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Orbital topological edge states and phase
transitions in one-dimensional acoustic
resonator chains

FengGao1,5, Xiao Xiang1,5, Yu-Gui Peng 1 , XiangNi2,3, Qi-Li Sun1, Simon Yves3,
Xue-Feng Zhu 1 & Andrea Alù 3,4

Topological phases of matter have attracted significant attention in recent
years, due to the unusual robustness of their response to defects and disorder.
Various research efforts have been exploring classical and quantum topolo-
gical wave phenomena in engineered materials, in which different degrees of
freedom (DoFs) – for the most part based on broken crystal symmetries
associated with pseudo-spins – induce synthetic gauge fields that support
topological phases and unveil distinct forms of wave propagation. However,
spin is not the only viable option to induce topological effects. Intrinsic orbital
DoFs in spinless systems may offer a powerful alternative platform, mostly
unexplored to date. Here we reveal orbital-selective wave-matter interactions
in acoustic systems supporting multiple orbital DoFs, and report the experi-
mental demonstration of disorder-immune orbital-induced topological edge
states in a zigzag acoustic 1D spinless lattice. This work expands the study of
topological phases based on orbitals, paving the way to explore other orbital-
dependent phenomena in spinless systems.

Topological insulators (TIs) represent phases of matter, and have
attracted extensive attention in the past years1. Originated in the field
of condensed matter, the concept of TIs has been recently transposed
to artificial crystals and metamaterials for classical wave systems,
demonstrating a plethora of exotic phenomena associated with
topological protection, such as reflection-less edge states that are
unusually robust to defects and disorder2–9 and unidirectional,
boundary-independent wave transport10–12. Topological edge modes,
in particular, governedby the bulk-edge correspondence, are localized
at the boundaries of nontrivial artificial crystals or at the interface
between crystals with different topological phases. Researchers have
exploited their robust wave guiding properties to implement exciting
functionalities, such as topological lasers13,14, topological beam
splitters15,16, momentum-locked directional antennas17,18 and 5 G wire-
less communication devices19,20.

Topological insulators are enabled by broken crystal symmetries
and associated degrees of freedom (DoFs), such as spin or valley DoFs
in a periodic lattice, playing an essential role in inducing various
topological phases1,21. For example, the quantum-spin Hall effect relies
on the interaction of spin andorbitalDoFs to induce the Z2 topological
insulator22,23. Interestingly, a plethora of mechanisms based on DoFs,
such as pseudo-spin2–6 and pseudo-valley spin interactions7–9, have
been very difficult to observe in condensed matter systems, yet they
have been successfully implemented in their classical wave analogues
in the past decade. In parallel, internal DoFs of a single resonator or a
cavity, such as frequency24–27 and orbital angular momentum28,29, have
been utilized as synthetic dimensions to enrich the topological
response for classical waves.

Apart from the degree of spin, the intrinsic orbital degree also
plays a crucial part in correlated electrons30 and solid state materials31,
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generating many unique topological phases such as orbital
superfluidity32 and topological semimetals33. Recently, orbital investi-
gation has been extended to the realms of photonics13,34–36 and elec-
tronic arrays37,38. For instance, zigzag-arranged dielectric spherical
particles were used to demonstrate electromagnetic topological edge
states in microwave experiments36, and topological lasing in a zigzag
array was realized based on edge modes supported by polariton
micropillars13. In addition, orbital edge states34, and Type-II/Type-III
Dirac cone35 were experimentally realized using coupled micropillars
etched in a photonic honeycomb lattice. By using a scanning tunneling
microscope, an analogue of the crystal-field splitting and the p orbital
flat band and Dirac cone were also confirmed in electronic Lieb37 and
honeycomb lattices38, respectively. Finally, intrinsic orbitals have been
used to investigate higher-order topological phases39,40 and valley
physics41. For classical wave systems, it is worthmentioning thatmulti-
mode plates/resonators and intrinsic degenerate modes interactions
also open up plenty of opportunities for engineering topological
phase. For instance, paired degenerate plate modes42 instead of the
general single cavity resonances43–49 were utilized to realize zero-
dispersion bands and topological surface phonons. Besides, the
interplay between the dipolar and quadrupole modes has been widely
harnessed to construct pseudo-spin-dependent topological insulators
based on band invesion4,5.

