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GNTD: reconstructing spatial transcriptomes
with graph-guided neural tensor
decomposition informed by spatial and
functional relations

Tianci Song1, Charles Broadbent1 & Rui Kuang 1

Spatially-resolved RNAprofiling has nowbeenwidely used to understand cells’
structural organizations and functional roles in tissues, yet it is challenging to
reconstruct thewhole spatial transcriptomes due to various inherent technical
limitations in tissue section preparation and RNA capture and fixation in the
application of the spatial RNA profiling technologies. Here, we introduce a
graph-guided neural tensor decomposition (GNTD) model for reconstructing
whole spatial transcriptomes in tissues. GNTD employs a hierarchical tensor
structure and formulation to explicitly model the high-order spatial gene
expression data with a hierarchical nonlinear decomposition in a three-layer
neural network, enhanced by spatial relations among the capture spots and
gene functional relations for accurate reconstruction from highly sparse spa-
tial profiling data. Extensive experiments on 22 Visium spatial transcriptomics
datasets and 3 high-resolution Stereo-seq datasets as well as simulation data
demonstrate that GNTD consistently improves the imputation accuracy in
cross-validations driven by nonlinear tensor decomposition and incorporation
of spatial and functional information, and confirm that the imputed spatial
transcriptomes provide a more complete gene expression landscape for
downstream analyses of cell/spot clustering for tissue segmentation, and
spatial gene expression clustering and visualizations.

Many different types of cells are structurally organized to play distinct
and cooperative functional roles in biological tissues. To understand
cells’ organizations and their functions in tissues, spatial tran-
scriptomics technologies have now been widely used to profile spa-
tially resolved RNA expressions. These spatial transcriptomics
technologies both profile gene expressions and retain their spatial
localization information in the tissue. In-situ hybridization (ISH)
methods use fluorescently labeled probes hybridized to targeted RNA
transcripts to measure and visualize gene expression at subcellular
resolution, which has evolved from earlier low-gene-throughput
single-molecular FISH (smFISH)1 to high-gene-throughput and even

nearly transcriptome-wide multiplexed error robust FISH (MERFISH)2

and sequential FISH (seqFISH and seqFISH+)3–5. More recently devel-
oped in situ capturing (ISC) methods perform RNA sequencing of the
whole transcriptome with positional barcodes in a spatial genomic
array aligned to locations on the tissue without relying on predefining
probes and selecting target genes. These methods range from lower
resolution Spatial Transcriptomics (ST)6 (commercialized as 10x
GenomicsVisium7), to higher resolution Slide-seq8, or even sub-cellular
resolution technologies such as high-definition spatial transcriptomics
(HDST)9 and Spatio-temporal enhanced resolution omics-sequencing
(Stereo-seq)10.
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While in situ capturing technologies aim to capture and sequence
all the RNAs in the whole transcriptome in all the spots on the spatial
genomic array, there are still significant limitations. First, in situ cap-
turing has a low RNA capture efficiency ranging from 6.9% with ST
(slightly higher with Visium arrays) to as low as 1.3% with Slide-seq and
0.3% with HDST11. While the newer high-resolution technologies such
as Stereo-seq10 are improving the capture efficiency, the aggregated
signals by RNA read counts can still be as sparse as Visium data in the
experiments on real tissues. Furthermore, samplepreparation requires
highly specific handling of tissue sections and treatments. RNA fixation
and permeabilization might fail in some tissue regions due to various
possible issues in preparing tissue sections and the array12. Thus,
reconstructing the whole spatial transcriptomes from the incomplete
RNA profiling due to these inherent limitations of the spatial tech-
nologies is often a necessary step for many critical downstream ana-
lyses such as clustering spatial spots for tissue segmentation, detecting
spatially co-expressed gene modules, and enhancing expression of
spatially variable genes.

In this research work, we introduce a graph-guided neural tensor
decomposition (GNTD) model for reconstructing whole spatial tran-
scriptomes in the tissue by integrating spatial relations among the
capture spots and the functional relations among the genes. GNTD is a
3-layer neural network designed to model the completion of a three-
way tensor in spatial coordinates (x and y modes) and gene (g-mode)
with hierarchically structured components. GNTD learns nonlinear
relations among all the elements in each mode for constructing the
factors of canonical polyadic decomposition (CPD) of the tensor. To
overcome theoverfitting issue in sparse tensors, a graph regularization
is also introduced to smooth the imputation by spatial information
among the spots in the array and functional relations among the genes
in the Protein-Protein Interaction (PPI) Network. The graph regular-
ization is based on the prior knowledge that neighboring spots often
share similar gene expressions and functionally related genes aremore
likely co-expressed.

GNTD is a hierarchical nonlinear tensor decomposition model
based on graph-guided neural training. First, GNTD architecture
models latent features at different levels such that the hierarchical
representations can capture the more complex nature of the tensor
data. Second, GNTD is regularized with a Cartesian product graph,
which imposes structural relations to avoid overfitting for learning the
hierarchical representations in the neural tensor decomposition.
GNTD is a different method designed for spatial transcriptomics data
imputation and analysis, comparedwith those imputationmethods for
single-cell gene expressions. First, the spatial gene expression data are
naturally manifested in a high-order structure with gene expressions
measured in 2Dor 3D locations. The high-order structure impliesmore
complex relations among the spatial coordinates and the genes as
opposed to simple sample-gene relations. Second, the spatial
arrangement of the spots suggests functional continuity in the tissue
vicinity such as similar cell types or correlated (marker) gene expres-
sions, which requires explicit spatial modeling. Finally, the imputation
of highly sparsely expressed genes can often benefit from other
functionally related genes.

Modeling spatial dependency is critical in spatial transcriptomics
data analysis. For example, conditional autoregressive prior (similar to
the Laplacian of the spatial graph) has been used in generalized linear
models with zero-inflated Poisson link function13, and FIST12 used a
Cartesian product graph to reduce the complexity of a joint repre-
sentation of two spatial chain graphs and PPI network to incorporate
both spatial and functional dependence. GNTD employs a similar
Cartesian product graph between a spatial graph and PPI network with
hierarchical CPD rather than the standard CPD as FIST12. While FIST is a
gradient descent algorithm based on multiplicative updates for stan-
dard CPD with product graph regularization, GNTD is a back-
propagation training algorithm to learn a non-linear hierarchical CPD

in a neural networkwith product graph regularization. Thus, GNTD is a
more advancedmethod than FISTby generalization to hierarchical and
nonlinear tensor decomposition based on neural network training.

The imputation task in this study focuses on modeling and esti-
mating the missing expressions over the measured spots, which is
similar to imputing dropouts in scRNAseq data14. This task is different
from several other imputation or imputation-related tasks in broader
or other contexts. For example, spatial deconvolution methods map
scRNAseq profiles onto the spatial locations15, and some other meth-
ods impute gene expressions in the unmeasured locations for higher
resolution and/or better coverage16,17. There are also methods for
estimating the expressions of unprofiled genes based onprobed genes
in in situ hybridization data. We will discuss the relation to these other
different tasks in “Discussion” and the supplementary document.

Results
Overview of GNTD
The architecture of GNTD is shown in Fig. 1. GNTD models the
observed expression profile of spatial transcriptomics as a three-way
tensor in spatial coordinates (x and y modes) and genes (g-mode).
GNTD learns nonlinear latent factors representing each mode in the
tensor and reconstructs the tensorwith these factors through a 3-layer
neural network composed of a hierarchy of linear embedding, non-
linearmapping, and nonlinear aggregation layers. The nonlinear layers
explore nonlinear interaction within and across the latent factors in all
the modes to characterize more complex underlying nonlinear struc-
tures, and thus this hierarchical structure is beyond simplemultilinear
structure assumed by conventional tensor decomposition methods.

The first layer learns an underlying linear embedding in each
mode representing the linear factors. The second layer introduces
nonlinearmappings among all the linear factorswithin eachmodewith
nonlinear activations. Finally, the last layer aggregates nonlinear fac-
tors along each mode and structures the loss function of the neural
network as CPD regularized by the graph Laplacian of the product
graph of the spatial graph and the PPI network. The hierarchical
representations can capture latent features at different levels of
abstraction of data with complex patterns such as highly irregular and
nonconvex shapes of the tissue regions in spatial transcriptomics data.
Such hierarchical models have been shown useful in semi-non-
negative matrix factorization in face recognition, topic modeling in
text analysis, and other research problems18,19. To better infer the
unobserved expression profile with the learned nonlinear latent fac-
tors, GNTD also leverages the prior knowledge of spot spatial
arrangement and gene functional modules encoded in the spatial
neighborhood and protein-protein interaction (PPI) graphs. GNTD
combines these graphs via Cartesian product and applies the graph
Laplacian regularization to impose spatial and functional similarity
over nonlinear latent factors such that the observed and unobserved
entries in the reconstructed tensor tend to share similar expressions if
they are spatially adjacent or functionally proximate. The detailed
definition of GNTDneural network and the optimization algorithm are
given in “Methods”.

