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Phyloecology of nitrate ammonifiers and
their importance relative to denitrifiers in
global terrestrial biomes

Aurélien Saghaï 1, Grace Pold1, Christopher M. Jones1 & Sara Hallin 1

Nitrate ammonification is important for soil nitrogen retention. However, the
ecology of ammonifiers and their prevalence comparedwith denitrifiers, being
competitors for nitrate, are overlooked. Here, we screen 1million genomes for
nrfA and onr, encoding ammonifier nitrite reductases. About 40% of ammo-
nifier assemblies carry at least one denitrification gene and show higher
potential for nitrous oxide production than consumption. We then use a
phylogeny-based approach to recruit gene fragments of nrfA, onr and deni-
trification nitrite reductase genes (nirK, nirS) in 1861 global terrestrial meta-
genomes. nrfA outnumbers the nearly negligible onr counts in all biomes, but
denitrification genes dominate, except in tundra. Random forest modelling
teases apart the influence of the soil C/N on nrfA-ammonifier vs denitrifier
abundance, showing an effect of nitrate rather than carbon content. This study
demonstrates the multiple roles nitrate ammonifiers play in nitrogen cycling
and identifies factors ultimately controlling the fate of soil nitrate.

Human activity, in particular agricultural fertilizer application and fossil-
fuel combustion, has increased the amount of nitrogen (N) circulating in
the biosphere and created an imbalance in the N cycle that threatens
ecosystem integrity at the global scale1. Nitrate is a highly mobile form
of reactive N in soil and the primary source of global N pollution2. If not
assimilated into biomass or leached to watersheds, nitrate can be used
as an electron acceptor by soil microorganisms under oxygen-limited
conditions, mainly through denitrification or nitrate ammonification,
also known as dissimilatory nitrate reduction to ammonium. Deni-
trification leads to N loss through the production of gaseous N-com-
pounds, including the potent greenhouse gas nitrous oxide (N2O).
Terrestrial ecosystems contribute ca. 60% to global N2O emissions3,
with denitrification being themain source, andN2O concentration in the
atmosphere is increasing at an accelerating rate4. By contrast, only small
amounts of N2O have been detected from isolates performing nitrate
ammonification5–7 and the process results in the retention of N via the
binding of ammonium to negatively charged surfaces in the soil.
Determining the environmental factors controlling the end-products
when nitrate is used as electron acceptor is crucial for our ability to
predict and influence N budgets in terrestrial ecosystems at the global
scale8. A key factor is a better understanding of the ecology of nitrate-

ammonifying microorganisms, as they are an overlooked functional
group in the N cycle9, particularly in terrestrial ecosystems.

Nitrate ammonification is primarily driven by microorganisms
using the pentaheme cytochrome c nitrite reductaseNrfA, encoded by
the nrfA gene, to catalyze the reduction of nitrite to ammonium10.
Microorganisms can also catalyze this reaction using the octaheme
nitrite reductase (ONR), a close homolog of NrfA encoded by the onr
gene11. However, its prevalence and importance for ammonification in
the environment has been less studied compared to nrfA. Similar to
denitrification, nitrate is reduced to nitrite by reductases encoded by
narG or napA, and the branching point between the two pathways is
the reduction of nitrite. While nitrate ammonification involves the
reduction of nitrite to ammonium in a single enzymatic step, deni-
trification is amodular pathway inwhich nitrite is successively reduced
into nitricoxide, N2O andfinally dinitrogen gas via reductases encoded
by nirK or nirS, nor and nosZ, respectively12. Both nitrate ammonifica-
tion driven by NrfA and the competing process denitrification are
performed by phylogenetically diverse bacteria and archaea13,14,
whereas ammonification involving ONR is constrained to
Proteobacteria11. Ammonification has been suggested to dominate or
increase in relation to denitrification under electron acceptor
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limitation, i.e. at high ratios of soil organic carbon (SOC) and nitrate,
whereas conditions with electron donor limitation favor
denitrification15. This is supported by more recent work with enrich-
ment and pure cultures5,16–18, site-specific field studies19–21 and model-
ing approaches22,23. Yet, we lack a synthesis of the relative importance
of the SOC to nitrate ratio and other factors for the competition to use
nitrate as an electron acceptor across Earth’s terrestrial biomes24.

In this study, we determine the extant diversity, abundance, and
global distribution of ammonifiers and the environmental drivers of
the potential competition with denitrifiers in terrestrial ecosystems.
This includes an extensive phylogenetic analysis of full-length nrfA and
onr sequences obtained from screening more than 1,000,000 assem-
blies of isolate and metagenome-assembled genomes (MAGs). Both
ammonification and denitrification have been shown to co-exist in a
few but phylogenetically diverse isolates18,25,26. Therefore, the presence
of denitrification genes in the assemblies was determined to gain
insights into the overall patterns of N2O production and reduction
capacity among ammonifiers. In addition to the nrfA/onr phylogeny,
we also use updated phylogenies of the genes nirK and nirS12, coding
for the equivalent function in denitrifiers, to provide a phylogenetic
framework for analyzing ammonifying and denitrifying microorgan-
isms. The phylogenies were used as references for recruiting bacterial
and archaeal nrfA, onr, nirK, and nirS fragments from 1861 soil and
rhizosphere metagenomes derived from broad environmental gra-
dients across 725 locations to assess the global distribution of
ammonifiers and their abundance relative to denitrifying micro-
organisms. Because onr counts were very low across all metagenomes,
we identified environmental drivers underpinning the abundance of
functional microbial communities performing NrfA-driven ammonifi-
cation vs. denitrification as a proxy for the competition between these
groups using random forest modelling and discuss the implications of
the findings for N loss and retention in global soils.

