relatedness to other samples were recorded using questionnaires at
time of enrolment and sample collection. Each iPSC line was subjected
to a pluripotency test as well as genotyping to identify any abnormal
karyotypes. Upon receipt, we expanded and cryo-banked each iPSC
line, and performed genotyping (using the Global Screening Array
(GSA)) and 30X whole-genome sequencing (WGS) on all lines. Any cell
lines displaying abnormal karyotypes or genomic rearrangements
>1Mbwere excluded fromour study. Thefinal cohort used in thiswork
included 297 distinct donors of which 153 were male and 144 were
female, with an average age of 21 ± 10 (sd) years. Of the 297 donors,
207 had self-reported ancestry of European and 90 individuals
reported non-European (Table 1). IPSC lines were generated from
B-cells or fibroblasts using a non-integrating episomal vector system
previously described5 (Table 1). All donors included in this study have
been properly consented for iPSC derivation, the experiments per-
formed in this work, and genomic data sharing. We performed a
principal component analysis (PCA) to observe the genetic diversity of
cells utilized in our collection (Fig. S1A). A summary breakdown of our
cohort is included in Table 1 and individual cell line level metadata is
included Table S1.

To quantify cellular traits, we adopted the Cell Painting assay17,18.
This multiplexing dye assay uses six stains to capture morphological
characteristics for eight cellular compartments: Hoechst 33342 (DNA),
wheat germ agglutinin (WGA) (golgi and plasma membrane), con-
canavalin A (endoplasmic reticulum), MitoTracker (mitochondria),
SYTO 14 (nucleoli and cytoplasmicRNA), andphalloidin (actin). Images
are processed using the open-source CellProfiler software to extract
thousands of features of each cell’s morphology such as shape,
intensity, and texture statistics, thus forming a high-dimensional pro-
file for each single cell21.

We generated Cell Painting data from all 297 donors leveraging a
systematic workflow to ensure cells were treated in identical fashion
across all rounds of imaging. Cell lines were thawed in batches of 48
and passaged 3 days later into a 96-well deep well plate before being
transferred into a 384-well screening plate using an automated liquid
handling device (Fig. S1B, Methods). Cells were plated at a density of
10k cells/per well and fixed 6 h post-plating, so as to allow for cell
attachmentwhileminimizing differences in cell growth rates, whichwe
observed during cell line expansion (Fig. S1C). We determined these
conditions through a pilot screen that contained 6 cell lines plated
across various densities and fixation timepoints, which showed we
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Fig. 1 | Studyoverview. iPSC lines from297 donors were expanded, quality-control
checked and then subject to both high-throughput imaging with Cell Painting and
30X whole-genome sequencing (WGS). Overall, we imaged 5.1 × 106 cells across all

donors and quantified 3418 morphological traits per cell using CellProfiler soft-
ware. We inferred genetic variants from the WGS data and investigated whether
individual morphological traits associated with both rare and common variation.
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couldmaximize differences between cell lines under these parameters
(Fig. S1D). Each screening plate was stained with the standard Cell
Painting dyes and imaged on a Perkin Elmer Phenix automated
microscope within 48 h. We implemented this same workflow across
all rounds of imaging.

Images were processed using CellProfiler to measure morpholo-
gical traits and construct single-cell image-based profiles (Methods21,).
In total, wemeasured 3418morphology traits for 5.1million iPSCs from
297 donors after stringent QC (Methods, Fig. S2A, Table S2). We clas-
sified all morphological traits based on the cellular characteristics they
represented, yielding five categories: Area and shape, Granularity,
Intensity, Radial distribution, and Texture (Fig. 2a). Prior studies have
shown that cells often displayed varied morphology in response to
environmental cues and context16. To explore whether the contribu-
tion of genetic variation to cell morphology is context dependent, we
segregated all cells into two groups based on whether they had any
cells in contact (called colony cells, 97.48% of all cells) or not (called
isolate cells, 2.52% of all cells) (Fig. S2B). We note that for the purposes
of our study, “colony” refers to the number of neighbors a given cell
has and is distinct from the colony terminology which is often used in
basic stem cell culture practices.

We next performed 30X whole-genome sequencing (WGS) on all
iPSC lines. Following quality control (QC, see Methods), we retained
7,020,633 common (minor allele frequency (MAF) > 5%) and 122,256
rare (MAF < 1%) variants for downstream analyses.

Cell line characteristics and technical factors drive variability in
morphological traits
Previous studies have shown that technical factors, including plate and
well position can alter morphology-based readouts22. To explore the
presence of cmQTLs in our data, we sought to identify technical fac-
tors which may confound our morphological phenotypes and remove
these sources of variance from our downstream association tests. We
performed a variance component analysis using well-level data to
quantify the observed variance that can be attributed to each mor-
phological trait by technical factors and cell line characteristics
(Methods).We assessed the significance for each variance component,
correcting for the number of tests, which was the product of the traits
(n = 3418) and factors (n = 9) which include technical features such as
imaging plate, well position, the number of cell neighbors, and whe-
ther the well was positioned on the edge of the plate (onEdge) in
addition to demographic characteristics for the cell lines including
genetic sex, reprogramming sample source, ageofdonor at the timeof
sample collection, and the clinical diagnosis for our tissue donors. We
observed strong batch effects across imaging plates, which con-
tributed the greatest degree of variance to our morphology traits
(61.8 ± 17%, Fig. 2b, Fig. S3A). Several other confounders contributed
varying levels of effect on differentmorphological traits (Fig. 2c). After
correcting for these covariates, the remaining difference among cell
line donors was significantly associated with all traits, explaining
16.7 ± 11% of the variance. (Fig. 2b). This indicated the potential for a
genetic basis to the variability in morphology traits. Residual is the
remaining (technical) variance in morphological traits which is

