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Mangroves and saltmarshes are biogeochemical hotspots storing carbon in
sediments and in the ocean following lateral carbon export (outwelling).
Coastal seawater pH is modified by both uptake of anthropogenic carbon
dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we
investigate how mangroves and saltmarshes influence coastal carbonate
chemistry and quantify the contribution of alkalinity and dissolved inorganic
carbon (DIC) outwelling to blue carbon budgets. Observations from 45 man-
groves and 16 saltmarshesworldwide revealed that >70%of intertidal wetlands
export more DIC than alkalinity, potentially decreasing the pH of coastal
waters. Porewater-derived DIC outwelling (81 ± 47mmolm−2 d−1 in mangroves
and 57 ± 104mmolm−2 d−1 in saltmarshes) was the major term in blue carbon
budgets. However, substantial amounts of fixed carbon remain unaccounted
for. Concurrently, alkalinity outwelling was similar or higher than sediment
carbon burial and is therefore a significant but often overlooked carbon
sequestration mechanism.

The ocean is an important sink for anthropogenic carbon dioxide
(CO2) emissions. Increased CO2 dissolution in the ocean causes
ocean acidification and threatens a wide range of marine organisms
and ecosystems1. Coastal ecosystems are particularly vulnerable to
ocean acidification2, which jeopardizes their ecosystem services
and functions, i.e., habitat for biodiversity, fisheries, coastal pro-
tection, and tourism3. Processes impacting coastal water acidifica-
tion are more complex than in the open ocean resulting in larger
spatial and temporal variability of the carbonate system4. In addi-
tion to the dissolution of anthropogenic CO2 into seawater, the
coastal carbonate system can be impacted by many local carbon

sources, such as upwelling, groundwater, riverine, and wetland
inputs5.

Intertidal wetlands, e.g., mangroves and saltmarshes, are bio-
geochemical hotspots storing large amounts of carbon (54 TgC y−1)
in their sediments6. They also laterally export carbon to the coastal
ocean (termed outwelling)7–10, which alters carbonate chemistry and
thus impacts seawater pH. Mangroves and saltmarshes produce
organic carbon that is partially mineralized, releasing inorganic car-
bon in the form of carbonate alkalinity (mostly as HCO3

− at pH < 8)
and dissolved inorganic carbon (DIC = CO2 +HCO3

− + CO3
2−). Expor-

ted total alkalinity (TA) represents a long-term carbon sink11 and can
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buffer the coastal ocean against acidification. Exported DIC, in con-
trast, can enhance coastal acidification by forming carbonic acid
when CO2 reacts with water and partly returns CO2 to the atmo-
sphere via air–sea exchange.

Different diagenetic processes produce TA and/or DIC in
wetland sediments. Aerobic respiration produces mostly DIC,
whereas anaerobic respiration (denitrification, sulfate reduction,
manganese reduction, and iron reduction) produces both DIC and
TA12. TA produced during anaerobic respiration only contributes
to a permanent TA increase if respiration is coupled with the
removal of reduced compounds, i.e., sulfide precipitated as pyrite
or nitrogen outgassing (N2) by denitrification13,14. Porewater
acidification following CO2 production from organic matter
degradation can drive metabolic carbonate dissolution, which
also produces TA15. Drainage of intertidal wetland sediments by
tidal pumping (porewater export driven by tidal variations in
hydraulic gradients) and bio-irrigation (porewater export driven
by benthic organisms) transports DIC- and TA-enriched pore-
water to surface waters and eventually to the coastal ocean16–18.

Examining TA and DIC in porewater, surface water, and
during outwelling gives valuable insights into how intertidal
wetlands affect the carbonate system of coastal waters. The
TA:DIC ratio relates to buffer factors and is thus a major property
of carbonate chemistry, determining the buffering capacity of
seawater against external acid inputs19. Consequently, TA and DIC
inputs drive pH changes and influence the capacity of seawater to
take up anthropogenic CO2, affecting ocean acidification and
carbon sequestration.