Results
Phylogeny of NrfA and ONR
The search for the presence of nrfA and onr in isolate genomes and
MAGs resulted in 1155 and 106 non-redundant taxonomically and
structurally diverse sequences, respectively. Overall, 1113 and 93
assemblies carried nrfA and onr alone, respectively, whereas 12 carried
both. The nrfA diversity spanned 1 archaeal and 44 bacterial phyla,
whereas onr sequences were detected in 1 archaeal and 14 bacterial
phyla, respectively (Supplementary Table 1). Only 25 nrfA-assemblies
and 1 onr-assembly carried more than one copy of nrfA and onr,
respectively, with high sequence similarity between copies (Supple-
mentary Fig. 1).

Phylogenetic reconstruction confirmed that NrfA and ONR
sequences form distinct and monophyletic clades27. The NrfA region of
the tree was overall congruent with that of the organisms at the class
level, except for some taxa including Anaerolineae, Campylobacteria,
Gammaproteobacteria and Myxococcia (Fig. 1). While all sequences
contained the five heme-binding sites and a histidine residue between
the third and fourth site that are characteristic of NrfA28, a number of
other structural featureswere associatedwith different cladeswithin the
NrfA region in the phylogeny. Sequences with a Cys-X-X-Cys-His
(CXXCH) motif in the first site, instead of the more common Cys-X-X-
Cys-Lys, were exclusively bacterial and formed a monophyletic, well
supported and taxonomically diverse clade (Fig. 1)14,27. Most known NrfA
proteins are characterized by the presence of a calcium ion near the
active site, where it is suspected to play a structural role29, whereas those
that are calcium-independent contain a X-X-Arg-His motif between
the third and fourth sites. The latter were present in several regions of
the tree (n= 131 sequences), supporting independent evolutionary
events30. By contrast, all ONR proteins were calcium-dependent and the
sequences displayed eight heme-binding sites (3x-CXXCH-1x-CXXCK-4x-
CXXCH), with a histidine residue between the sixth and seventh site11.

Potential for denitrification in genomes of nrfA- and onr-
ammonifiers
The 1218 genomes harboring nrfA and/or onr were further examined
for the presence of denitrification genes. About 42% of the assemblies
harboring nrfA but not onr contained at least one denitrification gene
(nir, nor or nosZ), whereas 13% carried more than one denitrification
gene, with complete denitrifiers accounting for just 2.5% of the nrfA-
ammonifiers (Fig. 2a; Supplementary Table 2). These proportions were
comparatively higher in the CXXCH clade, except for complete deni-
trifiers (60%, 18% and <1%, respectively). Among nrfA-assemblies with
at least one denitrification gene, about 50% were potential N2O pro-
ducers, carrying nor but not nosZ, whereas only 38% were potential
N2O consumers, carrying nosZ alone or in addition to nir/nor (51 and
31% in the CXXCH clade, respectively). Regarding the onr-encoding
assemblies, either alone or in combination with nrfA, 40% carried at
least one denitrification gene, with the potential for N2O consumption
limited to a few gammaproteobacterial genomes (Fig. 2c, e). Overall,
this suggests a higher genetic potential for N2O production than
consumption among nitrate ammonifiers.

Among themore frequently represented classes in the phylogeny,
the co-existence patterns between nrfA and denitrification genes dis-
played a large variation, ranging from 0 in Clostridia and Cor-
iobacteriia to ca. 90%of assemblies carrying at least one denitrification
gene in Anaerolineae and Ignavibacteria, and complete denitrifiers
were predominantly found among Bacilli (Fig. 2b). Genomes with nrfA
and genes coding for a nitric oxide (nor) or nitrite reductase (mainly
nirK) weremost common and evenly distributed across the phylogeny,
whereas those with the N2O reductase gene (particularly nosZ clade II)
were mainly restricted to Anaerolineae, Bacilli, Ignavibacteria and
various lineages of the CXXCH clade (Supplementary Fig. 2). In the onr
assemblies, members of Gammaproteobacteria and diverse classes of
Desulfobacterales (mainly Desulfuromonadia) dominated and the co-
existence patterns were largely dominated by the presence of nor
(Fig. 2d, f).