GNTD imputes spatial gene expressions more accurately in in-
silico simulations
We conducted simulations to compare GNTD and the existing tensor
decomposition models for imputing spatial transcriptomics data. The
comparison includes two nonlinear tensor decomposition models,
CoSTCo20 and DTD21,22, as well as one graph-regularized tensor
decompositionmodel FIST12, as reviewed in “Comparedmethods”. We
first constructed a simulated spatial transcriptomics dataset with the
same spatial layout in DLPFC 151673 section, where the simulated data
was generated over six cortical layers and white matter (WM) and
manually segmented by the annotation in the original study as shown
in Fig. 2a.
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We then simulated the expressions of 50 spatially variable genes
by sampling UMI counts from two different negative binomial (NB)
distributions. The first distribution was generated with a random
number of successes r in the range of [10, 100] and probability of
success p =0.85 in a single trial for some randomly selected highly
expressed regions. For the remaining lowly expressed regions,weused
another NB distribution with r/2 successes and probability of success
p =0.95. In addition, we also simulated 50 ubiquitously expressed
genes by samplingUMI counts fromabackgroundNBdistributionwith
random r∈ [5, 50] and p =0.85 over all the regions. Zero inflation is
then introduced by setting a certain percentage (40% or 80%) of
entries to zeros in the sampled data. Note that the density of the
simulation data with 40% zero inflation is around 50%, which is close to
the density of ISH data generated by seqFISH5. And, the density of the
simulation data with 80% zero-inflation is 13%, which is close to the
density of sparser data from Visium (See Supplementary Table S1). For
the simplicity of this simulation, we set the PPI network to be a diag-
onal graph without functional information among the genes.

First, we evaluated the performance of detecting the spatial
domains by clustering the spots in the raw data and its imputation
generated by GNTD and the baseline models on the simulated data
with zero-inflation rates 40% and 80%. The results are shown in Fig. 2b
under different CPD ranks and two choices of the graph regularization
weight λ = 0.01 or 0 (no regularization). It is evident that clustering on
the data imputed by GNTD consistently outperforms the clustering on
the raw data and its imputation by the other tensor-based models on
the simulated data with both low and high zero inflation rates. All the
tensor-based models provide better imputation for spot clustering
than the raw data at all compared ranks when the zero inflation rate is
high at 80%. When the rank is sufficiently large, this is also true in the
lower zero inflation rate of 40%. The superior performance of GNTD
(λ =0.1) and FIST (λ =0.01) to GNTD (λ =0) and FIST (λ =0) also

confirms that the spatial localization encoded in the graph regular-
ization is playing an essential role in the imputation. The visualization
of the simulation with a high zero inflation rate (80%) in Fig. 2c shows
that GNTD imputation accurately identifies all tissues regions while
rawdata andother imputeddata fail to delineate tissue regionborders.
It is not surprising that CoSTCo and DTD detect spatial domains with
less spatial continuity since these models do not incorporate spatial
relations among the spots. Moreover, GNTD (λ =0) also performed
worse than GNTD (λ =0.1), especially in the simulated data with a high
zero inflation rate (80%), and missed one delicate tissue region in
simulated data, implying spatial proximity could improve spatial
domain detection when simulated data is more sparse and noisy.

Next, we evaluated the performance of gene spatial pattern
recoveryby the rawdata and the imputeddata generatedbyGNTDand
the baseline models by calculating the AUC scores over the ranking of
the spots by their imputed expressions, where the spots are labeled as
either highly expressed or lowly expressed in the ground truth of each
spatially variable gene. The results are shown in Fig. 2d. It is clear that
all 50 spatially variable genes from the imputation generated by GNTD
have AUC scores greater than 0.95, while less than 50% of the spatially
variable genes have the AUC scores at the same level in the imputation
byCoSTCoandDTD. Interestingly, around80% spatially variable genes
have AUC scores greater than 0.95 by the imputation by FIST. In
addition, gene spatial patterns recovered byGNTDmatchwell with the
ground truth patterns compared to the imputation by the other
models (Fig. 2e and Supplementary Fig. S3). GNTD (λ = 0) without
graph regularization also exhibits good performance, but the imputed
expressions within the same region are less consistent, which further
indicates that the spatial proximity in the graph indeed contributes to
refining the spatial expression patterns.

In Supplementary Fig. S1, we also compared GNTD with the three
autoencoder (AE)-basedmodels using the data reconstructed from the

Fig. 1 | The three-layer neural network architecture of GNTD. Spatial gene
expressions are modeled by a 3-way tensor by spatial coordinates (x and ymodes)
and genes (g-mode). The first layer learns the weights {W embð Þ

x , W embð Þ
y , W embð Þ

g }
representing the linear factors {Ax,Ay,Ag} in eachmodeby a linear embedding. The
second layer introduces nonlinear mappings among all the linear factors within
eachmodeby nonlinear activations over theweights {W nlinð Þ

x ,W nlinð Þ
y ,W nlinð Þ

g } to learn

the nonlinear factors {~Ax , ~Ay, ~Ag }. In the last layer, the loss function of the neural
network is aggregated by learnable coefficientsw(agg) and structured as a weighted
CPD regularized by the graph Laplacian of the product graph of the spatial graph
Gxy and the PPI networkGg. Once theGNTDmodel is trained, the indexes {ix, iy, iz} of
the tensor entries can be used as inputs to query the reconstructed values.
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AE embedding on the simulation data, SEDR23, STAGATE24, and
GraphST25 (See “Comparedmethods”). Note that SEDR, STAGATE, and
GraphST also utilize spatial relations with graph convolution. In this
comparison, two different kinds of loss were used for training these
AE-based models. In the first setting, the loss of only non-zero entries
was used for training these AE-based models the same as for training
GNTD. In the second setting, the loss of all entries (both zero and non-
zero entries) was used to train the AE-based models as they were
trained in the original studies for embedding. Based on the ARIs and
AUCs in Supplementary Fig. S1, it is evident that GNTD outperforms
the AE-basedmodels in both spatial domain detection and gene spatial
pattern recovery by a large margin. While the AE-based models per-
form relatively better on the low zero-inflation data (40%) by revealing
some spatial patterns, their imputation on the high zero-inflation data
(80%) show no or much less spatial content. Training with all entries
did improve the imputation by STAGATEbut not consistently for SEDR
and GraphST.

To further investigate if the imputation could introduce false
negative or false positive spatially variable genes, we applied SPARK26

to detect spatially variable genes in the imputation of the simulation
data with a high zero-inflation rate (80%). Notably, the results in Sup-
plementary Fig. S2 show thatGNTDdidnot introduceany false positive
or false negative spatially variable genes in the detectionwhile all other
methods introduced a significant number of either false positive or
false negative spatially variable genes, or even both. The imputed
expressions of each spatially variable gene are also fully visualized in
Supplementary Fig. S3.

GNTD imputes significantly more accurate spatial gene expres-
sions in Visium data
To evaluate the imputation performance, we also applied GNTD, the
three tensor-basedmodels (CoSTCo, DTD, and FIST), and the three AE-
based models (SEDR, STAGATE, and GraphST) to perform 10-fold
cross-validation on all the 22 Visium spatial transcriptomics datasets.

Fig. 2 | Spatialdomaindetectionandgenespatialpattern recovery in simulated
spatial transcriptomics data. a Ground-truth segmentation of 6 cortical layers
and white matter (WM) for simulated spatial transcriptomics data based on the
annotation of the human dorsolateral prefrontal cortex (DLPFC) section 151673.
b Spot clustering performance on the raw data and the imputed data by CoSTCo,
DTD, FIST (λ =0 or 0.01), and GNTD (λ =0 or 0.1) at different ranks in the simulated
spatial transcriptomics data with 40% or 80% zero inflation rate. c Visualization of
the spatial domains detected by spot clustering on the raw data and the imputed
data of the simulated spatial transcriptomics data with 40% and 80% zero inflation
rates. The imputed data with the best rank by each tensor decomposition method

was used in the visualization. d Spatially variable genes detection comparison. The
plot shows the percentage of correctly detected spatially variable genes by theAUC
thresholds of the recovered highly expressed spots in the more sparse simulated
spatial transcriptomics data with 80% zero inflation rate. e Spatial patterns visua-
lization of three example genes by their expression in the ground-truth data, raw
data, and the imputation data of the simulated spatial transcriptomics data with
80% zero inflation rate. Note that in (d) and (e), a higher AUC indicates a better
consistency between the imputed or raw expressions and the ground-truth
expression over the spots for the gene. Source data for (b) and (d) are provided as a
Source Data file.
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To better understand the results, we also added GNTD without any
graph regularization (GNTD w/o graph) and GNTD with spatial graph
regularization but no PPI (GNTD w/o PPI) as baseline models. We
measured the cross-validation performance for all the models in both
spot-wise and gene-wise cross-validations with 3 metrics, MAE, MAPE,
and R2, where the detailed design of spot-wise and gene-wise cross-
validation and the definitions of the evaluation metrics are given in
“Imputation evaluation by cross-validation” and “Evaluation metrics”
respectively.