Here, we investigate whether mangroves and saltmarshes buf-
fer coastal waters against acidification and re-examine their
potential to sequester atmospheric CO2. We compiled TA and DIC
contents in porewater and surface water (measured during time-
series and spatial surveys) at mangrove- and saltmarsh-dominated
systems worldwide (Fig. 1)20,21. We also upscaled compiled TA and
DIC outwelling rates globally to evaluate whether intertidal wet-
lands exportmore TA or DIC and to updatemangrove and saltmarsh
carbon budgets.

Results and discussion
Intertidal wetlands produce more DIC than alkalinity
Mangrove and saltmarsh sediments aremajor sources of TA andDIC to
surrounding waters. TA (153–34,500 µmol kg−1) and DIC
(844–28,200 µmol kg−1) in porewaters were two- to three times higher
than in surface waters (5–11,500 and 37–9390 µmol kg−1, respectively,
Supplementary Fig. 1). Slopes of TA:DIC regressions per site, normal-
ized to the median salinity of each site, were 0.82 ±0.07 (0.78)
(median ± SE (average)) in porewater and 0.75 ± 0.04 (0.70) in surface
water (Supplementary Table 2), being slightly higher in saltmarshes
than in mangroves. Multiple processes produce TA and DIC within
sediments at different ratios resulting in specific TA:DIC slopes: aero-
bic respiration (−0.2), denitrification (0.8), sulfate reduction (1),
metabolic carbonate dissolution (2), manganese reduction (4), and
iron reduction (8)12. The observed porewater and surface water slopes
imply a combination of TA and DIC production during aerobic
respiration, sulfate reduction, and at some sites, denitrification and
metabolic calcium carbonate dissolution22–24. 38% of mangrove and
35% of saltmarsh surface water samples exceeded typical seawater
values of 2350 µmol kg−1 11, suggesting a net production of TA after
accounting for TA consumption by biogeochemical processes such as
sulfide oxidation and nitrification.

Most intertidal wetlands, however, produced more DIC than TA.
Averaging values per site, porewater TA:DIC ratios (0.90 ±0.04 (0.90))
were slightly lower than surface water ratios (1.03 ±0.01 (1.03))
(Fig. 2a, b). The use of TA:DIC ratios as a proxy for acidification or
buffering is explained in detail in the SupplementaryMethods. Surface
waters surrounding intertidal wetlands often receive some freshwater
(TA:DIC ratio ≈1.0 varies amongst catchments) or seawater (TA:DIC
ratio ≈1.1) inputs4. Surface water TA:DIC ratios increased with salinity
and dissolved oxygen (Supplementary Fig. 2), which are typically
higher in seawater than within intertidal wetlands25,26. Therefore,
TA:DIC ratios exceeding 1 in surface waters at most sites are partially
due to mixing with seawater during flood tides. TA:DIC ratios were
negatively correlated with the natural porewater tracer radon (Sup-
plementary Fig. 3), suggesting that inputs of porewater enhance
acidification. In porewaters, TA:DIC ratios increased with dissolved
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Fig. 1 | Location of mangroves and saltmarshes with alkalinity (TA) and dis-
solved inorganic carbon (DIC) observations. TA and DIC were measured in
porewater and surface water at 38 mangrove- and 8 saltmarsh-dominated creeks
and estuaries. The location of some sites was slightly adjusted to allow visualization
(precise coordinates are available on Supplementary Table 1). The underlying

global mangrove (blue areas)20 and saltmarsh (orange areas)21 distributions were
retrieved fromexisting databases. The ecosystemsoverlap inmany coastlines, such
as Australia, China, and the Gulf of Mexico. The sample size scale refers to the
number of measurements at each site.
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organic carbon (DOC) (Supplementary Fig. 2), potentially due to
organic alkalinity contributions or a higher contribution of anaerobic
respiration to the total respiration due to higher organic matter
loading27,28.