Environmental distribution of nitrate ammonifiers
A collection of 1861 globally distributed rhizosphere and soil meta-
genomes (Fig. 3a) was used to determine the abundance and diversity
of nrfA and onr communities across biomes. Reads corresponding to
target gene fragments were identified by mining each metagenome
using a hidden Markov model of the reference alignment and candi-
date sequences were then mapped to the branches of the tree by
phylogenetic placement. To account for differences in sequencing
depth, nrfA and onr placement counts were further normalized by the
total number of base pairs sequenced in eachmetagenome (hereafter,
‘normalized counts’).

The nrfA gene was present in all biomes (81 ±69 counts per Gbp),
albeit in different proportions and in some caseswith largewithin-biome
variation (Fig. 3b). nrfA-ammonifiers were particularly prevalent in rhi-
zosphere and croplands, with intermediate to lowphylogenetic diversity
(Fig. 3b, c). Tundra soils exhibited thehighest phylogenetic diversity, but
intermediate normalized nrfA counts. Forest ecosystems generally dis-
played a low abundance and a high diversity, except for tropical and
subtropical dry broadleaf forest soils showing high normalized counts
and low phylogenetic diversity. By contrast, normalized nrfA counts
were lower in tropical compared to temperate and subtropical grass-
lands, savannas and shrublands, but with opposite patterns for phylo-
genetic diversity. The nrfA communities in desert and xeric shrubland
soils were characterized by relatively low abundance and diversity.
Overall, there was a negative correlation between normalized nrfA
counts and phylogenetic diversity (ρ= −0.53; p<0.001), mainly driven
by rhizosphere and cropland communities (Supplementary Fig. 3).

Phylogenetic placement on the reference tree showed that soil
nrfA communities spanned the entire NrfA regionof the phylogeny but
the CXXCH clade largely dominated (ca. 90% of the placements)
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Fig. 1 | Maximum likelihood phylogeny of 1261 NrfA and ONR sequences from
1218 genome assemblies inferred from the alignment of 350 amino acid posi-
tions. Calcium-dependent sequences are indicated by circles in the inner ring.
Sequences obtained from isolates are shown by black stars and the rest are
obtained from metagenome-assembled genomes. Taxonomic classification at the
phylum and class level of themost abundant classes (n > 10, except for the archaeal

class Methanosarcinia where n = 5) is indicated by the color in the two outer rings
and is based on the Genome Taxonomy DataBase. Black circles on the phylogeny
show support values (SH-aLRT test ≥ 80% and ultrafast bootstrap ≥ 95%, each
threshold corresponding to an estimated confidence level of 95%) and the scale bar
denotes the amino acid exchange rate (WAG+R10).
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Fig. 2 | Co-existence of nrfA, onr and denitrification genes in the 1218 genome
assemblies obtained when screening for nrfA and onr. The pie charts show the
distribution of nrfA, onr and the denitrification genesnirK, nirS,nor and nosZ across
(a)nrfA-only, (c)onr-only and (e)nrfA− and onr− assemblies. The correspondingbar
plots (b, d, f) indicate the distribution of nrfA, onr and denitrification genes in the

classes represented in the phylogeny in Fig. 1. The number of assemblies is indi-
cated above the bar for each class. Classes are ordered according to the proportion
of assemblies carrying only nrfA/onr. Reactions performed by the enzymes enco-
ded by the different genes, with each arrow colored according to the corre-
sponding gene, are indicated at the bottom of the figure.

Article https://doi.org/10.1038/s41467-023-44022-3

Nature Communications |         (2023) 14:8249 4



Fig. 3 | Locationofmetagenomes and abundance and phylogenetic diversity of
nrfA across biomes. a 1861 metagenomes representing 725 sampling sites across
the globe. The 35 cropland and 5 rhizosphere metagenomes lacking associated
geographic coordinates are not indicated. b Normalized nrfA counts per biome,
calculated as the ratio between nrfA counts and the total number of base pairs
(Gbp) sequenced in eachmetagenome (n = 1861metagenomes; Kruskal–Wallis test,
H(11) = 641, P = 2.68 × 10−130). c Abundance-weighed phylogenetic diversity per

biome (n = 1861 metagenomes; Kruskal–Wallis test, H(11) = 576, P = 2.32 × 10−116).
Significant differences are denotedwith different letters, togetherwith the number
of metagenomes representing each biome above the boxplots. Boxes are bounded
on the first and thirdquartiles; horizontal lines representmedians.Whiskersdenote
1.5× the interquartile range. Data points corresponding to the metagenomes used
in the random forest models are shown as filled circles. *The biome name also
includes savannas and shrublands.
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(Fig. 4). Only a few placements were located at or near the tips, indi-
cating that abundant nrfA-carrying taxa in soil communities are dis-
tantly related to known nrfA representatives. Consequently, there was
no biome-based discrimination of the nrfA communities in the
phylogenetically-informed principal component analysis, and most of
the variation in community composition was driven by different sub-
sets of the CXXCH clade (Supplementary Fig. 4).