GNTD consistently achieved the best spot-wise and gene-wise
imputation with the lowest MAE and MAPE, and the highest R2 as
shown by the comparisons in Fig. 3. Nonlinear tensor-based models
CoSTCo and DTD exhibit worse spot-wise and gene-wise imputation
performance than GNTD without graph regularization (λ =0), which
further indicates that the hierarchical representation by linear and
nonlinear factors could better model complex interactions among the
genes and spatial locations in the spatial transcriptomics data. The
observation that GNTD also outperforms FIST suggests that non-
linearity within factors indeed improves the imputation in both the
accuracy and the correlation of spatial expressions. In addition, GNTD
also shows better evaluation performance in both spot-wise and gene-
wise imputation than its variants, GNTD w/o graph and GNTDw/o PPI.
This result suggests the importance of the functional relations among
genes as well as spatial relations among spots in the spatial tran-
scriptomics data imputation. Note that the R2 metric as defined in Eq.
(11) can be negative when the overall prediction is worse than the
mean. This can happen very often in highly sparse data if the non-zero
entries are not correctly predicted from the majority of zeros. The
three AE-based models performed poorly in both spot-wise and gene-

wise imputation evaluation since they are specifically designed and
trained for learning the latent representation and might suffer from
overfitting of training with non-zero entries in the cross-validation
evaluations. Furthermore, we also examined the mean and the var-
ianceofMSE to check the robustness of theGNTD imputation on these
22 Visium datasets in the 10-fold cross-validation (Supplementary
Fig. S4). The MSEs in both spot-wise and gene-wise experiments are
consistent across the 10 folds.

We further analyzed the role of hyper-parameter tuning for GNTD
in both the spot-wise and the gene-wise imputation evaluations. We
first examined the rank selection for tensor decomposition by the
imputation performance byMSE for all the tensor-basedmodels on all
the 22 Visium datasets (Fig. 4a and Fig. 5a). It is expected that the MSE
of all tensor-based models monotonically decreases as the rank
increases within the specific range (rank= 8,16,32,64f g) inmost Visium
datasets since reasonably high ranks generally capture more complex
interactions. The best performance of GNTD among all the tensor-
basedmodels at all the tested ranks suggests that the nonlinear factors
learned by GNTD aremore informative in capturing the nonlinearity in
the spatial gene expressions. Interestingly, the performance of
CoSTCo and FIST degrades at a relatively higher rank (rank = 128)
potentially due to over-fitting. This degradation is more significant in
sparser datasets. It is also important to note that the results are highly
consistent across all 22 datasets, which is strong evidence for gen-
eralization to all Visium datasets with the same setting.

Next, we explored the importance of the weight (λ) on Cartesian
product graph regularization in GNTD (Figs. 4b and 5b). In the impu-
tation performance by MSE for GNTD under different weights, we
observed that the optimal weight is always either 0.01 or 0.1 in the 22

Fig. 3 | Evaluation of imputation accuracy on 22 Visium datasets. The evalua-
tions are measured byMAE, MAPE and R2 among 3 AE-based deep learning models
SEDR, STAGATE, and GraphST, as well as 4 tensor-based models CoSTCo, DTD,

FIST, and GNTD. Each bar shows the mean of the imputation performance over all
the spots or all the genes. a Spot-wise 10-fold cross-validation and b Gene-wise 10-
fold cross-validation. Source data for (a) and (b) are provided as a Source Data file.
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Visiumdatasets. The better performanceof GNTDwith optimal λs than
GNTD (λ = 0) without graph regularization again confirms the impor-
tant role of graph regularization to guide the imputation by integrating
prior information of spatial relations among spots and functional
relations among genes encoded in the Cartesian product graph. The
declining performance of GNTD after λ >0.1 suggests that when too
much belief is put on the prior knowledge, the imputation can be
corrupted as the prior knowledge of the relations is imperfect.

GNTD imputation leads to better spatial domain detection in
DLPFC sections and human breast cancer sections
To provide more quantitative measures of the quality of the imputed
data,we evaluated spot clusteringperformanceby adjusted rand index
(ARI) on the raw data and the imputed data in the human dorsolateral
prefrontal cortex (DLPFC) sections, based on 6 cortical layers and
white matter (WM) manually annotated with morphological features
and layer-specific genemarkers. GNTDwas compared with the tensor-
based models, CoSTCo, DTD, and FIST, and the AE-based models
(SEDR, STAGATE, and GraphST) in all the 12 DLPFC sections. The
results are shown in Fig. 6.

GNTD outperformed all the other models in all the 12 datasets
with the overall best ARI in spot clusteringwith the imputed data using
either all genes (median ARI = 0.45) (Fig. 6a) or highly variable genes
(median ARI = 0.52) (Fig. 6b). Spot clustering with highly variable
genes is generally better than that using all genes by focusing on
potential layer-specific marker genes to better define different spatial

domains in the comparison. The spot clustering performance of
CoSTCo (median ARI = 0.24 for all genes and median ARI = 0.25 for
highly variable genes) and DTD (median ARI = 0.29 for all genes and
median ARI = 0.30 for highly variable genes) is worse than the per-
formance of using the raw data, potentially due to the over-
expressiveness of nonlinearity even when using highly variable genes.

It is interesting to observe that GNTD also significantly improves
the spot clustering performance compared with the two variants,
GNTD w/o graph without any graph regularization (median ARI = 0.39
for all genes and median ARI = 0.42 for highly variable genes) and
GNTD w/o PPI with spatial graph regularization but no PPI (median
ARI = 0.41 for all genes and median ARI = 0.47 for highly variable
genes). The observation again emphasizes the importance of both the
spatial relations among the spots and functional relations among the
genes in imputation used for spatial domain detection.

To show intuitively howGNTD imputation couldaccurately detect
spatial domains, we further examined the spot clustering results using
highly variable genes on theDFLPC 151673 section (Fig. 6c).Mostof the
baseline methods obtained worse ARI than clustering using the origi-
nal rawdata, and the identified spatial domains are either substantially
noisy or unable tomatch the layer patterns. GNTD and its two variants
exhibit better ARI than clustering using the rawdata.Moreover, GNTD,
leveraging both spatial relations among spots and functional relations
among genes in the imputation, could delineate continuous spatial
domains with smooth boundaries largely agreeing with the layer
structures, while the two variants are less accurate. In addition, we also

Fig. 4 | Hyper-parameter tuning on 22 Visium datasets in spot-wise cross-vali-
dation. a Spot-wise 10-fold cross-validation comparisonbyMSEbyvarying the rank
in tensor decomposition. Each dot shows the mean MSE over all the spots. b Spot-

wise 10-fold cross-validationMSE of GNTD at the best rank by varying λ. In the plot,
each dot shows the mean MSE over all the spots. Source data for (a) and (b) are
provided as a Source Data file.
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applied uniform manifold approximation and projection (UMAP) to
map the spots by highly variable genes onto two-dimensional UMAP
space in the raw data and the imputed data. We observed that in the
clustering of the imputed data by GNTD, the spots from distinct layers
are well separated with a spatial trajectory derived from the adjacency
in the UMAP space following the chronological order of cortex layer
development, whereas in the mappings of the other imputed data, the
spots tend to be highly entangled showing inconsistent spatial tra-
jectory that disagrees with the chronological order of cortex layer
development. Note that DTD, STAGATE, and GraphST also largely
captured most of the chronological order of the layers which is con-
sistent with their relatively higher ARI in clustering.

We next tested the same spot clustering using highly variable
genes on the data of the human breast section, which is mixed by four
primary tissue types, healthy tissue (Healthy), ductal carcinoma in situ/
lobular carcinoma in situ (DCIS/LCIS), invasive ductal carcinoma (IDC),
and boundary tissue with low malignancy (Tumor edge) in 20 tissue
regions annotated by pathological features. The results are shown in
Fig. 6d. Similarly, clustering based on GNTD imputation (ARI = 0.609)
shows thebestperformanceover the rawdata and the imputeddata by
the other models. GNTD detects spatial domains that match well with
the annotated tissue regions. Interestingly, we also discovered that
several seemingly homogeneous spatial regions annotated as DCIS/
LCIS or IDC tumor regions are indeed heterogeneous because each of
them can be dichotomized into core and surrounding sub-regions
highly resembling a tumor region and its microenvironment respec-
tively (Supplementary Fig. S6). This observation is further confirmed

by enrichment analysis on differentially expressed genes between
these two sub-regions, where the core sub-region enriches with tumor
progression while the surrounding sub-region enriches with tumor-
associated immune suppression. The complete enrichment results are
shown in Supplementary Table S2.

Similarly, we also projected the raw data and the imputed data of
the human breast cancer tissue using highly variable genes onto a two-
dimensional UMAP space. There is a clear separation among different
tissue regions in the UMAP space computed from the GNTD
imputation.