At 61% of the sites, TA and DIC in surface waters measured during
timeseries were higher at low tide than at high tide (Fig. 2c). Therefore,
TA and DIC are likely derived from tidally-driven porewater export,
which is greatest during low tides. Systems with greater tidal
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Fig. 2 | Inorganic carbon speciation in intertidal wetlands impacts coastal
seawater pH. TA:DIC ratios a in porewater (PW) and surface water (SW) at each
site, asterisks represent median values and b distribution per group of samples.
c Tidal alkalinity (TA) and dissolved inorganic carbon (DIC) ranges estimated from
the difference in concentrations between low and high tide. A large tidal range
implies a large porewater source. Scales were fit to improve the readability

excluding 1 outlier. d Regressions between pH and TA:DIC ratios. Gray areas
indicate the 95% confidence intervals of the regressions. e Buffer factor βH per
group and ocean range19 presented as a grey band. Boxplots in Fig. 2b, d indicate
the median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile
(whiskers). Sources of datasets are listed in Supplementary Table 1.
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amplitudes had high tidal TA and DIC ranges with higher contents at
low tide (i.e.,minimumwater level). Only some systemswith small tidal
amplitudes (<2m), had slightly higher TA or DIC at high than at low
tide. At most sites (76%), DIC differences between low and high tide
were larger than TA differences, indicating that more DIC was expor-
ted by tidal pumping (Fig. 2c). As a result, surface water pH decreased
by 0.3 ± 0.1 (0.4) units during low tides compared to high tides (Sup-
plementary Table 2). The relatively larger DIC production and export
to surfacewaters is supportedby larger estuarineDIC thanTA inputs at
four out of six mangrove-dominated estuaries, as revealed by mixing
models (Supplementary Figs. 4 and 5).

Overall, tidal dynamics andmixingmodels reveal that 23 out of 33
mangrove sites and all saltmarsh sites (n = 10) had higher DIC than TA
inputs, potentially enhancing local acidification. Sites without water
level data were excluded from the analysis. The local pHwas positively
correlated with TA:DIC ratios, however, data were scattered around
TA:DIC ratios of ≈1 (Fig. 2d), where seawater reaches a minimum buf-
fering capacity. This minimum buffering likely causes larger variations
in seawater pH for a given acid-base perturbation9,28.

The buffer factor βH, which quantifies the resistance to pH chan-
ges at the addition of an acid or base, was five times higher in pore-
water than in surfacewaters. Furthermore, βH in porewater was two- to
five times higher than in oceanicwaters19 (Fig. 2e). This emphasizes the
high buffer capacity of mangrove and saltmarsh porewaters. Earlier
compilations of buffer factors in the marine systems have focused on
coral reefs29 and the open ocean19. The spatial and temporal variability
of buffer factor βH inmangroves and saltmarshes exceed othermarine
ecosystems. Therefore, the impact of the acid release from wetland
porewaters on the pH varies considerably. The apparent paradox of
increasing buffer capacity despite increasing acidification in intertidal
wetlands can be explained by seawater reaching a minimum buffering
capacity when TA=DIC at pH ≈7.5. Most carbonate ions become
bicarbonate ions when the halfway point between dissociation con-
stants of carbonic acid is reached19. When TA:DIC ratios further
decrease after this minimum (<1), the water buffering capacity
increases with increasing bicarbonate content9. Consequently, the
increased buffer capacity of porewaters minimizes the acidification
potential caused by CO2 release from intertidal wetlands.

The majority of intertidal wetlands produce and export more DIC
than TA and thus likely acidify surrounding waters. However,

acidification by intertidal wetlands is highly site-specific, impacted by
external nutrient inputs, mixing with nearshore waters, and varies
seasonally (Supplementary Figs. 3 and 6). Future studies should ven-
ture into continental shelf waters to examine the extent of wetland-
driven acidification on marine biogeochemistry and allow for com-
parison with anthropogenic-driven ocean acidification.