In contrast to nrfA, normalized counts of onr fragments were low
across all biomes, representing ca. 3.5% of the placements (2.7 ± 4.7
counts per Gbp), which prevented the calculation of phylogenetic
diversity of onr. Similar to nrfA, rhizosphere and croplands were
among the biomes with the highest onr counts, although the greatest
abundance was found in tundra (Supplementary Fig. 5). Across the
other biomes, onr counts were rather similar apart from deserts and
xeric shrublands that displayed the lowest abundance. However, due
to the lowabundanceof onr therewasno statisticaldifferencebetween
nrfA only and combined nrfA and onr counts in any of the biomes
(Wilcoxon-Mann–Whitney test, p >0.05; Supplementary Fig. 6). This
indicates that nitrate ammonification is dominated by nrfA-ammoni-
fiers in terrestrial systems and onr counts were therefore not con-
sidered in further analyses.

Relative importance and drivers of NrfA-driven ammonification
versus denitrification
The difference in normalized counts between nrfA placements and
those of the denitrificationmarker genes nirK and nirSwas determined
to assess the genetic potential for N retention at the community level
in each of the 1861 metagenomes (hereafter, ‘δnrfA-nir’). All biomes

exhibited a negative median δnrfA-nir with few values > 0, indicating
an overall lower genetic potential for NrfA-driven ammonification over
denitrification (Fig. 5a). However, median values close to 0 were
observed in both tundra and tropical & subtropical dry broadleaf
forest soils, which in the latter appeared to be driven by high nrfA
counts (Fig. 3b). Among forest biomes, the separation by climatic
zones observed for the normalized nrfA counts (tropical >
temperate ≥Mediterranean> boreal) was not detectable in the δnrfA-
nir data, suggesting that conditions that favored nrfA-ammonifiers
were even more favorable to denitrifiers. The median values of δnrfA-
nir in rhizosphere and cropland communities were at least 2-fold lower
than in the other biomes. Among rhizosphere samples, tree (Citrus sp.
and Populus sp.) and perennial grass (Miscanthus sp. and Panicum
virgatum) species displayedhigherδnrfA-nir than the average,whereas
bean (Phaseolus vulgaris) and Brassica spp. drove δnrfA-nir towards
higher abundance of denitrifiers. Maize (Zea mays) and thale cress
(Arabidopsis thaliana) displayed δnrfA-nir values comparable to the
overall mean (Fig. 5b).

Environmental drivers of the normalized δnrfA-nir counts were
examined using random forest modelling on a subset of the meta-
genomes, which were selected based on the availability of metadata
measured with the same methods across the metagenomes31 and
including relevant factors for NrfA-driven ammonification and deni-
trification (Table 1). Accumulated local effect plots were used to
visualize the differences in prediction of the δnrfA-nir along the range
of each predictor compared to the mean prediction, with positive
values indicating predictions higher than the average, and vice versa.
They revealed a non-linear and overall positive relationship between
the SOC to nitrate ratio and predicted δnrfA-nir, mainly driven by low
nitrate content rather than SOC levels (Fig. 6). Soil factors known to
affect the activity of thedifferent nitrite reductases alsoaffectedδnrfA-
nir. Calcium, essential for NrfA activity in the abundant CXXCH clade
members29 (Figs. 1 and 4), was associated with an increase in the pre-
diction of δnrfA-nir in the ranges 10–25 and 100–125mM calcium kg−1,
whereas copper, crucial for the activity of NirK32, had the opposite
effect (Fig. 6). TheδnrfA-nirpredictionswere highest in acidic soils and
displayed a u-shaped relationship with pH, indicating a threshold at
5.75 < pH< 6.5 and then increasing δnrfA-nir with increasing pH in
alkaline (pH > 7.5) soils, which aligns with measurements of nitrate
ammonification rates across terrestrial ecosystems33. The genetic
potential for NrfA-driven ammonification relative to denitrification
was predicted to decrease with increasing phosphorus and sulfur
(from 5mgkg−1) concentrations. Biome identity was also identified as
an important predictor, even after accounting for other environmental
variables. Predictions obtained with the random forest models largely
corresponded to the δnrfA-nir calculated for the entire dataset, with
predictions for croplands and deserts displaying lower relative
potential for NrfA-driven ammonification compared to the average
prediction, whereas forest and grassland soils had the opposite effect.

Discussion
Our gene-centric and phylogenetically-informed approach provides a
framework for a more accurate understanding of the genetic potential
for nitrite reduction in soil communities.We provide evidence that co-
existence of nrfA/onr and denitrification genes in genomes of ammo-
nifiers is common and phylogenetically widespread, with variation in
gene combinations at fine phylogenetic levels and between nrfA- and
onr-assemblies. Those carrying both nrfA/onr and nir/nor genes can
contribute to either N retention or N loss in ecosystems depending on
the conditions, whereas those carryingnosZ can also act asN2O sinks34.
Nevertheless, a higher potential forN2Oproduction than consumption
was observed, mainly due to N2O production potential linked to NO
detoxification. The difference in genetic potential for N2O production
vs. consumption was even more pronounced in the CXXCH clade,
where most soil-derived nrfA reads were placed although not well