unexplained by the factors discussed above. Interestingly, the differ-
ence among donors explained a greater degree of variance in the trait
category of AreaShape relative to the other trait categories (Wilcoxon
rank sum test P = 1.1 × 10−55, Fig. S3B). We note that some of the shared
variance may be explained by non-genetic factors, such as stable epi-
genetic modifications. We observed that many traits had very high
pairwise correlation (Pearson r >0.9)with one ormore traits (Fig. S3C).
To reduce redundancy in our downstream analyses, we selected a
common set of 246 traits having r <0.9 with each other by iteratively
selecting a single representative trait for the set of correlated traits
(r >0.9) (Methods). We refer to this common set of 246 traits as
“composite traits”, which were used for our rare and common variant
association tests (Table S3). We next summarized well-level morphol-
ogy data into donor-level values (i.e., pseudo-bulk) bymean-averaging
individual morphology traits across all wells for a given donor,
resulting in one measurement per trait per donor (N = 246 traits and
297 donors) for both isolate and colony cells. These donor-level trait
values were used for our quantitative association tests.

Rare variant burden for cell morphological traits
Sequencing studies have identified hundreds of genes containing rare
coding variants with association to disease burden23–26. These variants
often have large effect sizes but explain a modest degree of total dis-
ease heritability27. To explore the effect of rare genetic variation on
cellular morphology, we analyzed the association of composite traits
(n = 246) with gene-level burden of protein-altering rare variants
(MAF < 0.01). To ensure well-powered investigation, we examined
9105 genes that had rare variants in at least 2% of donors (n >= 6). We
modeled individual morphology traits as a function of rare protein-
altering variant burden in a gene, controlling for plate, well, and donor
sex using linear regression (Methods). We performed our analysis
separately for both colony and isolated cells. We identified 4 genome-
wide significant associations between morphological traits and rare
variant burden (P < 2.2 × 10−8, Bonferroni correction for 246 traits and
9105 genes) (Fig. 3a). These associations included one trait in colony
cells and three traits in isolate cells. We did not observe any inflation in
association statistics for these traits (Lambda (λ) = 1.01 for the asso-
ciation in colony cells and λ = 1.01, 0.96, 0.98 for the associations in
isolate cells) (Fig. S4A). While the top feature associations (using a
stringent Bonferroni correction) are quite different between isolate
and colony cells, there is a modest overall correlation between the
associations of morphology traits and genetic variants (Fig. S4B).

Rare variant burden in WASF2 was negatively associated with a
Zernike shape measure of the cytoplasm (Cytoplasm_Area-
Shape_Zernike_9_3) in colony cells (n = 3 missense and 1 in-frame dele-
tion rare variants, β or effect size (se) = −1.24 (0.18), P = 3.1 × 10−10;
Fig. 3b). Zernike features represent polynomial reconstructions of an
organelle or object of cells. WASF2 is named for its association with
Wiskott-Aldrich syndrome, a rare genetic disorder which greatly
increases the risk of various cancers (28–30, and31).WASF2 protein binds
profilin, a G-actin-binding protein, promoting the exchange of ADP/
ATP on actin and the formation of actin filament clusters32,33. The dis-
ruption ofWASF2 impairs actin formation and organization that could
lead to their polarized distribution and spindle-shaped cells34. In
representative images of cells with rare variants inWASF2 it is difficult
to identify thispolarized and spindle-like shapeby eyewhen compared
to reference lines (Fig. S4C). In addition to our genome-wide associa-
tion, rare variant burden in WASF2 had nominal association (P < 0.05)
with 90 other traits including 27 traits of area and shape category,
suggesting WASF2 may contribute to a range of cell morphological
characteristics (Table S4).

Three traits were significantly associated with rare variant burden
in the PRLR gene (n = 6 missense rare variants, β (se) = −1.17 (0.2),
P = 1.2 × 10−8; Fig. 3c). The most interesting among these included
asymmetries in the distribution of mitochondria in the perinuclear

Table 1 | Summary of donors’ sex, disease status, age and
tissue used for iPSC generation

Donor metadata Value

Sex Male—52% (n = 153) Female – 48% (n = 144)

Any disease Yes—62% (n = 184) No—38% (n = 133)

Age 21 ± 10

Self-reported ancestry European—
70% (n = 207)

Non-European—
30% (n = 90)

iPSC sample source PBMCs—62% (n = 184) Fibroblasts—38% (n = 113)
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space (Cells_RadialDistribution_RadialCV_Mito_1of4). PRLR function has
been linked to several forms of cancers, including breast cancer and
lymphoma (Kavarthapu et al.35, López Fontana et al.36, Gharbaran
et al.37). PRLR encodes membrane-anchored receptors for a prolactin
ligand and is a part of the class-I cytokine receptor superfamily and
regulator of JAK-STAT5 pathway activity, regulating autocrine/para-
crine loops present in stem cells, which mediate their quiescence and
proliferation38,39. Previous findings in adipocytes showed PRLR
knockout alters mitochondrial packing and distribution throughout
the cell40. Moreover, rare variant burden in PRLR had nominal asso-
ciation (P <0.05) with 118 other traits, providingmore support to PRLR
as a genetic determinant of cellular morphology (Table S5).