Even if SEDR, STAGATE, and GraphST also consider spatial rela-
tions among spots in modeling, the imputation by these three meth-
ods provides substantially worse spot clustering performance than
their low-dimensional embedding, which might imply that while deep
neural network embedding could better characterize spot domains by
eliminating noisy and redundant information, the same improvement
is not carried over to the reconstructed data from the embedding. All
these results corroborate that introducing nonlinearity and incorpor-
ating both spatial relations among spots and functional relations
among genes enable GNTD to provide informative imputation for
spatial domain detection.

GNTD imputation enhances biological interpretation of spa-
tially co-expressed gene clusters
To demonstrate GNTD imputation can also lead to a better functional
interpretation of spatial transcriptomics data, we performed enrich-
ment analysis over spatially co-expressed gene clusters detected from

Fig. 5 | Hyper-parameter tuning on 22 Visium datasets in gene-wise cross-
validation. aGene-wise 10-fold cross-validation comparison byMSE by varying the
rank in tensor decomposition. Each dot shows the mean MSE over all the genes.

b Gene-wise 10-fold cross-validation MSE of GNTD at the best rank by varying λ. In
the plot, each dot shows the mean MSE over all the genes. Source data for (a) and
(b) are provided as a Source Data file.
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the rawdata and the imputeddata.Wemeasured the average of the log
of theminimal q-value of themost significant enriched Gene Ontology
(GO) term from each gene cluster on the 22 Visium datasets. Most of
the baseline models, except for SEDR, achieved only slightly better
enrichment significance in the spatially co-expressed gene clusters
discovered by the imputation data compared to those by the rawdata.
GNTD consistently shows the best enrichment significance over all the
gene clusters among all the methods (Fig. 7a). With no surprise, GNTD
also performed better than GNTD w/o PPI by incorporating the func-
tional relations among the genes encoded inthe PPI network.

We also explored how the rank in the tensor-based models can
affect the enrichment significance of the co-expressed gene clusters
(Fig. 7b). GNTD achieved the overall best enrichment significance over
co-expressed gene clusters by a large margin compared to the other
tensor-based models under all the ranks. Generally, the imputation
tends to improve the enrichment significance as the rank increases to
capture more interactions in factors, suggesting that the inclusion of
both nonlinearity and functional relations among genes in the impu-
tationbyGNTDachievesmore functionally relevant co-expressedgene
clusters.

FIST also exhibits considerably better enrichment significance
over the spatially co-expressed gene clusters than the other baseline
models in relatively sparser datasets (12 DFLPC sections), while
CoSTCo and DTD performed better than FIST in relatively denser
datasets, which strongly suggests that PPI provides more useful gui-
dance in highly sparse data12.

Finally, to better understand the co-expressed gene clusters by
GNTD imputation on the mouse kidney tissue, we selected 9 co-

expressed clusters characterizing three primary anatomical struc-
tures, the cortex, the inner stripe of the outer medulla (ISOM), and
the outer stripe of the outer medulla (OSOM), and show the average
expression patterns of these co-expressed gene clusters in Supple-
mentary Fig. S7. We further performed enrichment analyses on the
co-expressed gene clusters individually and found that the enriched
biological processes are highly relevant to their corresponding ana-
tomical structures. The co-expressed gene clusters highly expressed
in ISOM enrich nucleotide and ATP metabolisms27,28, those highly
expressed in OSOM enrich catabolic processes of organic and inor-
ganic molecules29,30, and those highly expressed in cortex enrich the
regulation of blood pressure and the transport of cellular
metabolites31,32. The complete enrichment results are compiled into
Supplementary Table S3.

GNTD performs better imputation on high-resolution spatial
transcriptomics data
To further verify the applicability of GNTD to high-resolution spatial
transcriptomics data, we repeated all the previous experiments with
similar settings on three Stereo-seq datasets including one mouse
brain coronal hemibrain section and two mouse olfactory bulb sec-
tions, all of which resolve spatial expression at 4 × higher resolution
than the Visium data. All three tissue sections are annotated by ana-
lyzing differentially expressed genes among clusters from unsu-
pervised graph-based clustering Leiden on the union of spatial and co-
expression graphs over spots, and annotations are further validated by
comparison with available single-cell data reported for the anatomic
regions in the original study10. All the results are shown in Fig. 8.

Fig. 6 | Comparison of detecting layer structures in DLPFC sections and het-
erogenous tumor tissue regions in human breast cancer section. a The com-
parison of spot clustering with all genes in the raw data and the imputed data by
tensor-based models, GNTD, FIST, CoSTCo and DTD as well as AE models, SEDR,
STAGATE, andGraphST at the best rank onall 12DLPFC sections.bThe comparison
of spot clustering with only highly variable genes in the raw data and the imputed
data by the compared methods at the best rank on all 12 DLPFC sections. In the
boxplot in both (a) and (b), the center line, box limits and whiskers denote the
median, upper and lower quartiles and 1.5 × interquartile range, respectively.

c Ground-truth of tissue regions and the detected spatial domains by clustering
(Upper panel) and the UMAP embeddings of the spots by highly variable genes
(Lower panel) of the raw data and the imputed data by the compared methods at
the best rank on theDLPFC section 151673.dGround-truth of tissue regions and the
detected spatial domains by clustering (Upper panel) and theUMAPembeddings of
the spots by highly variable genes (Lower panel) of the raw data and the imputed
data by the compared methods at the best rank on the human breast cancer sec-
tion. Source data for (a) and (b) are provided as a Source Data file.
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In the imputation evaluation, GNTD constantly shows the best
spot-wise and gene-wise imputation performance with the lowestMAE
and MAPE and the highest R2 compared to all other baseline models
(Fig. 8a). Similarly, we also show the evaluation of imputation robust-
ness in the 10-fold cross-validation on these 3 Stereo-seq datasets in
Supplementary Fig. S4. The analysis of hyper-parameters for GNTD in
both spot-wise and gene-wise imputation evaluation on the Stereo-seq
data is highly consistent with the results on the Visium data (Fig. 8b).
This consistency again supports that a relatively higher rank and
properly weighted prior knowledge (λ =0.1) of spatial relations among
spots and functional relations among genes improve the imputation
performance of GNTD. We next applied GNTD to identify spatial
domains on the mouse brain coronal hemibrain section and mouse
olfactory bulb section, GNTD (ARI = 0.55 and0.32) clearly outperforms
all other models in spot clustering and detects continuous spatial
domains that match annotated tissue regions (Fig. 8b). Furthermore,
GNTD is able to accurately outline complicated anatomical regions
while the baseline models tend to produce over-smoothed spatial
domains that obfuscate fine-grained structures (Fig. 8c, d). For exam-
ple, GNTD isolates the cornu ammonis area 3 (CA3) region from the
dentate gyrus (DG) and molecular layer of dentate gyrus (MLDG)
regions while the baseline models over-smooth them as one region in
themouse brain coronal hemibrain section. GNTD also demarcates the
granule cell layer (GCL-I) and GCL-D regions while the baselinemodels
merge themasone region in themouse olfactorybulb section.We also
visualize the rawdata and the imputed data by two-dimensional UMAP
in the bottomrowof Fig. 8c, d. It is clearly visible that spots in the same
tissue region are projected tightly together with good separation from
the spots in other tissue regions in the UMAP on GNTD imputed data.
Notably, GNTD could depict the spatial trajectory for the mouse
olfactory bulb section in the UMAP space, which is consistent with the
developmental sequencewithin the laminar organization starting from

the external plexiform layer (EPL), proceeding bilaterally outwards to
the mitral cell layer (MCL) and glomerular layer (GL), olfactory nerve
layer (ONL), and then developing the granule cell layer (GCL) lastly.
Overall, all these results confirm the strength of GNTD in imputation
for high-resolution spatial transcriptomics data.

GNTD imputation reveals true gene spatial patterns in both low-
and high-resolution spatial transcriptomics data
Wevisualized the expressionprofiles of 12 known layer-specificmarker
genes in the Visium raw data and the imputed data generated by the
tensor-based models for the DLPFC 151673 section. GNTD imputation
properly enhances the expression and enriches the correct cortical
laminae validated by ISH data from the Allen Human Brain Atlas
(Fig. 9a). While the imputation by CoSTCo and DTD also strengthens
expression signals in most of the genes, the imputation remains noisy
and lacks spatial continuity, and even obscures original spatial pat-
terns in the raw data. FIST was also unable to preserve the original
spatial patterns in the raw data, which suggests that multilinear mod-
eling alone is insufficient to model the complex interactions in the
spatial transcriptomics data. We also visualize the expression profiles
of 12 known region-specific marker genes in the raw Stereo-seq data
and the imputed data generated by the tensor-based models for the
mouse olfactory bulb section (Fig. 9b). Similarly, GNTD imputation
correctly amplifies the expression signals of the marker genes in their
anatomical regions validated by ISH data from the Allen Mouse Brain
Atlas. While the imputation by CoSTCo and DTD shows certain cor-
respondence to the anatomical regions for most of the genes as well,
the imputation is often so fragmented and over-spread that the ori-
ginal spatial patterns in the raw data are lost. FIST was incapable of
improving the original spatial patterns in the raw data, which confirms
the importance of nonlinear modeling for spatial transcriptomics data
imputation. Collectively, these results illustrate that GNTD is capable

Fig. 7 | Enrichment analysisof spatially co-expressedgene clusters on22Visium
datasets. a The comparison of enrichment significance over 100 gene clusters
detected among all genes from the raw data and the imputed data generated by 3
AE-based models SEDR, STAGATE, and GraphST as well as four tensor-based

models CoSTCo, DTD, FIST, and GNTD at their best ranks in each of the 22 Visium
datasets. b The comparison of enrichment significance over the detected 100 gene
clusters at different ranks in the 22 Visium datasets. Source data for (a) and (b) are
provided as a Source Data file.
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of revealing the complete gene spatial patterns by the imputation of
the raw spatial transcriptomics data. Note that all these tensor models
do not alter the scale of the expression by the nature of the MSE-type
loss functions. We rescaled the color range based on the minimal and
maximal expression for raw and imputed data in Fig. 9 to highlight the
spatial patterns with better contrast. The marker gene visualization in
the same color range of the original values for both the raw data and
the imputed data are also shown in Supplementary Fig. S8.