Fig. 4 | Phylogenetic placement of the metagenomic nrfA sequence fragments
across biomes. Phylogenetic placement of the metagenomic nrfA sequence frag-
ments on the reference tree. The size of the dots is proportional to the number of
placements. The scale bar denotes the amino acid exchange rate (WAG+R10). The
ONR clade is not shown.
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represented among isolated and genome-sequenced nrfA-ammoni-
fiers. Increased efforts aiming at characterizingmembers of the elusive
CXXCH clade is needed to verify these patterns and understand
other aspects of their ecology that are relevant to the cycling of N in
terrestrial ecosystems. Key questions include whether differences in
substrate affinity35,36 act as a major niche-differentiating factor
among ammonifiers, similarly to what is observed in other N trans-
forming groups37,38, and what role microbial interactions play in pro-
viding electron donors (e.g. low molecular-weight organic molecules
by fermenters16) and nitrite (for ammonifiers lacking the ability to
reduce nitrate36). Addressing these questions will both facilitate the
interpretation of the links between measured rates of nitrate ammo-
nification and ammonifier community composition, diversity, and
abundance, and help predicting how environmental factors influence
the dynamics of the end-products when nitrate is used as an electron
acceptor.

We show that the genetic potential for NrfA- rather than ONR-
driven ammonification dominated by a factor of 30 ± 15 across all
terrestrial biomes, indicating a negligible role of onr-ammonifiers for
nitrite reduction in soils. Nevertheless, NrfA-driven ammonification
potential was in turn much lower than that of denitrification overall in
all terrestrial biomes, although the magnitude of the δnrfA-nir counts
varied both within and among biomes. Higher nitrate ammonification
than denitrification rates have mainly been shown in sulfur-rich or
reduced sediments39–41. However, we found similar patterns at the
genetic level in tundra, as many tundra metagenomes displayed
positive δnrfA-nir values. A high abundance of nrfA-ammonifiers has
indeed been shown to support larger N stocks in these relatively
N-limited ecosystems, which indicates that nrfA-ammonifiers play a
role for N retention42. NrfA-driven ammonification could also be a
relevant source of substrate for ammonia oxidizers, which potentially
drive N2O emissions rather than denitrifiers in tundra soils43. Notably,

managed systems (i.e. croplands and rhizosphere) exhibited sig-
nificantly lower δnrfA-nir than other soils and this difference wasmost
likely due to fertilizer application19, as nitrate and phosphorus were
among the main drivers of decreased δnrfA-nir in the random forest
models. Moreover, lower δnrfA-nirwas observed in the rhizosphere of
annual plants compared to perennials, which is consistentwith the fact
that cropping systemswith perennial plants are typically characterized
by comparatively more favorable conditions for nitrate ammonifica-
tion, including higher SOC content44 and higher C/NO3

− ratios, mani-
fested in lower N2O production19. The effect of SOC on predicted
δnrfA-nir rapidly reached a threshold (at ca. 0.8% SOC), indicating a
minor role forCquantity, but likely notCquality35,45. Instead, theδnrfA-
nir was driven by low nitrate content, which aligns with nrfA-ammo-
nifiers having a higher affinity than denitrifiers for nitrate or nitrite46

and with the fact that C availability combined with low nitrate levels
creates conditions suitable for nitrate ammonification, as more elec-
trons are transferred per molecule of nitrate reduced47. Fertilized soils
represent environments where the fate of N is most crucial to control1

and our findings suggest that integrating N management strategies
promoting nitrate ammonification while also increasing soil carbon
sequestration represents a promising way to increase N retention,
especially in soils with low SOC content. This would reduce nitrate
pollution and N2O emissions, while simultaneously increasing N use
efficiency and fertility in agricultural soils.

Methods
Generation of reference nrfA, onr and nir phylogenies
Previously published alignments of full-length amino acid NrfA and
ONR sequences (n = 267 and 27, respectively27,48) were used to build
hidden Markov models (HMM) using the hmmbuild command imple-
mented in HMMER v. 3.249. The models were used to screen the pre-
dicted ORFs in 8131 archaeal and 1,026,048 bacterial assemblies

Fig. 5 | Relative importance of NrfA-driven ammonification and denitrification
genetic potential across biomes. The difference in counts of nrfA and nir genes
normalized by the number of base pairs sequenced (δnrfA-nir) was calculated per
metagenome. Positive and negative values indicate a higher potential for NrfA-
driven ammonification over denitrification and vice versa. Significant differences
are denoted with different letters, together with the number of metagenomes
representing each biome. Boxes are bounded on the first and third quartiles;
horizontal lines represent medians. Whiskers denote 1.5× the interquartile range.
Data points corresponding to the metagenomes used in the random forest