We also inspected the associations with suggestive evidence, i.e.,
P < 10−6. There were a total of 12 and 13 associations in colony and
isolated cells, respectively, which passed this threshold (Table S6). One
of the strongest associations in our suggestive results was between the
distribution in size of RNA particles in the cytoplasm (Cytoplasm_-
Granularity_3_RNA) and rare variant burden in TSPAN15 gene (n = 2
missense and 1 splice region rare variants in the gene, β (se) = 0.9 (0.17),
P = 3.7 × 10−7; Fig. 3d). TSPAN15 is expressed in all human tissues and
encodes for a cell surface protein41. Amember of the tetraspanin family
of transmembrane segments, TSPAN15 has been implicated in tumor-
related conditions (Huang et al.42). TSPAN15 plays a role in cell activa-
tion and self-renewal through negative regulation of Notch-signaling43.
Disruption of TSPAN15 could lead to increased cell proliferation and
transcriptional activation which may be represented in our data by an
increase in the measurable RNA content in the cytoplasm.

To ensure our observed associations were not an artifact of our
nonparametric regression model, we permuted the data by randomly
assigning trait values across donors. These results suggested that our
observed significance of association between rare variant burden and
cell morphological traits was unlikely to have occurred by chance
(Fig. S4D). To confirm that our observed associations were not driven
by somatic variation introduced during iPSC reprogramming or those
which arise in cell culture (despite the short culture time in our study),

we repeated our association test while restricting to only those var-
iants that were previously observed in the gnomAD database (106,590
of 122,256 variants)44. All of our observed associations were recapitu-
lated (significant after Bonferroni correction for multiple testing and
with suggestive evidence) with concordant effect size and statistical
significance (p-value) (Fig. S4E). Taken together, our findings suggest
we could reliably identify associations between morphological traits
and rare protein-coding variants.

Functional validation of rare variant associations
CRISPR-based gene editing has been shown to be a viable mechanism
for validating gene expression phenotypes resulting from rare
variation45. To corroborate our rare-variant burden associations, we
examined whether knockdown of these genes impacted the same
morphological traits for which we identified a rare-variant burden
association. We transfected iPSCs from a single cell line expressing
constitutive dCas9-KRAB CRISPRi machinery with sgRNAs targeting
the transcriptional start site (TSS) for WASF2, PRLR, and TSPAN15
(Fig. 4a). Each gene was targeted by 2 different sgRNA sequences,
which were validated for knockdown of their target gene (25-95%
efficiency) (Fig. S5, Table S7). Cells transfected with non-targeting
sgRNAswere included as controls. We generated per-well (population-
averaged) morphological profiling using the same methods for our
discovery cohort. We compared themorphological trait values for our
rare-variant associations between non-targeting sgRNAs and those
targeting our genes of interest. For each gene tested, we observed the
predicted changes, and in the same direction, for each individual trait
relative to controls (n = 28 wells per targeting sgRNA and 52 wells per
non-targeting sgRNA, Welch’s two sample T test, P < 2.2 × 10−16)
(Fig. 4b–d). Specifically, knockdown ofWASF2 resulted in a decreased
normalized score for the trait Cytoplasm_AreaShape_Zernicke_9_3
(Fig. 4b). We observed that a reduction in the expression of TSPAN15
coincided with an increase in trait score for Cytoplasm_Granular-
ity_3_RNA (Fig. 4d). Lastly, knockdown of PRLR decreased Cells_Ra-
dialDistribution_RadialCV_Mito_1of4, which defines the relationship
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Fig. 2 | Summary of morphological traits and variant component analysis.
a Summary of five categories of morphological traits captured in our data
(n = 3418). b Explained variance across all morphological traits (n = 3418). Data is
presented in a Tukey-style boxplot with the median (Q2) and the first and the
second quartiles (Q2, Q3) and error bars defined by the last data point within ±1.5-
times the interquartile range. c Exploring explained Variation in individual traits,
namely distribution of mitochondria around nucleus, cytoplasmic Zernike shape

metric 9_3, and cytoplasmic granularity in the RNA channel at scale 3, showed
differences in sources of variance, including technical effects such as plate andwell
of imaging,whether thewell was situatedon the rowor columnon the edge of plate
(onEdge), biological sources such as donor. Donor ID represents the difference
among donors after accounting for their age, sex, disease-status and above-
mentioned imaging-related technical factors. Residual is the remaining unac-
counted variation in traits.
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between the radial distribution of mitochondria around the nucleus
(Fig. 4c). This effect is highlighted in representative images, whereby
cells transfected with a PRLR targeting sgRNA displayedmore uniform
distribution of mitochondria around the nucleus when compared to
non-targeting sgRNA cells where mitochondria tend to colocalize to
one side of the nucleus (Fig. 4e).