In this work, we focus on the interaction between degenerate
orbitals inside one resonator instead of the interplay between reso-
nator clusters. In the judiciously-designed disk-shaped dimer acoustic
cavity unit, different interactions between the degenerate orthogonal

orbitals can be expected, leading to four distinct resonance peaks in
the transmission spectra. Based on this platform, we demonstrate
orbital-controlled one-dimensional (1D) arrays of coupled cavities as
an exemplary model to induce topological acoustic phases. We theo-
retically illustrate the orbital Su-Schrieffer-Heeger (SSH) model and
experimentally demonstrate the orbital-dependent non-trivial topo-
logical edge states as well as their robustness against disorders, which
is associated with chiral symmetry. We also reveal a duality symmetry
in the orbital-induced TIs at different bonding angles and the coun-
terintuitive topological edge states beyond the conventional SSH lat-
tices. Our work lays a foundation for investigating classical wave
interactions among multiple orbitals and the associated topological
phase transition, and provides a prospective opportunity for further
explorations involving orbital-dependent devices in various wave
platforms.

Results
Orbital interactions
In quantum mechanics, the hydrogen atom has discrete energy
bands of high symmetries, for example the one-fold s band and three-
fold p bands (px, py, pz). As sketched in Fig. 1a, the wave functions are
spherically symmetric for the s orbital and have different direction-
ality in space for p orbitals. In an acoustic cavity (or a meta-atom), the
local resonances can mimic the discrete energy bands in atoms,
where the s orbital eigenmode cannot be easily excited due to its
nearly zero eigen-frequency. Therefore, the first-order Fabry-Pèrot
mode is typically chosen as the resonant mode of interest in

Fig. 1 | Orbital interactions in an acoustic dimer meta-atom. a Illustration of
different orbitals. b Three acoustic meta-atoms and the related discrete energy
levels. c–f Schematics and spatial field distributions of four distinct eigenmodes for
the designed dimer unit obtained from numerical calculations. g Pictures of the

fabricated sample. Stars and squares mark the excitation and measurement sites,
respectively. h Measured transmission responses for different orbital excitations.
Source data are provided as a Source Data file.
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previously studied topological insulators43–49. However, more com-
plex meta-atom geometries may support a wider range of discrete
energy spectra, as displayed for three canonical geometries in Fig. 1b.
Similar to the hydrogen atom, spherical resonators can support three
degenerate orbital resonances, associated to the three dipole modes,
px, py, pz. The degeneracy of p resonances is lifted when the spherical
symmetry is broken. For a cylindrical resonator, the pz orbital has a
lower frequency than the px and py orbitals, which can result in
hybrid excitations of px, py, pz orbitals if the relevant resonances are
not too far away. In a disk resonator, on the contrary, the pz orbital
hasmuch higher resonance frequency than the px and py orbitals, and
the in-plane px and py orbitals can be specifically excited and con-
trolled through the associated pair of intrinsic DoFs. This is our
geometry of choice to define orbital-induced topological phase in a
1-D array of these meta-atoms.

We start by discussing the coupling between two identical
disks. As shown in Fig. 1c–f, there are two types of couplings
between the in-plane p orbitals: σ bonding and π bonding. Specifi-
cally, σ bonding describes the coupling between the meta-atoms
with orbital orientation parallel to the bonding direction, while
π bonding describes the hopping for orbital orientation normal to
the bonding direction.

In Fig. 1c–f, we show the four different eigenmodes associated
with the interacting in-plane p orbitals, which are σ bonding, π bond-
ing, π anti-bonding, and σ anti-bonding, respectively, displayed with
increasing eigenfrequencies. Here, the bonding and anti-bonding
modes are featured with p orbitals in the coupling sites of symmetric
and anti-symmetric field distributions, respectively, with respect to the
central axis of the dimer unit. The frequency difference between the
anti-bonding and bonding modes is proportional to the coupling
strength of σ or π bonding. It is intuitive that the coupling strength of
π bonding is smaller than the one of σ bonding, owing to less wave-

function overlap. The coupling strength can be precisely tailored by
the geometric parameters of the coupling channels.

A fabricated sample of dimer meta-atom is shown in Fig. 1g. The
dimer unit comprises two pieces of processed aluminum plates, while
the diameters of the coupling tubes and cavities are d = 6mm and
D = 40mm, respectively. The distances between the coupling tubes
and cavities arew1 = 16mmandw2 = 53mm. In order to experimentally
excite and measure the pressure amplitude spectra and field profiles,
each site resonator was processed with four holes for sound wave
excitation and detection. The holes were sealed with screws when not
in operation, and were used for the insertion of speakers and micro-
phones in the measurements. The amplitude responses for the σ (π)
couplings were measured by putting speakers into the holes marked
by the dark blue (green) stars, and inserting microphones into the
holesmarked by the dark blue (green) squares, as shown in Fig. 1g. The
experimental results displayed in Fig. 1h, featuring four resonance
peaks labelled as c, d, e, f in the normalized spectra, match well with
the theoretical model in Fig. 1c–f. The asymmetry in the resonance
peaks is caused by small asymmetric sound leakages in the measure-
ments. Moreover, we display the measured phase of the retrieved
pressure field, further verifying the excitation of the different p orbi-
tals, in goodagreementwith our theoretical and numerical predictions
(see Fig. S1 in Supporting Information). The experiment confirms the
realization of coupled orbitals in acoustics and verifies the emergence
of complex interactions between p-orbital modes.