Discussions
The focus of the learning task in this research work is on imputing the
missing/incomplete gene expressions that fell through the capture for
completing the transcriptome-wide gene expressions in the measured
tissue locations. This formulation is different fromother imputation or
imputation-related tasks, which are often augmented with tissue
staining images or scRNAseq data beyond spatial gene expression
data16,17,33.

There are methods that aim to match sparse spatial tran-
scriptomics data with scRNAseq profiles15,34, where spatial tran-
scriptomics data can be reconstructed from the scRNAseq data by
deconvolution. The additional assumption for deconvolution is that
well-matched scRNAseq data on the same cell population also exist.
This assumption might introduce other uncertainties and hinder
the interpretation of the downstream analysis to be less relevant to
the specific spatial gene expression data. In an additional experiment
(see details in the supplementary document), we also compared
GNTD with one spatial transcriptomics data deconvolution method
Tangram15 with the same 10-fold cross-validation evaluation of

imputing gene expressions in a coronal region cropped from the
samemouse brain Visiumdataset used in this study. The result shows
that the spatial gene expressions imputed based on the aggregation
of scRNAseq data have a very different nature and exhibit low
agreement with the original spatial transcriptomics data in both the
raw expression values and the correlations, which suggests that this
external imputation might not be generally applicable to recovering
missing or incomplete gene expressions in the spatial tran-
scriptomics data.

There are also methods proposed for imputing gene expressions
in the locations that are not covered by the arranged capture spots17 or
directly improving the resolution of the spatial transcriptomics data by
integrative analysis with H&E image data16,35. While GNTD does not
target these aims directly, a potential follow-up study of this work is to
design an extension or a post-processing step to infer additional spa-
tial gene expressions based on spatial proximity. We also investigated
running XFuse16 and ST-Net35 for full imputation of spatial tran-
scriptomics data. While these methods have been shown to perform
well in imputing a small number of genes in the original studies, the
applicability to the whole transcriptome seems to be rather limited in
both the scalability and lack of a complete evaluation. A more
sophisticated experimental design is necessary for a thorough
comparison.

Furthermore, even if the AE-based methods23–25, focusing on
extracting the embedding during reconstructing spatial gene expres-
sion, can also be adapted to whole transcriptome imputation, the
performance is often sub-optimal since the models are optimized to
learn low-dimensional embedding smoothing over the spatial

Fig. 8 | Experiments on 3 stereo-seq spatial transcriptomics datasets.
a Evaluation of imputation accuracy by MAE, MAPE and R2. The 3 AE-based deep
learning models SEDR, STAGATE, and GraphST, as well as 4 tensor-based models
CoSTCo, DTD, FIST, and GNTD, are compared. Each bar shows the mean of the
imputation performanceover all the spots or all the genes. The results are reported
for spot-wise 10-fold cross-validation in the top plot and gene-wise 10-fold cross-
validation in the bottom plot. b Analysis of hyper-parameter tuning by spot-wise
and gene-wise 10-fold cross-validation. Comparison of MSE by varying the rank in
tensor decomposition is shown in the plots in the top row, in which each dot shows
the mean MSE over all the spots in spot-wise evaluation or all genes in gene-wise
evaluation. MSE of GNTD at the best rank by varying λ is shown in the plots in the

bottom row, in which each dot shows the meanMSE over all the spots in spot-wise
evaluationor all genes in gene-wise evaluation. cGround-truth of tissue regions and
the detected spatial domains by clustering (Upper panel) and the UMAP embed-
dings of the spots by highly variable genes (Lower panel) of the raw data and the
imputed data by the compared methods at the best rank on the mouse brain
section. d Ground-truth of tissue regions and the detected spatial domains by
clustering (Upper panel) and the UMAP embeddings of the spots by highly variable
genes (Lower panel) of the raw data and the imputed data by the compared
methods at the best rank on the mouse olfactory bulb section. Source data for (a)
and (b) are provided as a Source Data file.
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neighborhood for some other downstream analyses and it does not
necessarily result in better reconstruction on original spatial tran-
scriptomics data. This is supported by the comparison with the three
AE-based methods in our experiments.

There have also beenmany developments of imputationmethods
for probe-based technologies such as MEMFISH and more recent
Nanotring CosMx. The imputation task in this context is to estimate
the expressions of the unprofiled genes based on the probed genes
and often accompanied scRNAseq data. While GNTD can employ the
PPI network to model gene-gene relations to facilitate such gene
imputation task, a dense subnetwork is often required for accurate
imputation. Apparently, the success will highly depend on which

profiled genes are available for training andwhichunprofiled genes are
targets.

Importantly, our work suggests that imputing spatial tran-
scriptomics data by introducing spatial and functional information in
the data itself prior to any analysis consistently improves the standard
downstream analyses. Thus, the imputation approach is a more con-
venient alternative without using other advanced methods for each
downstream analysis separately. The denoising nature of the imputa-
tion also provides more reliable information for better spatially vari-
able gene detection and potentially better spatially co-expressed gene
cluster identification. In addition, there is always a need for analyzing
the full spectrum of transcriptome beyond only knownmarker genes.

Fig. 9 | Imputation for recovering the spatial patterns ofmarker genes on both
Visium and Stereo-seq data. a The visualizations of 12 layer-specific marker genes
(PCP4, PVALB, ENC1, CCK, KRT17, MOBP, ATP2B4, RASGRF2, LAMP5, NEFH, NTNG2,
and B3GALT) of ISH images, raw data, and imputed data generated by four tensor-
based models CoSTCo, DTD, FIST, and GNTD at their best rank on the DLPFC

151673 section from Visium. b The visualizations of 12 region-specificmarker genes
(MBP, PENK, CPNE4, GABRA1, GAD1, SLC6A11, CCK, KCTD12, COX7A2, ATP2B4,
CABIN1, and FASN) of ISH images, raw data, and imputed data generated by four
tensor-based models CoSTCo, DTD, FIST, and GNTD at their best rank on the
mouse olfactory bulb section from Stereo-seq.
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For example, transcription-related functions are often performed by
lowly expressed genes that can vastly benefit from the imputation12,36.

Finally, in this study, GNTD has been tested on 10x Visium and
Stereo-seq data. While it is possible to apply GNTD to other spatial
transcriptomics platforms, such as Slide-seq, MERFISH, and Nano-
String CosMx, there are still two limitations. First, the formulation
requires the capturing spots to be naturally arranged into a grid-like
structure such that the expression profiles can be represented as a
tensor. Second, cell segmentation is required to achieve real single-cell
and sub-cellular resolution. In the future, we will work on extending
GNTD to these transcriptomics platforms by cell binning37,38 or
meshing39. In principle, GNTD can also possibly incorporate reference
scRNAseqprofiles or image-based components fromscRNAseqdata as
default or fixed gene or spatial components in the nonlinear layer. In
our futurework,wewill also probe these possible extensions to further
improve the functionality of GNTD.

GNTD is a neural network model for nonlinear tensor decom-
position. Its architecture adopts a hierarchical representation by latent
features at different levels to capture more complex underlying
organization of tensor data, by high-order regularizations with a Car-
tesian product graph to impose structural relations for avoiding
overfitting. These distinct properties of GNTD have been shown to be
critical for modeling spatial transcriptomics data for imputation and
several other downstream analyses. The results from the extensive
experiments over simulations, 22 Visium spatial transcriptomics
datasets, and 3 high-resolution Stereo-seq datasets suggest that GNTD
is the best method for the imputation of spatially resolved gene
expressions by our comprehensive benchmarking and comparison
with other methods. The high consistency of the results across all the
datasets and between the data from the two spatial profiling platforms
also suggests that our findings are highly generalizable to other data-
sets and potentially, data from other different platforms. The results
also demonstrated that the Cartesian product graph constructed from
spatial relations among the capturing spots and the functional rela-
tions among the genes in the PPI network plays a key role in the
imputation performance. Overall, we conclude that GNTD is a useful
method for analyzing spatially resolved gene expressions based on a
nonlinear tensor completion and high-order graph-regularization by
spatial and functional information.