models are shown as filled circles. a Relative importance of NrfA-driven ammo-
nification and denitrification genetic potential across terrestrial biomes and in
the rhizosphere (n = 1861 metagenomes; Kruskal–Wallis test, H(11) = 749,
P = 1.91 × 10−153). b Relative importance of NrfA-driven ammonification and deni-
trification genetic potential in the rhizosphere of host species represented by
more than 10 metagenomes (n = 263 metagenomes across 11 host species;
Kruskal–Wallis test, H(10) = 174, P = 3.69 × 10−32). The red line indicates themedian
δnrfA-nir value across all rhizosphere metagenomes. *The biome name also
includes savannas and shrublands.
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available on GenBank inOctober 2021 for the presence of nrfA and onr
using hmmsearch. An e-value cutoff of 1e-6 was used as a trade-off
between reducing the number of false positives before the manual
inspection and retaining potentially divergent sequences. The gene
sequences were extracted from the assemblies based on genomic
coordinates of the HMMER hits to obtain the nucleotide sequence of
the candidate NrfA and ONR sequences and were translated to amino
acids and dereplicated at 100% identity using CD-HIT v. 4.8.150. The
alignments were then manually inspected in ARB v. 7.051 for the pre-
sence of conserved motifs representing catalytically important
residues11,52. Due to the existence of homologous multi-heme cyto-
chrome c proteins53, only full-length candidate sequences were
retained at this step. Finally, ONR sequences were aligned to the NrfA
alignment using HMMER to generate a single alignment, which was
then refined by trimming the less conserved and poorly aligned C- and
N-terminal regions and by removing columns with >95 % gaps. Fas-
tTreeMP v. 2.1.1154 was used to construct a draft phylogenetic tree and
closely related sequences (i.e. very short terminal branch lengths)were
manually pruned with the exception of nrfA and onr copies originating
from the same assembly. In the end, the curated data set contained
1261 NrfA and ONR sequences originating from 1218 assemblies (Sup-
plementary Data 1). Selection of the best-fit model of evolution,
WAG+R10, and construction of the amino acid-based maximum-like-
lihood phylogeny were performed with IQ-TREE v. 2.1.355,56. Node
support values were calculated using 1000 ultra-fast bootstraps57 and
the Shimodaira-Hasegaw approximate likelihood ratio (SH-aLRT) test58

with the -bnni option to reduce the risk of overestimating branch
supports. The tree was plotted using iTOL v559.

Reference phylogenies forNirK andNirSweregenerated using the
same approach. Briefly, previously published alignments of full-length
amino acid NirK (n = 3450), NirS (n = 1188)12 were used to build HMM

models and search the genome assemblies. For NirK, fungal, plant and
protist assemblies (NCBI, accessed in November 2021 and January
2022, respectively) were also included, as well as 18 translated nirK
sequences from foraminifera transcriptomes60. The resulting amino
acid alignments containing the candidate sequences were then
manually inspected for the presence of conserved motifs in NirK61 and
NirS62,63. Two sets of non-target sequences picked up by the
hmmsearch were also retained to serve as outgroups in the NirK and
NirS phylogenies (various multi-copper oxidases for NirK; NirN, NirF
and halophilic archaea NirS-like sequences for NirS). NirK sequences
derived from archaeal- or bacterial-like contigs in eukaryotic assem-
blies were identified using mmseqs2-taxonomy (v. 1464) against the
UniRef50 database (release 2021_0465) and not included in the final
tree. After trimming, the alignments were 573 and 471 amino acid long
for NirK and NirS, respectively. In the end, 6422 NirK sequences (n
outgroup = 367) and 540 NirS sequences (n outgroup = 29) were
retained. Selection of the best-fit model of evolution, LG + F +R10 for
NirK and LG + F +R9 for NirS, and construction of the amino acid-
based maximum likelihood phylogeny were performed with IQ-TREE
(Supplementary Figs. 8 and 9).

Quality check and taxonomic assignment of genome assemblies
The level of completeness and contamination of each assembly was
determined based on the detection of lineage-specific, single-copy
genes usingBUSCOv. 5.2.266. Assembliesmeeting the high quality level
standard (completeness >90% and contamination <5%)67 were
retained. The completeness criterium was relaxed for poorly sampled
regions of the trees and for eukaryotes. Taxonomic annotations for
archaea and bacteria were obtained using GTDB-Tk v. 1.5.068 and the
reference Genome Taxonomy DataBase r20269. For eukaryotes, the
taxonomy reported in the NCBI database was used.

Identification of denitrification genes in genome assemblies
The presence of denitrification genes (nor, nirK, nirS and nosZ) in the
nrfA- and onr- assemblies was determined. A HMMmodel for NosZwas
built by following the approach described above, using a previously
published alignment of NosZ sequences (n = 1689)12. For Nor the
alignment from Murali et al.70 was used. The models were used to
search the final set of assemblies and the target sequences were
identified by manually inspecting the resulting alignments.

Construction of a metagenome database and GraftM search
Adatabasewas createdbydownloading 1861 publicly available soil and
rhizosphere metagenomes sequenced using Illumina short-read tech-
nology (read length ≥ 150nt) and consisting of a minimum of 100,000
reads (Supplementary Tables 3 and 4 and Supplementary Data 1). The
soil metagenomes were further classified into biomes, with the non-
croplands (n = 1462) classified following the definition of terrestrial
ecoregions proposed by Olson et al.71. Biome assignment was per-
formed based on the geographic coordinates of each metagenome,
using the ‘sp’ v. 1.4-672, ‘rgeos’ v.0.5-573 and ‘rgdal’ v. 1.5-2374 packages in
R v. 4.2.075. The geographic location of each sample was plotted using
the ‘ggspatial’ v. 1.1.576, ‘rnaturalearth’ v. 0.1.077, ‘rnaturalearthdata’ v.
0.1.078, ‘rgeos’ v.0.5-5 and ‘sf’ v. 1.0-779 packages.

