
Article https://doi.org/10.1038/s41467-023-44012-5

Efficient and robust estimation of
many-qubit Hamiltonians

Daniel Stilck França 1,2 , Liubov A. Markovich3,4, V. V. Dobrovitski3,
Albert H. Werner 1,5 & Johannes Borregaard3,6

Characterizing the interactions and dynamics of quantummechanical systems
is an essential task in developing quantum technologies. We propose an effi-
cient protocol based on the estimation of the time-derivatives of few qubit
observables using polynomial interpolation for characterizing the underlying
Hamiltonian dynamics and Markovian noise of a multi-qubit device. For finite
range dynamics, our protocol exponentially relaxes the necessary time-
resolution of the measurements and quadratically reduces the overall sample
complexity compared to previous approaches. Furthermore, we show that our
protocol can characterize the dynamics of systemswith algebraically decaying
interactions. The implementation of the protocol requires only the prepara-
tion of product states and single-qubit measurements. Furthermore, we
improve a shadow tomography method for quantum channels that is of
independent interest and discuss the robustness of the protocol to various
errors. This protocol can be used to parallelize the learning of theHamiltonian,
rendering it applicable for the characterization of both current and future
quantum devices.

Large quantum devices consisting of tens to hundreds of qubits have
been realized across various hardware architectures1–4 representing a
significant step towards the realization of quantum computers and
simulators with the potential to solve outstanding problems intract-
able for classical computers5,6. However, continued progress towards
this goal requires careful characterization of the underlying Hamilto-
nians and dissipative dynamics of the hardware to mitigate errors and
engineer the desired dynamics. The exponential growth of the
dimension of the state space of a quantum device with the number of
qubits renders this an outstanding challenge broadly referred to as the
Hamiltonian learning problem7–35.

To tackle this challenge, previous approaches make strong
assumptions such as the existence of a trusted quantum simulator
capable of simulating the unknownHamiltonian20,21 or the capability of
preparing particular states of the Hamiltonian such as steady states

and Gibbs states23,25,26,29,36,37, whichmay be difficult for realistic devices
subject to various decoherence mechanisms.

Alternatively, several works30–32 are built on the observation that a
Master equation describes the evolution of any system governed by
Markoviandynamics. Through this, one obtains a simple linear relation
between time derivatives of expectation values and the parameters of
theHamiltonian, jumpoperators and decay rates (jointly referred to as
the parameters of the Lindbladian L) governing the system. Further-
more, for finite range interactions, these approaches can estimate the
parameters of the Lindbladian to a given precision from a number of
samples that is independent of the system’s size30–32.

A significant drawback of these approaches is that the time deri-
vatives are estimated using finite difference methods. Obtaining a
good precision thus requires high time resolution, which is experi-
mentally challenging given the finite operation time of gates and

Received: 19 November 2022

Accepted: 24 November 2023

Check for updates

1QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark. 2Univ Lyon, ENS Lyon, UCBL,
CNRS, Inria, LIP, F-69342, LyonCedex 07, France. 3QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CJ, TheNetherlands.
4Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, Leiden 2300 RA, The Netherlands. 5NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej
17, 2100 Copenhagen, Denmark. 6Department of Physics, Harvard University, Cambridge, MA 02138, USA. e-mail: daniel.stilck_franca@ens-lyon.fr

Nature Communications |          (2024) 15:311 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://orcid.org/0000-0003-0134-5257
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44012-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44012-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44012-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44012-5&domain=pdf
mailto:daniel.stilck_franca@ens-lyon.fr


measurements. To estimate a Lindbladian parameter up to an additive
error ϵ, the system has to be probed at times OðϵÞ apart and expecta-
tion values of observables have to be estimated up to a precision of
Oðϵ2Þ, which translates to an overall Oðϵ�4Þ sample complexity to
estimate each parameter.

In this article, we propose a protocol that alleviates these
daunting experimental requirements. Our protocol requires only a
time resolution of Oðpolylogðϵ�1ÞÞ representing an exponential
improvement compared to previous protocols and gives an overall
sample complexity to recover all parameters of a k-local n qubit
Lindbladian up to precision ϵ of Oð9kϵ�2polylogðn,ϵ�1ÞÞ. We obtain
this by estimating time derivatives using multiple temporal sam-
pling points and robust polynomial interpolation38. Furthermore,
we show how to use shadow process tomography methods to esti-
mate multiple parameters in parallel. In particular, we improve the
results of refs. 39, 40 in extending the framework of classical sha-
dows to processes and Pauli matrices with an alternative proof, a
result that is of independent interest. We also extend our analysis to
long-range (algebraically decaying) interactions in the systems,
obtaining the first results for such systems to the best of our
knowledge. The necessary operations for our protocol are mea-
surements in the Pauli bases on time-evolved product states con-
sisting of Pauli eigenstates. These minimal requirements make our
protocol feasible for characterization of both current and future
quantum devices.

Results
In order to use our protocol for an efficient characterization of a
quantum device, two assumptions should be fulfilled:
1. The quantum device implements an (unknown) Markovian

quantum evolution on n qubits described by a time-independent
Lindbladian, L.

2. We assume knowledge of the general structure of the interaction
graph of the device i.e., which qubits are coupled to each other.
Importantly, no assumptions are made regarding the couplings’
exact form.

The first assumption ensures that the evolution of a general
observable, O(t) is described by the Master equation, i.e.,
d
dt OðtÞ=LðOðtÞÞ: We note that the Lindbladian captures both the
Hamiltonian evolution and the dissipative dynamics of the device.