Inorganic carbon outwelling a major carbon fate
We compiled TA and DIC outwelling fluxes from mangroves and salt-
marshes to update the carbon budgets of intertidal wetlands (Sup-
plementary Table 3). Most sites (71%) exported more DIC than TA to
the coastal ocean (Supplementary Fig. 7), which is consistent with
observations of TA and DIC production (Fig. 2). The TA:DIC outwelling
ratios (median ± SE (average): 0.8 ± 0.2 (1.0)) ranged from 0.1 to 4 in
mangroves and from0.6 to 1 in saltmarshes. This indicates that TA and
DIC originating from sediments are exported to adjacent waters,
affecting the carbonate chemistry and potentially enhancing coastal
acidification. Elevated inorganic carbon and CO2 outgassing was
associated with intertidal wetland outwelling on continental shelves in
Japan30, Brazil31, and the US32,33. In addition to inorganic carbon,
organic carbon outwelling can also enhance coastal acidification and
CO2 outgassing due to enhanced microbial CO2 production34. These
observations suggest that intertidal wetlands might modify the pH of
nearshore shelf waters, but the magnitude and scale of the impact on
seawater pH are highly site-specific, depending on the climate, geo-
morphology, hydrology, and size of the system.

On a local scale, TA andDIC outwelling varied over tidal cycles35,36,
across seasons9,37, in response to episodic weather events38,39, and was
controlled by carbonate dissolution in some coastlines such as the
Everglades18 (Supplementary Table 3). DIC outwelling frommangroves
was approximately two times higher during wet than dry
seasons37,38,40,41. Macrotidal Chinese saltmarshes36,42–45 had DIC out-
welling rates exceeding those in microtidal US saltmarshes9,32,34 by a
factor of 20 (Fig. 3). However, on a global scale, temperature, pre-
cipitation, tidal amplitude, sediment, and carbon accumulation rates
had minor or undetectable influences on outwelling (Supplementary
Figs. 8–10, Supplementary Table 4). Several methods have been used
to quantify outwelling, and the intertidal area associated with out-
welling is often prone to large uncertainties46. Since it is challenging to
estimate outwelling, most rates are based on two tidal cycles. Only 17

Fig. 3 | Most studies measuring dissolved inorganic carbon (DIC) outwelling
rates from intertidal wetlands were conducted in the USA, China, and Aus-
tralia.Rates are scaled to the intertidalwetland area. The locationof somesiteswas

adjusted to allow visualization. The precise coordinates are available on Supple-
mentary Table 3.
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out of 40 sites have some seasonal data. Larger, seasonal datasets
covering a broad global distribution may be required to establish
robust relationships on a global scale.

The global area-weighted DIC outwelling in mangroves (med-
ian ± SE (average): 81 ± 47 (155), range:−97 to 1051mmolm−2 d−1;n = 26)
and saltmarshes (57 ± 104 (242), −2 to 1200mmolm−2 d−1; n = 14), was
the dominant fate of carbon fixed by net primary production,
exceeding carbon burial, aquatic CO2 outgassing, particulate and dis-
solved organic carbon outwelling (Fig. 4)6,47. In spite of a large natural
variability, these global-scale estimates are consistent with a series of
recent local-scale carbon budgets demonstrating that DIC outwelling
exceeded carbon burial in mangroves of Australia38,48, and saltmarshes
of the US9 and China26,49. However, even when accounting for DIC
outwelling as an additional carbon output, the fate of 28% and 47% of
the carbon fixed by net primary production (NPP) remain unidentified
for mangroves and saltmarshes, respectively6,47 (Fig. 4 and Supple-
mentary Table 5). CO2 outgassing from exposedmangrove sediments,
which is facilitated by biogenic structures such as pneumatophores
and crab burrows, could be another major carbon fate50, but current
datasets remain small.

While DIC outwelling can be followed by CO2 outgassing and thus
return carbon back to the atmosphere, exported TA represents a long-
termcarbon sink since it stays dissolved in the ocean formillennia11. TA
outwelling rates were threefold higher in mangroves (81 ± 55 (134), −1
to 951mmolm−2 d−1; n = 17) and slightly smaller in saltmarshes (25 ± 11
(26), −2 to 69mmolm−2 d−1; n = 6) compared to the global average of
carbon burial of these intertidal wetlands6. Recognizing lateral TA

exports as a carbon sequestration mechanism will enhance the per-
ceived value of those blue carbon ecosystems11 and give insights into
buffering and acidifying processes in adjacent coastal waters. Addi-
tional seasonal studies in all parts of the world are essential to reduce
uncertainty and refine budgets.