The presence of nrfA and onr fragments in the metagenomes was
assessed with GraftM v. 0.13.180, a gene-centric and phylogenetically-
informed classifying tool. Using a custom gene reference package,
GraftM identifies target gene fragments in metagenomes using
HMMER and places them into a pre-constructed phylogenetic tree
using PPLACER81. The phylogenetic placement acts as a validation step
and ensures that the HMMER hits correspond to the target sequences
and not to closely related outgroup sequences. A reference package
for GraftM was built using the trimmed alignment and associated
phylogeny generated in this study, including both nrfA and onr
sequences. However, the tree was pruned to remove close relatives as

Table 1 | Continuous environmental variables associated to
the Australian soil metagenomes31 used in random forest
modelling (n = 227)

Category Variable Minimum Maximum

Soil Aluminium (mM kg−1) 0.0 31.8

Ammonium
(mg kg−1)

0.0 87.0

Available potassium
(mg kg−1)

15.0 855.0

Available phos-
phorus (mg kg−1)

2.0 193.0

Calcium (mM kg−1) 0.6 158.1

Clay (%) 0.8 65.3

Conductivity (dSm−1) 0.0 8.9

Copper (mg kg−1) 0.0 32.7

Iron (mg kg−1) 1.9 1020.2

Magnesium
(mM kg−1)

0.5 60.3

Moisture (%) 0.0 103.3

Nitrate (mg kg−1) 1.0 59.0

pH 4.0 9.6

Silt (%) 0.0 51.6

Sodium (mg kg−1) 2.3 6789.6

Organic carbon (%) 0.1 5.9

Sulfur (mg kg−1) 0.7 724.6

Zinc (mg kg−1) 0.0 32.4

Geomorphology Elevation (m) 1.0 1350.0

Variables used in the random forest models (i.e. after the variable selection analysis using pair-
wise Spearman correlations (Supplementary Fig. 7) and VSURF) are indicated in bold.
The distributions of the gene counts and phylogenetic diversity data in the biomes covered by
this dataset are shown by filled circles in Figs. 3 and 5.
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they would increase computation time without increasing the sensi-
tivity of the analyses (final number of tips = 1178). Tree statistics
required for runningGraftMwere calculated using RaxMLv. 7.7.282 and
the tree was re-rooted in iTOL v559.

The approach was first validated by fragmenting the aligned
region of the nrfA and onr sequences into 10,000 pieces of 150 nt-long
fragments using GRINDER v. 0.5.483. Each set of fragments was then
individually processed with GraftM, using default parameters. GraftM
provides up to seven placements on the reference phylogeny for each
read identified by HMMER and the ‘accumulate’ command imple-
mented in GAPPA v. 0.8.184 was used to find the most likely location in
the phylogeny (with --threshold 0.95). This is achieved by accumulat-
ing the placement mass (likelihood weight ratio) of the placements of
each read upwards (from tips to root), until the accumulated mass
reaches the threshold. Thismeans that there is only a 5% likelihood that
a placement is not nrfA or onr (since all placements contributing to the
threshold are distributed in clades extending from the branch where
the accumulated placement is located). Reads that contained place-
ment mass as both nrfA and onr were discarded (<2% of the total
number of placements). Sensitivity and specificity for nrfA were
assessed by calculating the fractions of nrfA (88%) and onr (none)
fragments placed into the nrfA region of the tree, respectively. Sensi-
tivity and specificity for onr were 99 and 100%, respectively. The
robustness of this approach to false positives was further examined by
fragmenting 86 amino acid sequences corresponding to 8 distant
multiheme cytochrome homologs (Cyt c554, HAO, HDH, ihOCC, OTR,
MccA, OcwA and OmhA27) into 50 amino acid-long fragments (i.e. the

longest peptide which can be predicted from 150 nt reads) and placing
them on the reference tree. Only 6% of the fragments were placed in
the tree (out of 10,000), with <1% in the CXXCH clade, confirming the
limited potential for false positives in this study (Supplementary
Fig. 10). Sensitivity and specificity for nirK and nirS were 88 and 100%,
and 87 and 100%, respectively, with gene-specific outgroups for test-
ing the specificity (various multi-copper oxidases for nirK; nirN, nirF
and halophilic archaeal nirS-like sequences for nirS).