Common variant associations for cell morphological traits
Genome-wide association studies (GWAS) have identified thousands of
common variants that are associated with common diseases and traits.
These variants have small effect sizes at the individual level but com-
bine to explain a large degree of common disease heritability (46,47,
O’Connor et al.27). To identify common variants that are implicated in
cell morphology, we performed 246 genome-wide association ana-
lyses, one for each composite trait. Each association was tested in
colony and isolated cells separately (Fig. 5a, Fig. S6C). With our set of
297 donors, only one variant, rs315506, overlapping the chr17q11.2
locus, passed the genome-wide significance threshold (Bonferroni
correction for 246morphology traits, 5 × 10−8/246 = 2 × 10−10). rs315506
is an intergenic variant and was associated with spatial distribution of
endoplasmic reticulum (ER) in the cytoplasm (Cytoplasm_RadialDis-
tribution_RadialCV_ER_3of4) in colonies (MAF =0.08, β (se) = −0.52
(0.08), P = 1.4 × 10−10, Fig. S6A). This variant also showed suggestive
evidence of association (P < 10−5/246 = 4.1 × 10−8) with spatial distribu-
tion of ER near the periphery of cells (Cells_RadialDistribution_Mean-
Frac_ER_4of4). rs315506 lies in the center of a 400 kb window

containing the genes NF1, CORPS, UTP6 and SUZ12. Chromosomal
alterations on chr17q11.2 causeNF1microdeletion syndrome,whichhas
been shown to impair protein localization to the ER48,49. To corroborate
this observation, we analyzed the publicly available JUMP-Cell Painting
data fromU2OS cells that have perturbedNF1 and SUZ12 using CRISPR
interference50. In this data, we see a significant change in our associated
trait when NF1 and SUZ12 expression is decreased (Fig. 5b). In colony
cells, the second strongest associationwas on chromosome7 (between
Nuclei_Granularity_9_AGP and rs36036340, MAF =0.08, β (SE) =0.38
(0.06),P = 6× 10−10). rs36036340 lieswithin the genePRKAR1B. Variants
in PRKAR1B have been linked to neurodevelopmental disorders and
activity of PRKAR1B has been shown to regulate tumorigenesis51–53.
PRKAR1B mediates PI3K/AKT/mTOR pathway signaling through direct
interactions between PRKAR1B and PI3K-110alpha51. We were unable to
link perturbations in PRKAR1B to morphological changes for this fea-
ture using publicly available data (Fig. S6B). The most significant
association in isolated cells was found on chromosome 13 (between
Nuclei_RadialDistribution_RadialCV_Brightfield_2of4 and rs9301897,
MAF =0.13, β (se) = −0.31 (0.05), P = 4.5 × 10−10) (Fig. S6C). rs9301897
lies within the gene GPC6, which is known to play a role in cell growth
and division through the activation of cell surface receptors54,55. Over
300 loci reached the suggestive genome-wide significance threshold
(P < 4.1 × 10−8, Table S8) indicating that a larger sample size and
improved statistical power would be able to identify additional com-
mon variants associated with cell morphology. To confirm our
observed associations were not attributable to noise, we permuted the
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data by shuffling genotype labels and repeating the association tests.
These results suggested that our observed significance of association
between common variants and cellmorphological traitswas unlikely to
have occurred by chance (Fig. S6). Moreover, several loci (Table S8)
showed suggestive association with more than one trait suggesting
shared genetic etiology among different morphological traits.

Sample size requirements and predictions for future cellular
genetic studies
There has been an emergence of cellular genetics studies that aim to
uncover the biological function of genetic variation (Wolter et al56,57.,
Miller58.). When compared to genetics studies of quantitative traits,
cellular GWAS are limited in sample sizes, which provide a barrier to
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the discovery of significant associations. We sought to understand the
power of our study with a sample size of nearly 300 individuals, and a
distribution of effect sizes spanning common and rare variants. Our
findings suggest that genetic discovery for cell morphological phe-
notypes was achievable at our current sample size. However, the small
number of significant discoveries in our analysis begs the question of
how many discoveries can be made at larger sample sizes. If the dis-
covery of many hits required a few thousand samples, such experi-
ments would be feasible and worthwhile; if such discovery required
hundreds of thousands to millions of samples, it may be out of reach
for the foreseeable future. To answer this question, we estimated the
distribution of common and rare variant effect sizes using Fourier
Mixture Regression noLD (FMR-noLD) (Methods; O’Connor59). Briefly,
FMR-noLD fits a flexible mixture model to the distribution of effect
sizes. This mixture model can be used to simulate effect sizes at var-
ious sample sizes, predicting how many significant discoveries will
be made.

For common variants, we analyzed summary statistics from a
pruned set of approximately 350,000 variants (Methods). We found
that our dataset was underpowered for this analysis: FMR-noLD
inferred that essentially all common variant effect sizes are 0, which is
implausible and the expected behavior in the low power regime. For
rare variants, we analyzed summary statistics from the main burden
association analysis described earlier. In contrast to the common
variant analysis, we predict that many discoveries will be made at
feasible larger sample sizes, withmore than 250 significant discoveries
at N = 1000 and more than 2000 discoveries at N = 2000 (Fig. 6a, b).
Overall, our studywas underpowered to detect a significant number of
associations between common haplotypes and cell morphological
traits, but our rare variant analyses provide a promising path for future
studies exploring the impact of rare genetic variation on cell
morphology.

Discussion
Previous studies linking genetic variants to cellular function have lar-
gely focused on human genes and alleles which mediate molecular
phenotypes, such as gene or protein expression and chromatin
accessibility8,56,57,60. To expand on these studies, we combined high-
throughput cell culture techniques with cost-effective and high-
dimensional image-based cell profiling (i.e., Cell Painting) to link
genetic variants to their morphological function in 297 donors.