Implications and perspectives
When upscaling median values to the global area of mangroves
(140,000 km2)51 and saltmarshes (55,000 km2)21, intertidal wetlands
export 5.3 ± 3.2 Tmol y−1 DIC and 4.6 ± 2.8Tmol y−1 TA to the coastal
ocean. DIC exports by global rivers to the ocean are estimated at 32
Tmol y−1, only about six times greater than our estimate of outwelling
from mangroves and saltmarshes combined11. The global alkalinity
balanceof the ocean,which isdominatedby riverine input and calcium
carbonate burial, does not currently include inputs by intertidal
wetlands11. Our results suggest that TA outwelling from coastal wet-
lands is equivalent to 7% of the total TA sources (71 Tmol y−1) into the
ocean, exceeding other TA sources such as submarine groundwater
discharge (1.0 Tmol y−1), denitrification (1.5 Tmol y−1), submarine sili-
cate weathering (2.8 Tmol y−1), and organic matter burial (3.0 Tmol y−1)
(Supplementary Table 6). Hence, despite their small area, intertidal
wetlands are global hotspots for carbon and TA production and out-
welling and should be accounted for in global marine carbon budgets.

To refine global TA and DIC outwelling rate estimates from
intertidal wetlands, which will impact coastal acidification and carbon
budgets, more studies are required in South America, Africa, Europe,
and Southeast Asia. Studies on inorganic carbon dynamics in
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Fig. 4 | Fates of mangrove and saltmarsh production are dominated by inor-
ganic carbon export. However, amangrove and b saltmarsh carbon budgets (net
primary production (NPP) minus major carbon fates) remain unbalanced (Sup-
plementary Table 5). Pie charts are based on median values. Using averages would
close carbon budgets, but averages are unlikely to be representative of the skewed

dataset with clear outliers. The values for burial rates6, aquatic CO2 outgassing,
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saltmarshes should cover a broader global distribution, whereas
research in mangroves should be conducted in different seasons over
complete spring-neap tidal cycles. Methodological differences, spatial
scales, geomorphological settings, seasonal changes, and episodic
weather events should be considered to refine global upscaling.

Overall, our compilation of TA and DIC contents and outwelling
rates in mangroves and saltmarshes revealed greater DIC than TA
exports at most sites, likely accelerating coastal acidification. The
decrease of coastal pHdue to porewater input is partially hampered by
the high buffer capacity of porewaters compared to surface waters.
The effect of acidification is likely highest near intertidal wetlands,
potentially affecting the carbonate systemof estuaries, coral reefs, and
nearshore coastal areas. TA production is important not only from an
ocean acidification context but also froma carbon budget perspective.
The large TA exports represent an overlooked carbon sequestration
mechanism that more than doubles the perceived role of mangroves
and saltmarshes via sediment carbon burial.

Methods
Data compilation
Contents of TA and DIC in porewater (n = 414) as well as in surface
water (n = 2885) measured during timeseries (fixed location) and spa-
tial surveys (fixed time period) were compiled from 38mangrove- and
8 saltmarsh-dominated creeks and estuaries (Fig. 1, Supplementary
Table 1). The full dataset can be accessed at Pangea (https://doi.org/10.
1594/PANGAEA.949660)52. We used data from creeks that were pre-
dominantly surroundedbymangroveor saltmarshvegetationandwith
minimal confounding factors such as mixed vegetation or large
catchments. These creeks were located in either pristine (i.e., mini-
mally impacted) or anthropogenically impacted estuaries or coastal
areas. Anthropogenically impacted areas were defined as areas that
were affected by nearby urban or agricultural activities, potentially
delivering pollutants, e.g., sewage or fertilizers, to creeks. We also
included data from pristine mangrove- and saltmarsh-dominated
estuaries. When available, environmental parameters were recorded,
i.e., season, salinity, temperature, pH, dissolved oxygen, water level,
porewater tracer radon, partial pressure of carbon dioxide, dissolved
organic carbon, particulate organic carbon, nitrogen oxides, ammo-
nium, total nitrogen, phosphate, and total phosphorus.