GraftM was run on the forward reads of each metagenome with
default parameters using the first 150 nt to account for differences in
read length between metagenomes. Placements on the reference
tree were visualized using the R package ‘ggtree’ v. 3.4.085. In addi-
tion to nrfA and onr, metagenomes were mined for fragments of
nitrite reduction genes involved in denitrification (nirK and nirS). The
resulting placement files were processed with GAPPA as described
above. For each metagenome, gene counts were normalized by the
number of base pairs (Gbp) sequenced to account for differences in
sequencing depth (‘normalized counts’). The difference in normal-
ized counts (δnrfA-nir) between nrfA and the marker genes for
denitrification nirK and nirS was calculated as (nrfA-(nirK+nirS))/Gbp,
which enables differentiation of samples with high absolute differ-
ences in genetic potential for NrfA-driven ammonification and nitrite
reduction involving nir genes from those with small absolute differ-
ences. The use of these metrics is relevant to assess the genetic
potential for N retention inmetagenomes since both nrfA (this study)
and nir12 genes are most commonly present in single copy in
genomes.

Fig. 6 | Environmental predictors of the potential competition between nrfA-
ammonifiers and denitrifiers in soil based on random forest models. The dif-
ference in counts of nrfA and nir genes normalized by the number of base pairs
sequenced (δnrfA-nir) was calculated per metagenome. The analysis was per-
formed on a subset of the metagenomes for which environmental metadata,
especially soil properties relevant for nitrate ammonification and denitrification,
was available (n = 227; Table 1). The number of metagenomes corresponding to
each biome is indicated after the biome name. Predictor variables selected by

VSURF and biome category were used to generate accumulated local effects plots,
which show the differences in prediction of the δnrfA-nir (y-axis) compared to the
mean prediction along the range of each predictor (x-axis), while accounting for
potential correlations amongst predictor values. The effect is centred so that the
mean effect is zero. The random forest model was built with 500 trees, 2 features
considered at each split and a tree depth set to 9 (variance explained: 55%, root
mean square error: 40.6). SOC: soil organic carbon. *The biome name also includes
savannas and shrublands.
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Statistical analyses
Abundance-weighed phylogenetic diversity86, which provides a nor-
malized measure of the shared phylogenetic history among taxa
occurring in a sample, was calculated for eachmetagenome using the
nrfA placements and the ‘fpd’ command implemented in the guppy
suite of tools v. 1.1 (with θ = 1). The composition of the nrfA com-
munity across biomes was examined using the edge principal com-
ponent analysis87 implemented in GAPPA (‘edgepca’ command).
This ordination method is based on the phylogenetic placement of
reads on a reference phylogeny and allows for the identification of
specific lineages that contribute to the variation in composition
between samples. It was performed onmetagenomes with at least 20
nrfA placements as the algorithm otherwise failed to com-
pute (n = 1475).

All statistical analyses were performed in R v. 4.2.0. Differences in
normalizednrfA and onr counts, nrfAphylogenetic diversity and δnrfA-
nir across biomes were assessed using Kruskal-Wallis tests with mul-
tiple comparisons computed according to Fisher’s least significant
difference and the false discovery rate correction available in the
‘agricolae’ package v. 1.3.588. Differences between nrfA and nrfA+onr
normalized counts within biomes were assessed using Wilcoxon-
Mann-Whitney tests. Figures were plotted using the ‘ggplot2’ package
v. 3.3.589.

Relationships between environmental variables and δnrfA-nir
were determined using random forests, an ensemblemachine learning
algorithm that is well suited tomodel non-linear relationships between
predictors and response variables and candeal with non-normality and
high collinearity among predictors90. A subset of the metagenomes
was selected based on the availability of soil metadata relevant to
nitrate ammonification and denitrification, including pH and nitrate,
organic carbon, calcium, and copper content (n = 227). All metagen-
omes within this subset belonged to the ‘Biomes of Australian Soil
Environments’ project and covered large environmental gradients at
the continental scale (Table 1 and Fig. 3a). Since the corresponding
samples were collected and processed following the same protocols31,
this increased the likelihood to detect relevant ecological patterns.
Collinearity among environmental factors was assessed by pairwise
Spearman correlations (Supplementary Fig. 7) and only the most
relevant variables for the processes in focus were retained in each
collinear group ( | r | ≥ 0.7; indicated in bold in Table 1). Random forest
based variable selection was performed on the pre-selected environ-
mental factors, supplemented with biome category information, using
the ‘VSURF’ package v. 1.1.091 to identify the best predictors for δnrfA-
nir. The ‘randomForest’ package v. 4.7–192 was then used to model the
relationship between the selected predictors and δnrfA-nir. A grid
search was first conducted to find the optimal combination of tuning
parameters and the combination corresponding to the best model fit
(lowest out-of-bag root-mean-square error) was selected. Results were
then visualized using accumulated local effects plots (grid.size = 30)
implemented in the ‘iml’ package v. 0.9.093,94.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The metadata, sequence alignments, HMM models and phylogenetic
trees (newick format) generated in this study have been deposited in
Zenodo (https://doi.org/10.5281/zenodo.8026657). All genome
assemblies and metagenomes used in this study were publicly avail-
able and their accession codes are provided in Supplementary Data 1.
The alignment for Nor was kindly provided by Ranjani Murali. The
Genome Taxonomy database can be accessed at: https://gtdb.
ecogenomic.org/.

Code availability
The bash and R scripts generated in this study have been deposited in
Zenodo (https://doi.org/10.5281/zenodo.8026657).
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