Orbital-induced topological transitions
By periodically coupling the dimer unit cell into a 1D array, we can
obtain a bonding-angle dependent 1D acoustic array, in which the
bonding-angle is defined between two identical coupling waveguides,
as shown in Fig. 2a. Within the tight-binding approximation34,35, the
orbital-dependent lattice can be characterized by the real-space

Fig. 2 | The orbital SSH model with topological edge states. a Illustration of the orbital SSH model. b Calculated band structures for different bonding angles. c The
energy spectra for a finite array. The bold line in the central region denotes the emergence of topological edge states. d Edge mode profiles for θc = 90°.
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Hamiltonian

H =
X

n,i,j

ðtijay
n,ibn,j + t

0
ijb

y
n�1,ian,jÞ+h:c:, ð1Þ

where ay
n,i (an,i) is the creation (annihilation) operator for the resonant

modes associated with p orbitals of indices iðjÞ= σ,π, representing the
orientation directions in the sublattice siteAn, with the indexn labeling
the unit-cell number in the array. tijðt0ijÞ represents the hopping
strength between the respective modes (see derivation details in
Supplementary Note 3). In order to calculate the band structure and
topological invariant in the orbital-dependent 1D model, we take the
Fourier transformation for the real basis of the Hamiltonian in Eq. (1).
By harnessing the spinor vector ψ= ½ak,x ,ak,y,bk,x ,bk,y�T , the systema-
tic Hamiltonian with discretized momenta can be described by
H =

P
kψ

yHðkÞψ. Specifically, the matrix HðkÞ reads

HðkÞ= 0 D

Dy 0

� �
,D =

D1 D2

D3 D4

� �
, ð2Þ

in which the elements of the 2 × 2 matrix D are

D1 = tπ + ½tσsin2ðθÞ+ tπcos2ðθÞ�eik,

D2 =D3 = ðtπ � tσÞ sinðθÞ cosðθÞeik,

D4 = tσ + ½tπsin2ðθÞ+ tσcos2ðθÞ�eik,

where tσ and tπ denote the hopping strengths longitudinal and
transverse to the bond between the cavities, respectively, and k is the
Blochmomentum along the periodic direction. In a zigzag chainwith a
bonding angle /theta displayed in Fig. 2a, the acoustic wave couplings
are subjected to alternating strengths along the chain for px or py
orbital. Each subspace corresponds to one copy of the conventional
SSH model, and it obeys chiral symmetry. Therefore, we refer to our
model as an orbital-dependent SSH model.

On the other hand, if symmetries such as space-time symmetry or
internal symmetries of the system are preserved, their corresponding
operators commute with the Hamiltonian, making the physical system
invariant under the symmetry transformation. Here, we present a
duality operator50,51, operating in the same way as a symmetry opera-
tor, which changes the parameters in a certain pattern to map one
system into another one with the same band structure. Concretely, in
Fig. 2b, the left band structure for θ = 70° and the right band structure
for θ = 110° are dual to each other, while the middle band structure for
θc = 90° is two-fold degenerate and self-dual50,51. In fact, any orbital
lattice with hybrid bonding angles θ and 2θc�θ possesses the same
energy spectra, due to the hidden duality symmetry. Therefore, our
two-DoFs orbital SSH model provides an excellent platform to inves-
tigate the mathematical mapping between different lattices and the
duality beyond the conventional SSHmodel. (see additional details on
the duality Hamiltonian in Supplementary Note 4).