Our work provides the largest to date exploration of genetic
influences on cell morphology (what we term cmQTLs). Where pre-
vious studies have been limited by both sample size and the scale of
morphological measurements, we combined whole genome sequence
analysis with Cell Painting to define relationships between genetic

variants and morphological traits extracted from >5M iPSCs. We
identified confounding factors that drive variation in cellular pheno-
typeswhich are important to addresswhen performing similar studies.
In particular, attenuating batch effects across plates and well position
is critical in imaging-based assays. To address this challenge, we
incorporated automated liquid handling devices to maximize plate
distribution of cell lines across 384 well microplates.

We measured associations between rare variant burden and
morphological traits, identifying novel associations between WASF2,
PRLR, TSPAN15 and morphological phenotypes related to cytoplasmic
area and shape, nucleic granularity, and the distribution of mito-
chondria around the nucleus. These associations were validated by
CRISPR-mediated knockdown and supported by mechanistic infor-
mation about these genes from the literature. Even though our effec-
tive knockdown had a range of efficiency (25-95%) we were able to
measure meaningful changes in morphological features even at the
lower range. This is consistent with previous work showing that gene
expression is often stochastic and subtle changes in expression may
lead to large changes in functional protein61. Each of the genes nomi-
nated in our rare variant analysis has been implicated in various can-
cers. We find this result interesting and somewhat unsurprising, given
that pluripotent stem cells exhibit self-renewal properties which clo-
sely resemble cancer cells. These results suggest that genetic studies in
iPSCsmay shedmeaningful insights into cancer-linked genes. It will be
important for future studies tomeasurewhether these associations are
cell-type specific, or if they would be retained using differentiated
cells. We extended our analysis to look for associations between
morphological traits and common haplotypes. We found one sig-
nificant result and 300 potential associations. We corroborated our
significant common variant association with publicly available data
showing that perturbations of nearby genes impact the associated
morphological trait.

Interestingly, we observed no overlap in traits and associated
variants between colony and isolated cells, suggesting a differential
effect of genetic variation based on the environmental context of the
cells. This is consistent with previous studies that have shown that
intrinsic properties of cells may only come to light in the context of
altering the cellular environment16,62,63. In this study, we pseudo-bulked
single-cell profiling data to generate per-donor trait scores. It will be
interesting for future work to examine morphology at the single-cell
level, similar to single-cell RNA sequencing approaches to better
understand genetic influences on cellular heterogeneity.

The small number of significant discoveries in our work highlights
that in vitro genetic studies still require substantial increases in sample
sizes to saturate discovery potential. Our common variant analysis
suggests that we are vastly underpowered to measure genetic
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associations to cell morphology and our estimated effect size dis-
tributions infer that cell morphology may behave similarly to quanti-
tative traits. As discovery potential for quantitative traits often scales
linearly with the number of samples included in the study, our data
suggests that even with 3000 genetically unique cell lines, wemay still
only yield 10 genome-wide significant common variant cmQTLs. This is
a sobering result, as it suggests that tens of thousands of cell lines
would be needed to begin mapping SNP-trait associations for cell
morphology. In contrast, our analysis of rare variant effect sizes sug-
gests that with modest increases in sample sizes, we are well-
positioned to detect many rare variant cmQTLs. Future studies
which can leverage 1000-2000unique cell linesmay yieldmany 1000 s
of genome-wide significant gene-trait associations. While scaling
in vitro studies to 2000 cell lines will still be a large hurdle, it is one
which can be feasibly overcome with current iPSC collections.

Our work has several limitations that highlight directions for
future research. This study focused on how germline genetic variation
influences stem cell morphology. While we applied a rigorous quality
control to identify and remove cells with abnormal karyotypes or large
genomic rearrangements, it is possible that new somatic mutations
may arise over time in culture. It will be important for additional stu-
dies to explore how recurring somatic mutations mediate cell mor-
phology. Furthermore, the cell types utilized in this study are in a basal,
undifferentiated state. It will be valuable for future studies to explore
these associations in more physiologically relevant contexts, where
disease-associated variants are enriched64. These findings suggest this
framework could be applied to relevant cells and tissues such as iPSC-
derived differentiated cells, post-mortem brain samples or excisable
somatic cells. Moreover, we did not find any cell morphological traits
associated with clinical disease categories from the cell line donors
(data not shown). Similar to exploring common variant associations,
we are likely underpowered in any single disease category to identify
significant associations. There have been many studies elucidating
morphological features associated with various diseases, but they
often contained larger sample sizes and incorporatedmore specialized
cell types22,65,66. Extending our current study to diverse cell types and
increasing the number of samples for clinical disease categories will be
a critical next step in efforts to link cellmorphology to human illnesses.

This approach holds significant promise for future studies lever-
aging human-derived, disease-relevant cell types for modeling the
impact of genetic variation on cellular function. The use of imaging to
capture phenotypes is particularly attractive in experimental designs
for several reasons, such as the low cost per cell for imaging, and the
ease of processing data and preparation of the cells or tissues as
compared to the generation of other molecular data such as RNA-
sequencing or epigenetic assays67. Moreover, large imaging datasets
provide tools for developing robust statistical models for combined
analysis of morphological profiling data with additional modalities
such as gene expression to comprehensively interrogate genetic var-
iants and their function68. Taken together, we demonstrate cellular
morphology can be a cost-effective readout for modeling the biolo-
gical function of human genetic variation.