Methods
Data preparation and preprocessing
In this study, the experiments focus on spatial gene expression data-
sets generated with in situ capturing-based spatial transcriptomics
technologies, including 22 Visium datasets and 3 Stereo-seq datasets
(See details in Supplementary Table S1). The 10x Visium datasets were
obtained from two sources. One source contains 10 different mouse
and human tissues from 10x Genomics spatial gene expression
demonstration7, among which one human breast cancer tissue was
manually labeled with 4 major tumor types and 20 tumor subtypes
based on its pathological features by Fu et al.23. The other source
contains 12 human dorsolateral prefrontal cortex (DLPFC) sections
from spatialLIBD project40, where Maynard et al. have manually
annotated all 12 DLPFC sections with up to six cortical layers and white
matter based on their morphological features and known spatially
variable gene markers. To further demonstrate the applicability to
high-resolution spatial transcriptomics data, we also extended the
analysis to 3 Stereo-seq datasets of one mouse brain tissue and two
mouse olfactory bulb tissues. Chen et al.10 annotated all 3 tissues with
the anatomical regions based on unsupervised spatial clustering and
known spatially variable marker genes. For all the datasets, raw unique
molecular identifier (UMI) counts were first preprocessed by per-
forming counts per million (CPM) normalization and then log-
transformed after adding offset 1.

Spatial graph and gene graph construction
A spatial graph and a gene graph are constructed to incorporate the
prior knowledge of spatial localization of spots and functional rela-
tions among genes to guide the spatial transcriptome imputation.
The spatial graph models spatial dependency—spots in the same
spatial neighborhood are more likely to have similar expression
profiles; and the gene graph models functional coherence—genes
within the same functionalmodule such as protein complex aremore
likely to co-express. We model spatial relations among spots and
functional relations among genes by undirected graphs Gxy and Gg.
LetWxy 2 0,1f gnxny ×nxny be adjacencymatrix forGxy, where ½Wxy�ij = 1 if
i-th and j-th spots are spatially adjacent or similarly expressed
otherwise ½Wxy�ij =0, and nx and ny denote the number of spots along
x- and y-axis, respectively. The neighborhood for each spot in Gxy is
determined by its 6 nearest spots based on the spot arrangement in
the Visium array and its 10 most similar spots based on the gene
expression profiles computed by the top 15 PCs of the expression
profile. Note that including spot co-expression in spatial graph con-
struction could ameliorate heterogeneity issues within the local
neighborhoods for imputation with relatively low-resolution data.
Let Wg 2 0,1f gng ×ng be the adjacency matrix of Gg, where ½Wg �ij = 1 if
i-th and j-th genes are functionally proximate otherwise ½Wg �ij =0,
andngdenotes the number of genes. The functional neighborhood of
each gene inGg is defined by its connections to other genes based on
the protein interactions in the PPI networks. We downloaded the PPI
network both for homo sapiens and mus musculus species from Bio-
Grid 4.4, which compiled 1,233,327 and 97,994 interactions respec-
tively. These are mostly experimentally determined physical
interactions with high confidence for constituting reliable connec-
tions in the PPI networks.

GNTD
GNTD is a graph-guided nonlinear tensor decomposition model
with its architecture outlined in Fig. 1. For any spatial tran-
scriptomics data organized into a 3-way tensor T 2 R

ng ×ny ×nx
+ , the

input of GNTD are 3 index vectors ig 2 Z
ng
+ , iy 2 Z

ny
+ and ix 2 Znx

+

along gene, y coordinate and x coordinate modes, where a tuple of
indexes (i, j, k) of index vectors ig, iy and ix can uniquely index an
entry T ijk in the spatial transcriptomics data T , and the output of
GNTD is the imputed spatial transcriptomics data T̂ . The main
components of GNTD are neural tensor decomposition and Carte-
sian product graph Laplacian regularization. Neural tensor
decomposition generalizes tensor decomposition with a neural
network to capture the complex nonlinear structures underlying
spatial transcriptomics data to impute missing expression values.
Meanwhile, Cartesian product graph Laplacian regularization
leverages the prior knowledge from both protein-protein interac-
tion graph Gg and spatial neighbor graph Gxy to guide the expres-
sion imputation.

Neural tensor decomposition. To better motivate GNTD, we first
introduce a general framework for hierarchical tensor
decomposition41–43 and then define the formulation of GNTD under
the framework.

Hierarchical tensor decomposition. For a rank-nrCPDdecomposition
of the 3-way tensor T = ½½Ag ,Ay,Ax ��, a useful generalization is to impose
a K-hierarchical structure in each component matrix Am 2 Rnm ×nr as

Am =W 1ð Þ
mW 2ð Þ

m :::W Kð Þ
m ,8m= g,y,x, ð1Þ

where K is the number of layers in the hierarchical structure andW kð Þ
m ,

k = 1, 2, . . . ,K, are dimension-matched sub-factorization matrices of
size (nm, n1), (n1, n2), . . . , (ni, ni+1), . . . , (nK−1, nr), respectively. Thus, a
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2-hierarchical rank-nr CPD of T can be defined as

T̂ = ½½W 1ð Þ
g W 2ð Þ

g ,W 1ð Þ
y W 2ð Þ

y ,W 1ð Þ
x W 2ð Þ

x ��: ð2Þ

To model nonlinearity, nonlinear mappings can be introduced over
sub-factorization matrices as,

T̂ = f ð½½f g ðW 1ð Þ
g ÞW 2ð Þ

g ,f yðW 1ð Þ
y ÞW 2ð Þ

y ,f xðW 1ð Þ
x ÞW 2ð Þ

x ��Þ, ð3Þ

where f, fg, fy, fx aremapping layers to be defined in the formulation of
a neural network. Below, we define the Neural tensor decomposition
with the input layer as the embedding layer, fg, fy, fx as nonlinear map-
ping layers and f as the nonlinear aggregation layer. Note that clearly,
hierarchical tensor decomposition can be generalized to any different
number of layers in each mode. Practically, only a few layers are nee-
ded to capture the representations at each layer depending on the
complexity of the data and the amount of available training informa-
tion. Here, we focus on the simplest 2-layer hierarchy since networks
withmore layers aremuch harder to train and lead to no improvement
for imputing spatial transcriptomics data.

Embedding layer. The embedding layer takes index vector ig, iy and ix
along gene, y and x modes of the spatial transcriptomics data T as
inputs, and represents these index vector along different modes as
latent factor matrices Ag 2 Rng ×nr , Ay 2 Rny ×nr and Ax 2 Rnx ×nr

respectively, where the rank r is shared across all factor matrices. The
embedding mapping layer f embð Þ can be written as:

Am = f embð Þ
m im;W

embð Þ
m

� �
= EmW

embð Þ
m ,8m= g,y,x ð4Þ

where Em 2 0,1f gnm ×nm is one-hot embeddingmatrix of index vector im
for mode m,∀m = g, y, x. Em = Im. W embð Þ

m 2 Rnm ×nr are learnable
parameters in the embedding layer for each mode m,∀m = g, y, x.

The classic tensor decomposition models, such as CPD, could be
easily translated into a shallow neural network with 1 embedding layer
and reconstruct T̂ based on factor matrices Ag, Ay and Ax through
multilinear multiplication. However, these multilinear decomposition
models cannot handle the needed nonlinearity in the spatial tran-
scriptomics data for modeling arbitrary spatial shapes and gene
interactions. Therefore, we next forward the embeddings to the non-
linear mapping layer to learn the nonlinearity within the latent factor
matrix for each mode.

Nonlinear mapping layer. The nonlinear mapping layer is basically a
set of fully connected layers with nr hidden units for each mode, and
takes the factor matrices Ag, Ay and Ax from the previous embedding
layer as inputs, and outputs the nonlinear latent factor matrices
~Ag 2 Rng ×n~r , ~Ay 2 Rny ×n~r , ~Ax 2 Rnx ×n~r , where the rank ~r is shared
across all nonlinear factor matrices. The nonlinear mapping layer
applies nonlinear activation function parametric ReLU σp �ð Þ for each
mode. The nonlinear mapping layer f nlinð Þ can be formally defined as:

~Am = f nlinð Þ
m Am;W

nlinð Þ
m

� �
= σpðAmW

nlinð Þ
m ;amÞ,8m= g,y,x ð5Þ

where σp �ð Þ= max �,0ð Þ+am min �,0ð Þ, σp �ð Þ is parameterized by am 2
0,1½ � while W nlinð Þ

m 2 Rnr ×n~r are learnable parameters in the nonlinear
mapping layer for all themodem,∀m = g, y, x. Note that the nonlinear
mapping layer only models the nonlinearity underlying the latent
factor matrix within each mode individually. We then introduce the
nonlinear aggregation layer to explore the interactions across the
latent factor matrices for different modes.