The energy spectra for the finite orbital SSH model at various
bonding angles are shown in Fig. 2c. The highlightedband in the center
gap denotes nontrivial edge states. The mode profiles at θc = 90° are
shown in Fig. 2d, where the two orbital modes are strongly localized at
the leftmost and rightmost sites, respectively. For the bonding angles
close to θ = 0° and θ = 180°, this orbital lattice is topologically trivial
and has no bandgaps. In our sample, the bonding angle cannot be
smaller than 45° to be mapped into our model, and the described
phenomena can be also explored in alternative samples with bonding
angles between 135° and 180° due to the hidden duality symmetry.
Particularly, for θ = 180°, the zigzag chain turns into a straight one, in
which the two intrinsic orbitals become decoupled and the bandgaps

are closed (see Fig. S9 in Supplementary Information). Moreover, we
show that a topological phase transition arises at
jθ� π=2j= arcsin jðγ + 1Þ=ðγ � 1Þj, γ = tσ=tπ , indicating that the transi-
tion point depends on the ratio between longitudinal and transverse
hopping strengths (see details in Supplementary Note 3). The winding
number charactering the topological properties of the Hamiltonian
can be defined as36

W =
i
2π

Z π

�π
dk

d ln detDðkÞ
dk

= � 1
2π

Z

C
d argdetDðkÞ ð3Þ

where C represents a contour swept by D(k) as k varies across the
Brillouin zone (see Supplementary Note 3).

Experimental demonstration
The emergence of topologically protected orbital-induced edge states
in the acoustic lattice was validated in experiments. In Fig. 3a, we
exhibit the realized sample, which comprises 11 identical disk resona-
tors connected by coupling channels with a bonding angle of θ = 90°.
In this specific configuration, the two in-plane p orbitals in each cavity
are orthogonal to each other. The calculated eigenfrequencies in the
orbital SSH lattice are shown in the left panel of Fig. 3b. Two degen-
erate nontrivial edge states appear at around 5026Hz in the bandgap,
as labeled by the blue and red spheres, where the insets show the
corresponding simulations of left and right edge states.

We conducted four separate measurements with two different
orbital sources in the site resonators close to the left and right edges,
as shown in Fig. 3a, in which the orbital sources, referred as L_px (R_px)
and L_py (R_py) and marked by solid and dashed arrows, consist of two
acoustic sources which are out of phase and set to be parallel and
perpendicular to coupling waveguides, respectively. The measured
pressure amplitude response on the edge-site resonators are displayed
in the middle and right panels of Fig. 3b. As expected, the measured
pressure amplitude spectrum at the left (right) end site for the L_px
(R_py) source excitation has a prominent peak at around 5101Hz in the
bandgap region. The frequency of the spectrum peak has a slight
deviation from the simulated one due to inevitable loss in the experi-
ment. On the other hand, for the L_py (R_px) excitation, the peaks in the
bandgap vanish.

To clearly unveil this orbital-dependent topological feature, we
further scanned andmappedout the intensity fields in the lattice at the
peak frequency for four different excitations. As shown in Fig. 3c, d,
sound waves were strongly localized at the left (right) end-site reso-
nator for L_px (R_py) excitations, and spreaded into the bulk for L_py
(R_px) excitations. Only excitations coupling to in-plane dipolar orbi-
tals can efficiently excite the orbital-dependent topological edge
states, whereas a monopole source does not work due to symmetry
mismatch (see Supplementary Note 6). Our experimental results uni-
vocally reveal the observation of orbital-induced topological edge
states.

Disorder robustness
We further investigated the robustness of the orbital-induced topo-
logical edge states against structural disorder. As schematically shown
in Fig. 4a, in a set of experiments the bonding angles are made no
longer identical but have a random distribution within the range [70°,
110°]. The randombonding angles between consecutive coupling links
are numbered as θi (i = 1, 2, …9) in order. As displayed in Fig. 4b, we
fabricated one aperiodic sample with varying bonding angles to check
the robustness. The energy stability of topological edgemodes against
disorder in bonding angles is confirmed by the calculated energy
spectra for 50 randomcases in Fig. 4c. The set of bonding angles in the
fabricated sample is the case marked by the cyan arrow in Fig. 4c.
Clearly, for the 50 considered random geometries, the topological
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Fig. 4 | Disorder robustness of orbital-induced TI. a Illustration of an aperiodic orbital lattice. b Fabricated sample. c Energy spectra for 50 different aperiodic lattices
with the randomly chosen bonding angles. d Measured amplitude spectra for different orbital excitations. Source data are provided as a Source Data file.

Fig. 3 | Orbital-induced topological edge states. a Fabricated sample. b Left:
Calculated eigenvalue spectrum for a finite acoustic lattice with 11 cavities and
simulations of topological edge states. Middle: Measured amplitude spectra in the
left edge-site resonator for the L_px and L_py excitations respectively, as marked by
the solid and dashed arrows in (a). Right: Measured amplitude spectra at the right

edge-site resonator for the R_px and R_py excitations as marked by the solid and
dashed arrows in (a). c, d Measured pressure amplitude field distributions for the
four different excitations in (a) and (b). Source data are provided as a Source
Data file.
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edge states always survive and remain pinned at the zero energy (red
spheres in the bandgap) because of their topological nature.