Literature values for TA (n = 52) and DIC (n = 115) outwelling at 26
mangrove and 14 saltmarsh sites were compiled (Supplementary
Table 3). Therewas a partial intersectionbetween the study siteswhere
outwelling rates were measured (Fig. 3 and S8) and sites with TA and
DIC observations (Fig. 1). Outwelling rates were averaged per site, and
global medians ± SE (averages) were calculated for mangroves and
saltmarshes (Supplementary Table 4). We retrieved site-specific para-
meters of outwelling sites, including tidal range, sediment accumula-
tion rates, and carbon accumulation rates from global datasets6.
Average annual temperature and average annual precipitation were
gathered from corresponding publications or nearest weather
stations.

Calculations and modeling
The use of TA:DIC ratios as a proxy for acidification or buffering is
explained in detail in the supplementary information (Supplementary
Methods and Supplementary Figs. 11–13). Slopes of salinity normalized
TA and DIC regressions were calculated to examine potential impacts
on seawater pH and dominant biogeochemical pathways53 (Supple-
mentary Table 2). Salinity normalized TA and DIC were calculated
using the mean salinity and, as nonzero TA or DIC endmember, the
intercept of the regressionbetweenTAorDIC and salinity for each site.
Determining dominant biogeochemical pathways for each site was
beyond the scope of this study since it requires analysis of respiration
pathways (e.g., aerobic respiration and sulfate reduction) and carbon
isotopic signatures.

To test the impact of tidal variation on the carbonate chemistry,
tidal ranges of DIC, TA, and pH were quantified. Tidal ranges were
estimated from differences between DIC, TA, and pH values at low and
at high tides. Minimum andmaximumwater levels were used to define
low and high tides.

The standard estuarine mixing model was used to calculate
estuarine TA and DIC sources/sinks in surface water along six pristine
mangrove estuaries with a clear salinity gradient54. Conservative mix-
ing lines were estimated from TA and DIC at the lowest and highest
salinities at each site. The deviations between TA and DIC, measured
during spatial surveys, and conservative mixing lines were calculated
as a percentage and averaged for each estuary. Positive deviations
from conservative mixing lines indicate a source within the estuary,
whereas negative values indicate a sink.

The buffer factor βH was calculated based on carbonate para-
meters obtained in CO2SYS using TA, DIC, salinity, and temperature as
input parameters. In CO2SYS, the dissociation constants from
Millero55, “KHSO4” fromDickson56, and the “[B]TValue” fromLee et al.57

were chosen. βH was calculated based on the equations derived by
Egleston et al. 19.

To examine drivers of TA:DIC ratios and outwelling rates, linear
regressions and corresponding Pearson coefficients (R) and p-values
were determined.

Data availability
The biogeochemical data, which includes TA, DIC, season, salinity,
temperature, pH, dissolved oxygen, water level, porewater tracer
radon, partial pressure of carbon dioxide, dissolved organic carbon,
particulate organic carbon, nitrogen oxides, ammonium, total nitro-
gen, phosphate, and total phosphorus at 38mangrove and 8 saltmarsh
sites, generated in this study have been deposited in the PANGEA
database under accession code https://doi.org/10.1594/PANGAEA.
94966052. Calculations of TA:DIC ratios, salinity normalized TA:DIC
regressions, tidal ranges, and tidal pH ranges per site are provided in
Supplementary Table 2. The literature summary of TA and DIC out-
welling rates (including drivers, i.e., season, temperature, precipita-
tion, tidal range, sediment accumulation rates, and carbon
accumulation rates) at 26 mangrove and 14 saltmarsh sites are pro-
vided in Supplementary Tables 3 and 4.
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