Nonlinear aggregation layer. The nonlinear aggregation layer takes
the nonlinear factor matrices ~Ag , ~Ay, ~Ax as inputs, aggregates them
through CPD-like multilinear multiplication, then applies nonlinear

activation function ReLU σ( ⋅ ), and lastly outputs imputed spatial
transcriptomics T̂ . The aggregation layer f(agg) can be expressed as:

T̂ = f ðaggÞ ~Ag ,~Ay,~Ax ;w
� �

= σ
Xn~r

i

wi
~Ag

h i
:,i
⊚ ~Ay

h i
:,i
⊚ ~Ax

h i
:,i

 !
, ð6Þ

where w=w aggð Þ for simplicity of notations. σ �ð Þ= max �,0ð Þ,⊚denotes
the vector outer product, Am

� �
:,i denotes the i-th column of

Am,∀m = g, y, x. w 2 Rn~r is a learnable parameter to weight nonlinear
factormatrices in the nonlinear aggregation layer andwi denotes the i-
th element of w.

Reconstruction loss. Given the raw spatial transcriptomics data T 2
R

ng ×ny ×nx
+ and the imputed spatial transcriptomics T̂ 2 R

ng ×ny ×nx
+ ,

M 2 0,1f gng ×ny ×nx is themask tensor indicating observed entries in the
T , whereMijk is set to be 1 if the i-th gene at the coordinates j,kð Þ has
expression in T and 0 otherwise, we can formally define the recon-
structed loss Lrecon for the neural tensor decomposition as:

Lrecon =
1
2

M⊛ T � T̂
� ����

���2
F
=
1
2

M⊛ T � f NTD T ;Wð Þ� ��� ��2
F :

ð7Þ

Note that the mask matrix M is optional. When all the entries are
considered for training, the loss will be calculated over both the zero
and non-zero entries.

Graph regularization loss. Given undirected graphsGg encoding gene
functional modules and Gxy defining spots spatial neighborhood, we
can use the Cartesian product graph Gc combining Gg and Gxy to
impose a regularization over the entries in the imputed tensor T̂ such
that the i-th gene at the coordinate x,yð Þ and the i0-th gene at the
coordinate x0,y0ð Þ are encouraged to co-express if and only if either the
i-th and i0-th genes are adjacent in the Gg with the same coordinates
(i.e. x,yð Þ= x0,y0ð Þ) or spots at the coordinates x,yð Þ and x0,y0ð Þ are
adjacent in the Gxy with the same genes (i.e. i= i0). Given the adjacency
matrixWg ofGg, letDg =diagðd1,:::,dng

Þ 2 R
ng ×ng
+ be the degreematrix

of Gg with di =
P

j½Wg �ij , and Lg =Dg �Wg 2 Rng ×ng represents the
graph Laplacian for Gg. Similarly, given adjacency matrix Wxy of Gxy,
Dxy =diagðd1,:::,dnxny

Þ 2 R
nxny ×nxny
+ be the degree matrix of Gxy with

di =
P

j½Wxy�ij , Lxy =Dxy �Wxy 2 Rnxny ×nxny represents the graph
Laplacian for Gxy. The graph Laplacian for Cartesian product graph Gc

canbe expressed asLc = Lxy⊕ Lg, where⊕ denotes Kronecker sum.We
can further formalize the Cartesian product graph Laplacian regular-
ization as:

Lreg =
1
2
vecðT̂ ÞTLcvecðT̂ Þ= 1

2
vecðT̂ ÞT ðLxy � Lg ÞvecðT̂ Þ, ð8Þ

where vec �ð Þ denotes the function reshaping the tensor into a vector.
However, it is not computationally feasible to obtain the Cartesian
product graph Laplacian using Lc = Lxy⊕ Lg. Alternatively, we need to
approximate T̂ with ~T = f 0NTDðT ;WÞ= ½½w; ~Ag ,~Ay,~Ax ��, and then rewrite
the Cartesian product graph Laplacian regularization as:

Lreg =
1
2
vecð½½w; ~Ag ,~Ay,~Ax ��Þ

T
Lxy � Lg

� �
vecð½½w; ~Ag ,~Ay,~Ax ��Þ

=
1
2
1T~r ðwwT ⊛ ~A

T
g
~Ag ⊛ ~A

T
x
~Ax ⊛ ~A

T
y
~AyÞ1~r

+
1
2
1T~r ðwwT ⊛ ~A

T
g
~Ag ⊛ ðð~Ax � ~AyÞ

T
Lxyð~Ax � ~AyÞÞÞ1~r

+
1
2
1T~r ðwwT ⊛ ~A

T
gLg

~Ag ⊛ ~A
T
x
~Ax ⊛ ~A

T
y
~AyÞ1~r ,

ð9Þ

where vecð½½w; ~Ag ,~Ay,~Ax ��Þ= ðwT � ~Ax � ~Ay � ~Ag Þ1T , ⊙ denotes Khatri-
Rao product and ⊛ denotes Hadamard product. The detailed
derivation of the regularization term and the gradient are shown in
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the supplementary document section S1. Note that we have used
similar product graphs in our previous studies in refs. 12,44,45 and
have observed very positive results of incorporating the spatial and/or
gene functional relations in the models.

Optimization of GNTD. With the reconstruction and regularization
loss defined, the loss of GNTD can be rephrased as:

L=Lrecon + λLreg

=
1
2

M⊛ T � f NTD T ;Wð Þ� ��� ��2
F

+
λ
2
vecðf 0NTD T ;Wð ÞÞTLcvecðf 0NTD T ;Wð ÞÞ,

ð10Þ

where λ is the hyperparameter to weight the Cartesian product graph
Laplacian regularization for adjusting the impact of prior knowledge in
spatial neighbor and PPI graph leveraged in the imputation. The loss
function L can be further minimized by the neural network. We used
Adam optimizer in PyTorch with an initial learning rate of 0.05 and
trained the model with 90% non-zero entries in T , monitored MSE of
remaining 10% non-zero entries for early stopping with 50 epoch
patience after first 1, 000 epochs. The detailed derivations of the
gradient descent steps are provided in the supplementary document
section S1.

Imputation evaluation by cross-validation
We performed both spot- and gene-wise 10-fold cross-validation to
evaluate the performance of imputing spatial gene expression on all
Visium and Stereo-seq datasets. In the spot-wise cross-validation, all
the capturing spots were randomly split into 10 folds, and then the
non-zero entries in the capturing spots from 9 folds were used for
training and validation while the non-zero entries in the capturing
spots from the remaining 1 fold were used for testing. In the gene-wise
cross-validation, all the non-zeros entries from each expressed gene
were randomly split into 10 folds, and then the non-zero entries pooled
in 9 folds were used for training and validation while the non-zero
entries pooled in the rest 1 fold were used for testing. Here, since the
zeros in the spatial transcriptomics data represent both true biological
zeros (not expressed) and a large number of dropouts (not captured),
this evaluation focuses on the non-zero entries only for amore precise
measure of the prediction performance.

Spot and gene clustering
We applied mclust46 to identify spatial domains with spot clustering.
mclust is a Gaussian mixture model and has been used for clustering
spots in spatial transcriptomics data analysis24,47. PCA was performed
on the raw data or the imputed data with either highly variable genes
or all genes before spot clustering. We empirically selected the top 15
PCs for spot clustering on all the Visium and Stereo-seq datasets. In all
the imputed datasets, 15 components capture more than 85% of the
variances and are in the range of the numbers achieving the best
overall clustering performance for all the methods. The selection of 15
PCs is also consistent with the number of PCs used for clustering the
raw data in the previous work on the same Visium datasets24,47. We
attempted to increase the number of PCs to capturemore variance but
the performance of spot clustering with mclust was notably worse on
most datasets.

To cluster all the genes, we used the commonly used k-means
(k = 100) to discover co-expressed gene clusters. Similarly, we also
performedPCAon the rawdata or the imputeddata and found that the
top 50 PCs generally explain more than 80% variance in both the Vis-
ium and Stereo-seq datasets, and provide consistent good clustering
results in the datasets. We also varied the number of PCs in gene
clustering with k-means but found that fewer PCs resulted in many

singleton clusters while more PCs did not provide substantial
improvement.

Evaluation metrics
To compare the imputation performance for spatial transcriptome
reconstruction in both Visium and Stereo-seq data, we applied four
widely used metrics including, root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE), and
coefficient of determination R2 in both spot-wise and gene-wise cross-
validations. These metrics are defined as follows,

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i= 1

ðti � t̂iÞ
2

vuut

MAE=
1
n

Xn
i = 1

ti � t̂i
�� ��

MAPE=
1
n

Xn
i = 1

ti � t̂i
ti

�����

�����

R2 = 1�
Pn

i = 1 ðti � t̂iÞ
2

Pn
i = 1 ðti � 1

n

Pn
i = 1 tiÞ

2 ,

ð11Þ

where t 2 Rn denotes the expression of each spot (n = ng) or gene
(n = nx × ny) in the original raw spatial transcriptomics data T while
t̂ 2 Rn denotes the expressionof each spot (n = ng) or gene (n = nx × ny)
from the imputed spatial transcriptomics data T̂ after combining the
predictions of each fold in the cross-validation.