To further verify the disorder robustness of orbital-induced TIs,
we measured the pressure amplitude spectra for different orbital
excitations. The orientations of orbital sources are depicted in the
right panel of Fig. 4b. We conducted four frequency-resolved acoustic
measurements on the edge-site resonators for L_px, L_py, R_px, andR_py
orbital sources, with results summarized in Fig. 4d. Prominent peaks
still emerge in the bandgap for L_px and R_py excitations at around
5108Hz, similar to the results for the periodic chain in Fig. 3b. The
orbital-induced topological properties are hence preserved and
immune against the bonding-angle disorder. We show the detailed
information on the calculated transmission spectra and the measured
pressure field distributions in this 1D disordered orbital lattice (see
Supplementary Note 7).

Beyond conventional SSH model
In order to visualize the generality of topological phase transitions
emerging in our orbital SSHmodel, we furtherly dimerize the hopping
amplitudes by varying the diameter of the coupling tubes, as shown in
Fig. 5a. For the leftmost and rightmost resonators, they are strongly
and weakly coupled to the topological chain with different coupling
tubes d1 and d2 (d2 < d1 = 0.6 cm), respectively. Unlike the conventional
SSH model, with edge modes residing on the rightmost resonator,
topological phase transitions emerge in our orbital SSH chains.
Keeping the bonding angle at 90°, the px-like edge mode displays
tunneling through the bulk chain from the right to the left termination
by varying d2 from 0.1 cm to 0.4 cm, and the transition appears at
d2 = 0.25 cm in the simulations. This topological transition is not found
in the conventional counterpart obtained by setting the bonding angle
as 180°, as seen in Fig. 5a. The px-like modes at the left and right ends
are denoted as red and light-blue spheres, respectively. With 3D-
printed auxiliary tubes, we adapt the sample with identical coupling
tubes in Fig. 3a to form the dimerized one shown in Fig. 5b with
d2 = 0.4 cm. In experiments, the counterintuitive edge mode on left-
most resonator is evidenced with a px-like source, as shown in Fig. 5c,
agreeing well with the simulations. Meanwhile, a py-like source cannot
excite the leftmost resonator, featuring strong orbital-selectivity.

Discussion
In summary, we have proposed a strategy to enable tailored wave
interactions between multiple orbitals in acoustic discrete systems,
and experimentally demonstrated nontrivial orbital-induced topolo-
gical insulators in a spinless SSH model. We also unveiled a hidden
duality symmetry, and topological phase transitions in this system. In

experiments, we demonstrated the close correlation between the
excitation orientation and orbital-dependent edge modes, which
agrees well with numerical predictions. In addition, we demonstrated
strong topological protection against bonding-angle disorders, and
counterintuitive topological edgemodes in orbital SSH lattices beyond
the response in conventional SSH arrays. Our work extends one-DoF
topological insulators to the two-DoFs orbital regime, providing a
route for exploring orbital-dependent topological physics and func-
tional devices.

Methods
Numerical simulations
Full-wave numerical simulations were implemented by harnessing a
finite element solver. The walls of acoustic resonators and connecting
waveguides are assumed rigid in the simulations, owing to the large
acoustic impedance mismatch between (metal Aluminum, photo-
sensitive resin) and air. Themass density and speed of sound in air are
assumed to be ρair = 1:29kg=m3 and cair = 343m=s. When calculating
the bulk band in Fig. 2b, and S3, the Bloch boundary condition is
employed for the periodic orbital orientation.

Experiments
The designed samples were manufactured by means of metal
machining technique and 3D printing (geometry tolerance of 0.1mm).
To facilitate the sound excitation and detection, four holes with the
radius of ~2.5mm were drilled on the top of each disk cavity. In
experiments, a pair of out-of-phase sound signalswere launched inside
the excitation acoustic cavity, as shown in Fig. 3 and Fig. 4. A 1/8 inch
microphone (Brüel & Kjær 4138-A-15) was employed for detecting the
amplitude and phase of sound waves in each disk cavity, accompanied
with the other one in the same cavity as phase reference. The sound
signals, recorded and processed via a network analyzer (Brüel & Kjær
3160-A-042), were utilized to map out the pressure amplitude spectra
as well as the amplitude fields in the lattices.

Data availability
Themain data supporting the findings of this study are availablewithin
this letter and its supplementary information. The source data gener-
ated in this study have been deposited in Figshare repository https://
doi.org/10.6084/m9.figshare.24581112. Source data are provided in
this paper.
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