Methods
Materials and iPSC generation
Our dataset comprised 297 donors from the iPSC repository of Cali-
fornia Institute for Regenerative Medicine (CIRM) (Lin et al.69)
(Table S1). All cell lines are available from CIRM. Either B cells or
Fibroblasts were taken from each donor from which iPSC lines were
generated using non-integrating episomal vectors70. The cell lines
included in this work contained bothmale and female cell lines (52% &
48%, respectively), between the ages of 1 to 90 (Table S1). While the
majority of the samples were derived from individuals of European
ancestry, the cohort also included cell lines from individuals of East
Asian, African, and Admixed ancestry (Fig. S2, Table S1). Cell line

growth rates were calculated by measuring the number of cells plated
during their final expansion and the number of cells measured prior to
cryobanking. The doubling time was calculated by comparing the
increase in cell number relative to the number of hours in culture. Each
iPSC sample underwent Global Screening Array (GSA) for karyotype
analysis to ensure chromosomal integrity, as well as 30X whole-
genome sequencing to determine genome-wide variants for each
donor. Any cell lines displaying abnormal karyotypes or genomic
rearrangements > 1Mb were excluded from our study. Each iPSC line
was cultured between passages 12 and 15 before use in the experiment.

iPSC culture
Human iPSCs were maintained on plates coated with geltrex (life
technologies, A1413301) in StemFlex media (Gibco, A3349401) and
passaged with accutase (Gibco, A11105). All cell cultures were main-
tained at 37 °C, 5% CO2.

Cell seeding and staining
For each batch of imaging, cells were detached from 6-well NUNC
plates using Accutase (StemcellTech; cat#07920) for generating
single-cell suspensions. Following detachment, cells were centrifuged
at 1000 rpm × 5:00 and re-suspended in StemFlex medium supple-
mented with 10uM ROCK inhibitor. After each cell line was counted to
determine cell solution concentration and viability, the desired cell
solution volume was aliquoted into a 96-deep well low attachment
plate following a specific platemap to ensure thatwells from any given
cell line were not predominantly on the edge wells or too close toge-
ther. To disperse a high number of cell lines across a 384-well plate in a
semi-random fashion, we optimized the use of an Agilent Bravo liquid
handling device (Fig. S1B). Here, using an8-channel head, cell solutions
were transferred from the 96-well low attachment plate and dis-
tributed into a geltrex-coated Perkin Elmer Cell Carrier 384-well plate
at a density of 10,000 cells per well. Each cell line was plated into 8
distinct wells on the final screening plate in four-well quadrants (see
Fig. S2). These parameters were selected based on a pilot experiment
with 6 cell lines across a range of densities and fixation conditions. We
observed that we could maximize variability across cell lines using 10k
cells per well fixed 6 h after plating, when compared to 24 h post-
plating.

Cell painting and imaging
Cells were stained and imaged with minor adaptations to procedures
describedpreviously17,18. Six hourspost seeding in 384-well plates, cells
were treated for 30min with 0.5 uM MitoTracker Deep Red FM -
Special Packaging (Thermo Fisher cat#: M22426) dye at 37oC. Follow-
ing the MitoTracker treatment, cells were fixed with 16% paraf-
ormaldehyde diluted to a final concentration of 4% (Thermo Fisher
cat#: 043368.9M) for 20min in the dark at RT. After three washes with
1X HBSS cells were permeabilized and stained using a solution of 1X
HBSS (Thermo Fisher cat#: 14175095), 0.1% Triton-X-100 (Sigma
Aldrich cat#: X100-5ML), 1% Bovine Serum Albumin, 8.25 nM Alexa
Fluor 568 Phalloidin (Thermo Fisher cat#: A12380), 0.005mg/ml
Concanavalin A, Alexa Fluor 488 Conjugate (Thermo Fisher cat#:
C11252), 1ug/ml Hoechst 33342, Trihydrochloride, Trihydrate (Thermo
Fisher cat#: H3570), 6uM SYTO 14 Green Fluorescent Nucleic Acid
Stain (Thermo Fisher cat#: S7576), and 1.5ug/ml Wheat Germ Agglu-
tinin, Alexa Fluor 555 Conjugate (Thermo Fisher cat#: W32464) for 1 h
at RT in the dark. Following the staining, plateswerewashed 3Xwith 1X
HBSS and sealed until imaging. Cell Painted plates were imaged on a
Perkin Elmer Phenix Automated Microscope under a standardized
protocol17. Configuration files for imaging protocols can be foundwith
their associated images at https://registry.opendata.aws/cellpainting-
gallery/ under project ID “cpg0022-cmqtl.” All 297 cell lines were dis-
persed across seven plates which were imaged in four separate
batches.
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Quantification of cellular morphology traits and their quality
control
The segmentation of individual cells in the image into their cellular
compartments (whole cell, cytoplasm and nuclei) and subsequently
quantification of morphology traits for each cellular compartments
was done using CellProfiler 3.1.8 (McQuinn et al. 2018); pipelines are
available at https://github.com/broadinstitute/imaging-platform-
pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf_bin1.
Analysis of CRISPR experiments was done in CellProifler 4.2.4 with
pipelines available at https://github.com/broadinstitute/imaging-
platform-pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_
bf_bin1_cp471. Subsequently, cells missing measurement for more
than 5% of traits were removed. Morphology traits a priori known to
be problematic, not measured across all cells or non-variable across
cells were removed using Caret v6.0-86 package. QC-ed cells were
then segregated into two groups based on the number of neighbors:
isolated cells having no neighbors and colony cells having one or
more neighbors. Individualmorphology traitswere then summarized
to well level measurement by averaging them across all cells per well,
resulting in a well by trait matrix. Following this, each morphology
trait was gaussianized across all 7 plates using inverse normal
transformation (INT) method.