To evaluate the imputation performance for spot clustering in
both Visium and Stereo-seq data, we mainly used the adjusted rand
index (ARI) to quantify the spot clustering accuracy between spatial
domains fD1,:::,Di,:::,Dnc

g identified by the imputation and tissue
regions fR1,:::,Rj,:::,Rnc

g defined in the ground truth. ARI is defined as
follows,

ARI =

P
ij

nij

2

� �
� P

i
ai
2

� �P
i

ai
2

� �� �
= n

2

� �
1
2

P
i 0:0ptai2
� �

+
P

i
ai
2

� �� �� P
i

ai
2

� �P
i

ai
2

� �� �
= n

2

� � , ð12Þ

where nij denotes the number of common spots between spatial
domainDi and tissue regionRj, thenai =∑jnij indicates the total number
of common spots betweenDi and allRjwhilebj =∑inij indicates the total
number of common spots between Rj and all Di, and n is the total
number of spots overlapped with entire tissue.

To measure the imputation performance for gene clustering on
both Visium and Stereo-seq data, we computed the log of the q-value
of the most significant enriched GO term for each gene cluster and
then averaged these minimal q-values across all gene clusters to
evaluate the overall enrichment significance. We performed enrich-
ment analysis over 10,185 GO terms from the C5 collection in the
Molecular Signatures Database (MSigDB, v2023.1), which includes 7751
biological process (BP) terms, 1009 cellular component (CC) terms,
and 1772 molecular function terms. We calculated q-values by adjust-
ing enrichment p-values by false discovery control (FDR) with the
Benjamini-Hochberg (BH) procedure.

Compared methods
We compared GNTD with six methods by their performance of
imputation and several downstream analyses on the Visium and
Stereo-seq datasets. These methods include three tensor-based mod-
els FIST12 (v1.0.0), CoSTCo20 (v1.0.0) and DTD21,22 (v0.1.0), and three
Autoencoder-based models SEDR23 (v1.0), STAGATE24 (v1.0.0) and
GraphST25 (v1.0.0).

FIST12 is a graph-regularized linear tensor decomposition model
designed for spatial transcriptomics data imputation, which explicitly
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leverages both spot spatial relations and gene functional relations to
regularize non-negative CP decomposition. In all comparisons, we
optimized FIST by using the multiplicative updating rule, then we
trained the model with all non-zero entries and halted the training
when either the factors residues smaller than 1e − 4or the total number
of epochs reaching 500. Note that we only reported the results from
FIST with hyper-parameter weight on the Cartesian product graph
equal to 0.01 since it generally performed the best in the imputation
compared with other values as reported previously12.

CoSTCo20 is a nonlinear tensor decompositionmethod for sparse
tensor completion. CoSTco learns a nonlinear function among tensor
factors with a convolutional neural network (CNN), and shares the
parameters in the CNN to preserve the low-rank structure for tensor
factors to avoid overfitting on sparse tensors. To apply CoSTCo in the
comparisons, we used CoSTCo with the same network architecture as
the original paper and trained the model with Adam for 50 epochs,
where we set the learning rate to 0.01 and batch size to 128. We ran-
domly selected 90% and 10% non-zero entries for training and valida-
tion and stopped the training when MSE on validation not reducing
after 10 epochs.

DTD21,22 is a nonlinear tensor decomposition method for gen-
eral tensor completion based on multilayer perceptron (MLP) to
model nonlinear interaction among tensor factors. We imple-
mented DTDwith different numbers ofMLP layers and trained these
models with Adam for 50 epochs, where we fixed the number of
hidden units as rank in all MLP layers and set the learning rate to
0.01 and batch size to 128. We split non-zero entries into 90% and
10% for training and validation as well and performed early-
stopping over MSE on validation after 10 epochs. Note that we
only reported the results from DTD with 2 MLP layers since it gen-
erally shows the best performance in imputation compared with
other DTD variants with more layers.

SEDR23 was proposed to mainly extract low-dimensional latent
representations of gene expression embedded with spatial informa-
tion from spatial transcriptomics data. SEDR employs variational
autoencoder (VAE) and variational graph autoencoder (VGAE) to
reconstruct gene expression and spatial graph jointly, and could
potentially impute the missing expression during the reconstruction.
In all comparisons, we followed the original study and built the spatial
graph by choosing 10 nearest neighbors for each spot based on its
spatial coordinates, and used the same network architecture reported
in the original study but tuned the number of hidden units in VAE and
VGAE by monitoring the MSE on the validation set.

STAGATE24 learns a low-dimensional latent representationof gene
expression encoding spatial information in spatial transcriptomics
data via graph attention autoencoder (GAT), where the spatial graph
and cell type-aware graph for STAGATE was also constructed using
spot neighborhood and co-expression information. In all the com-
parisons, we adopted the network architecture and optimized the
number of hiddenunits in GATby examining theMSEon the validation
set. In terms of weight on the cell type-aware graph in attention, we
followed the STAGATE tutorial to disable the cell type-aware graph for
all 12 DLPFC Visium spatial transcriptomics, otherwise, we set the
weight on the cell type-aware graph to 0.5.

GraphST25 employs graph autoencoder (GAE) with contrastive
learning to further accentuate low-dimensional latent representation
under local spatial context, where the spatial graph was defined by
three nearest neighbors graph based on spatial coordinates. In all the
comparisons, we preserved the network architecture from the original
study and selected the number of hidden units in GAT by minimizing
the MSE on the validation set.

It is very important to note that the three AE-based models,
STAGATE, SEDR, and GraphST are trained with all the entries in their
loss function. We found that this setting generally works well in all the
experiments except for the imputation evaluation focusing only on the

non-zeros entries. Thus, for a complete comparison, we trained all
three models with both all entries or non-zero entries settings and
reported better results in all the comparisons.

Implementation, running environment, and running time
GNTD is implemented in Python 3.8.12, which requires Numpy 1.21.5,
Scipy 1.10.1, Pandas 1.2.3, Scikit-learn 1.0.2, Pytorch 1.10.2, Tensorly
0.6.0, Anndata 0.8.0 and Scanpy 1.9.1. The experiments were con-
ducted on a cluster equipped with AMDMilan 7763 64-core processor,
128GB RAM, and NVIDIA A100 Tensor Core GPU. In this environment,
GNTD requires ~15 min of wall time on the Visium data with around 5k
spots and 20k genes and roughly 40 minutes of wall time on the
Stereo-seqdatawith around 50k spots and 10k genes.GNTDconsumes
around 4GB and 15GB of GPU memory, respectively when running on
the Visium data and the Stereo-seq data.

Statistics and reproducibility
We performed standard 10-fold cross-validation to evaluate the
imputationperformance inboth spot-wise andgene-wise experiments.
All the spots with sufficient gene expressions (minimal 1,438 spots
among all the datasets as shown in Supplementary Table S1) are ran-
domly split into 10 folds and the spots with few or no expressions are
excluded in the spot-wise experiment. Non-zero entries from all the
expressed genes (minimal 9,557 genes among all the datasets as shown
in Supplementary Table S1) are split into 10 folds by using a stratified
strategy and the genes that are expressed at less than 10 spots are
excluded in the gene-wise experiment.

We applied the Python package Scanpy (v1.9.1) to identify differ-
entially expressed genes among spatial regions. The P-values in the
differential expression analysis were all calculated using the Wilcoxon
rank-sum test. k-means function from the Python package scikit-learn
(v1.1.3) was used to detect gene clusters. R package clusterProfiler
(v3.12.0) was used to perform the enrichment analysis of the differ-
entially expressed genes and the gene clusters. The P-values in the
enrichment analysis were all calculated using the one-sided hyper-
geometric test. All the spots and expressed genes in the imputation
experiments were retained and no spots or genes were excluded for all
the downstream analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed in this paper are available in raw-form from their
original studies. Specifically, ten Visium spatial transcriptomics data-
sets for five mouse brain tissues, onemouse kidney tissue, two human
breast cancer tissues, one human heart tissue, and one human lymph
node tissue are collected from the 10x Genomics website https://
support.10xgenomics.com/spatial-gene-expression/datasets/, where
the manual annotation on the human breast cancer section 1 is
accessible at https://github.com/JinmiaoChenLab/SEDR_analyses/tree/
master/data/BRCA1. Twelve Visium spatial transcriptomics datasets
for humandorsolateral prefrontal cortex and theirmanual annotations
are obtained from the LIBD project http://spatial.libd.org/spatialLIBD/.
Three Stereo-seq spatial transcriptomics datasets for onemouse brain
and twomouseolfactorybulb tissues and theirmanual annotations are
available at https://db.cngb.org/stomics/mosta/download/. Source
data are provided with this paper.

Code availability
GNTD is implemented in Python and the code is publicly available
through GitHub at https://github.com/kuanglab/GNTD. The code can
also be accessed through Zenodo at https://doi.org/10.5281/zenodo.
1006326348.
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