Selection of traits for association analysis
A set of morphology traits for association analysis (with both common
variants and rare variant burden) was selected by considering their
pairwise correlation across colony and isolate cells in the following
steps: Step 1. Calculate Pearson correlation matrix for colony and
isolate cells at donor level (total 2 correlationmatrices). Step 2. Identify
that single trait having the Pearson r ≥ 0.9 with the largest number of
other traits across both correlation matrices. We specifically chose
Pearson r ≥ 0.9 as cutoff here because most traits (93.7% and 91.2%
traits in colony and isolated cells, respectively) had a correlation
Pearson ≥ 0.9 with at least one other trait (Fig S7). Step 3. Include that
individual trait for association analysis. Remove it and other traits
having Pearson ≥ 0.9 with it from correlation matrices. Step 4. Repeat
steps 1 to 3 until there are no more traits to include in the association
analysis.

Whole genome sequencing (WGS), variant calling and genes
to test
DNA was obtained from cell line pellets with the Qiagen Quick-Start
DNeasy Blood and Tissue Kit (cat. no. 69506). DNA samples were
submitted to the Genomics Platform at the Broad Institute of MIT
and Harvard. Whole genome sequencing (30x) was performed for
all individuals (n = 297) at the Broad Institute Genomics Platform
using Illumina Nextera library preparation, quality control, and
sequencing on the Illumina HiSeq 2500 platform. Raw sequences
were QC-ed and sequencing reads (150 bp, paired-end) were aligned
to the hg38 reference genome using the BWA alignment program.
Variants were called and annotated (VQSLOD filter) using HapMap
reference.

WGS data quality control for common variant association
analysis
The QC-ed WGS VCF file was processed using plink v1.90b3 to
remove sex chromosomes, multi-allelic variants, variants with
duplicated positions, and small insertions and deletions larger than
5 bp. Of 38,239,223 variants loaded from the VCF file, 33,348,914
passed these filters. Donor-level genotype missingness rates were
checked to exclude donors with genotype missingness rates > 10%.
All 297 individuals passed this filter. Finally, variants withminor allele
frequency (MAF) < 5%, missingness > 5%, and Hardy-Weinberg equi-
librium p-value < 10−5 were excluded, following which, 7,020,633
remained for common variant association analysis.

Principal components analysis (PCA)
Plink v1.90b3 was used on common (MAF > 5%) and post-QC variants
to remove regions with known long-range linkage disequilibrium (LD)
and variants in high LD (r2 > 0.1 in a window of 50kb and a sliding
window of 10 kb) (Price A. L. Am. J. Hum. Genetics 2008). The
remaining 291,493 variants were loaded to GCTA v1.91.1 to generate a
genetic relatednessmatrix (GRM)using the --make-grmcommandwith
default options. The resulting GRMwas used to generate 20 PCs using
GCTA v1.91.1 --pca command with default options.

Variance component analysis
Variance component of fixed (cell neighbor density and donor’s age)
and random effects (iPSC source tissue, cell line ID, plate and well of
imaging, donor’s sex, and disease status) was estimated for selected
traits using linear mixed model (lmer function in lmertest package).
We included the first 4 PCs derived from genetic variation, corre-
sponding to the elbow in scree plot, for ancestry/population stratifi-
cation. The p-value of each factor was Bonferroni corrected for the
number of all tested traits (n = 3418).

Linear model question for variance component analysis:

Gaussianized trait∼ ð1jDiseaseyesjnoÞ+ ð1jiPSCfibroblastjBcellÞ
+ ð1jSexmalejfemaleÞ+Age+

X
PCi= 1�4 + ð1jPlateÞ+ ð1jWellÞ

+ ð1jOnEdgeyesjnoÞ+ ð1jCell line IDÞ+Neighbor countifnotisolets

Common variant association analysis
The linear regression framework implemented in GCTA v1.91.1 (--fas-
tGWA-lr command) was used to test the association of common
(MAF> 5%), post-QC variants with 246 post-QC, INT traits that were
described above. Like the rare variant association analysis, plate and
sex were included as categorical and four genotyping PCs, number of
cell neighbors (for cells in colony) and the edge variable were included
as quantitative variables in the model. Associations were considered
statistically significant if they passed the genome-wide significance
threshold for 246 tests (P < 5 × 10−8/246).

Linear model equation for isolate cells:

Gaussianized trait∼Variant +Age+Sex+
X

PCi = 1�4 + ð1jPlateÞ

Linear model equation for colony cells:

Gaussianized trait∼Variant +Age+Sex+
X

PCi = 1�4 + ð1jPlateÞ
+Neighbor count

Rare variant burden test
To perform the rare variant burden test, the variants which were
autosomal, passed the VQSLOD filter and called in >95% individuals
and had maf<1% were retained. These variants were annotated for
their functional effect using SnpEff v5.0. After annotation, those
variants were kept which resided in the protein-coding region and
had high or moderate effects on encoded protein. For each gene,
multiple rare variants were grouped and coded as present or absent.
The association between individual morphology traits and the pre-
sence of rare variants in a gene was investigated using linear
regression models. The p-values of associations were corrected for
both the number of tested traits (n = 246) and the number of genes
(n = 9105) using the Bonferroni correction method.

CRISPRi sgRNA design, cloning, and virus production
To functionally validate the rare-variant burden associations, we
designed sgRNAs targeting the transcriptional start site (TSS) for each
gene using CRISPick software (Doench, 2016, Sanson, 2018). sgRNA
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oligonucleotides were cloned into the CROPseq vector using a Golden
Gate cloning protocol (Addgene: #106280, Juong, 2017). To validate
sequence insertion, DNA plasmids were sequenced by a 3rd party
provider. Plasmids with successful insertion were packaged for lenti-
virus generation using TransIT-293 reagent (Mirus Bio cat#: MIR 2704)
and packaging plasmids VSV-G and DVPR (Addgene: #12259 and
#12259).). HEK239T (ATCC cat#: CRL-3216) cells were transfected with
sgRNA packaging plasmid and incubated for 48 h. HEK239T media
supernatant was collected, and lentivirus was concentrated using
LENTI-X concentrator (Takara) per the manufacturer’s instructions.
The virus supernatant was then aliquoted and stored at -80C.

sgRNA transduction in dCas9-iPSCs
An iPSC line, WTC11_TO-NGN2_dCas9-BFP-KRAB (gift from Michael
Ward), was seeded at 250k cells per well in a 12-well plate and 50ul of
sgRNA lentivirus was added to each designatedwell. This iPSC line was
cultured using mTeSR1 medium according to source recommenda-
tions (Stemcell Technologies, cat#: 85850). The following day, 1mL of
mTeSR1 complete media was added on top of the existing media. 48 h
post-transduction, cells underwent a full media change with the
addition of 1 ug/ml puromycin (Sigma Aldrich cat#: P8833) for che-
mical selection of cells which did not uptake the sgRNAs. Puromycin is
supplemented in the feeding media for the duration the cell line is in
culture to avoid uninfected cells from populating the dish.

qPCR analysis
RNA isolation was performed with the Direct-Zol RNA miniprep kit
(ZYMO: cat# R2051) according to the manufacturer’s instructions. To
prevent DNA contamination, RNA was treated with DNase I (ZYMO:
cat# R2051). The yield of RNA was determined with a Denovix DS-11
Series Spectrophotometer (Denovix). 200 ng of RNA was reverse
transcribed with the iScript cDNA Synthesis Kit (Bio-Rad, cat#
1708890). For all analyses, RT–qPCR was carried out with iQ SYBR
Green Supermix (Bio-Rad, cat# 1708880) and specific primers for each
gene (listed below) with a CFX384 Touch Real-Time PCR Detection
System (Bio-Rad). Target genes were normalized to the geometric
mean of control genes, RPL10 and GAPDH, and relative expression
compared to themeanCt values for non-targeting control sgRNAs and
gene targeting sgRNAs, respectively.

The following primers were used:
WASF2_forward 5′-TAGTAACGAGGAACATCGAGCC-3′
WASF2_reverse 5′-AAGGGAGCTTACCCGAGAGG-3′
PRLR_forward 5′-TCTCCACCTACCCTGATTGAC-3′
PRLR_reverse 5′-CGAACCTGGACAAGGTATTTCTG-3′
TSPAN15_forward 5′-TCCCTCCGTGACAACCTGTA-3′
TSPAN15_reverse 5′-CCGCCACAGCACTTGAACT-3′
RPL10_forward 5′-GCCGTACCCAAAGTCTCGC-3′
RPL10_reverse 5′-CACAAAGCGGAAACTCATCCA-3′
GAPDH_forward 5′-GGAGCGAGATCCCTCCAAAAT-3′
GAPDH_reverse 5′-GGCTGTTGTCATACTTCTCATGG-3′

Modeling cmQTL effect size distributions with FMR-noLD
We used FMR-noLD (O’Connor, 2021) to model the effect size dis-
tribution for both common and rare variant summary statistics from
our analyses. FMR-noLD is a simplified version of the main FMR
method that does not model linkage disequilibrium (LD) between
variants. We used FMR-noLD rather than FMR for this analysis as 1) the
mixed ancestry of our sample complicates LD-score style estimators
such as FMR, and 2) FMR-noLD is the appropriate choice for rare var-
iants, which have very little LD. For the common-variant analysis, we
used the PLINK272 –indep-pairwise (with parameters: variant count 50,
variant count shift 5, threshold 0.2) utility to find a set of approxi-
mately 350,000 variants in approximate linkage equilibrium. We then
submitted the concatenated set of summary statistics across all traits
for FMR-noLD. For the rare-variant analysis, we used the same set of

summary statistics used in the main burden test analysis (i.e. with no
need for variant pruning), concatenated across all traits. For power
analysis for rare variant association, we first predicted effect size dis-
tributions at varying sample sizes by adding sampling variance 1/N to
our inferred distribution of true effect sizes. We then computed the
cumulative distribution function of these predicted distributions at
our significance threshold for the main rare variant burden analysis,
p = 2.2e−8, which represents the proportion of tests that are expected
to be significant at each sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The whole genome sequence data generated in this study has been
deposited in the NCBI dbGaP database under accession code
phs002032.v1.p1. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs002032.v1.p1. The raw image data are available
in the Cell Painting Gallery on the Registry of Open Data on AWS
(https://registry.opendata.aws/cellpainting-gallery/) as dataset
‘cpg0022-cmqtl‘ at no cost and no need for registration.

Code availability
Source code to reproduce and build upon the presented results is
available at https://github.com/broadinstitute/cmQTL.
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