The second assumption bounds the size of the estimation task. It
corresponds to making some assumptions about the locality of the
generator, as evolutions without some locality assumptions have
exponentially many parameters. However, having prior knowledge
that, e.g., nearest neighbor couplings dominate in the device, makes
the estimation task tractable. For now, we will assume that we know
which qubits interact. Later, we will show that a bound on the support
of each interaction and some technical assumptions on the evolution
suffice to also learn the interaction graph from data.

Using the knowledge of the interaction graph, one can expand the
Lindbladian in anoperator basis, {Pi} constructed fromtensor products
of single-qubit Pauli matrices and the identity41:

LðOÞ=
X

ai½Pi,ρ�

+
X

Di,j Py
i OPj �

1
2
fPy

j Pi,Og
� � ð1Þ

Such an expansion is always possible since this basis amounts to a
Hilbert-Schmidt orthogonal set of Hermitian operators spanning the
entire vector space. Note that the coefficient matrix Di,j needs to be
positive for it to form a valid Lindbladian. Estimating the set of
expansion coefficients {ai,Di,j} gives an estimation of L and thus a full
characterization of the system.

It is well known that theMaster equation for the timederivative of
the expectation value of a local observable O at time t =0 for a given
initial state ρ of the system gives us a linear equation for the expansion
coefficients30–32. We use this to estimate the expansion coefficients
going through three stages of classical pre-processing, quantum pro-
cessing, and classical post-processing (see Fig. 1).

Classical pre-processing
After expanding L in an operator basis, the following steps are
performed.
1. Find a suitable complete set, {(ρj,Oi)} ofmulti-qubitproduct states

(ρj) and observables (Oi) for which the Master equation involves
only a few selected expansion parameters of the Lindbladian for
each element of the set. The set is complete in the sense that all
expansion coefficients can be found by solving the Master
equations for all elements in the set. As we show below, such a
set can readily be found by considering initial states where only a
few qubits are initialized as different eigenstates of the Pauli
matriceswhile the remainingqubits are prepared in themaximally
mixed state I/2.

2. Calculate the expectation values appearing on the right-hand side
of theMaster equations d

d t
tr½ρjOiðtÞ�= tr½ρjLðOiÞ� for all elements

in the set {(ρj,Oi)} in terms of the expansion coefficients. Since the
initial states and the observables are products, this can be done
efficiently.

Quantum processing
In order to solve for the expansion coefficients, we also need the values
of the time-derivatives appearing on the left-hand side of the Master
equations, i.e., d

d t
tr½ρjOi�. These can be estimated using the quantum

device. The naive approach is the following:
1. The quantumdevice is prepared in initial state ρj and evolved for a

time tk 2 ft0,t1, . . . ,tmaxg after which the observable Oi is
measured.

2. The above procedure is repeated for each element in the set
{(ρj,Oi)} for all evolution times tk to obtain estimates of
hOiðtkÞij = tr½ρjðtkÞOi� where ρj(tk) is the state of the system having
evolved for time tk from the initial state ρj. We note that the single
qubit mixed states can be simulated by sampling eigenstates of
the Pauli matrices at random.For this naive approach, the sample
complexity increases linearly with the size of the set {(ρj,Oi)} since
the expectation values hOiðtkÞij are estimated sequentially. How-
ever,we alsopropose a variation of the classical shadowsprotocol
of ref. 42 for process tomography that can reduce this to a loga-
rithmic scaling. In essence,we canobtain estimates of all elements
in the set {(ρj,Oi)} in parallel. This is done by the following steps:

1. Every qubit is prepared in a random Pauli matrix eigenstate and
the system is evolved for a time tk after which each qubit is
measured in a random single-qubit Pauli basis.

2. The above procedure is repeatedOð3w1 +w2ϵ�2 logðKÞÞ times set by
the required precision, ϵ, of the estimates, the size, K, of the set
{(ρj,Oi)} and the weights (i.e., maximum number of sites differing
from identity) of ρj (w1) and Oi (w2). The whole procedure is
repeated for all times tk 2 ft0,t1, . . . ,tmaxg.From the measurement
statistics of the above procedure, it is possible to obtain accurate
estimates of all hOiðtkÞij and thus a parallel estimation is possible.
We refer to Sec. V and the Supplementary Note for more details
and proof of the method.
Whether to use the sequential approach or the parallel

approach depends on the number of qubits and the weight of the
states and observables in the set {(ρj,Oi)}. For few qubit processors,
the sequential protocol may require fewest samples, however for
local Hamiltonians on a lattice, the logarithmic scaling in system
size of the parallel method will quickly be advantageous for larger
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processors. Importantly, both methods only require the prepara-
tion of single qubit Pauli states and measurements in single-qubit
Pauli bases.

Classical post-processing

The final part of the characterization involves estimating d
d t

tr½ρjOiðtÞ�
from the experimentally obtained time traceof hOiðtkÞij and solving for

the expansion coefficients {ai}. This involves
1. Fit the time trace of hOiðtkÞij with a low-degree polynomial in the

time, pi,j(t) and estimate d
d t

tr½ρjOi� as d
d t

pi,jðtÞjt =0. This is done for
each element in the set {(ρj,Oi)}.

2. Solve the set of linear equations from the Master equations
d
d t

tr½ρjOi�= tr½ρjLðOiÞ�with respect to the expansion coefficients.

This is possible since d
d t

tr½ρjOi� has been estimated from the

polynomial fits and all expectation values appearing in tr½ρjLðOiÞ�

have been calculated leaving the expansion coefficients as the
only unknown parameters.

Following the steps above, a complete characterization of the
underlying Hamiltonian and dissipative dynamics of the quantum
device as given by the Lindbladian is obtained. The two key steps of the
protocol are the choice of the set {(ρj,Oi)} and the polynomial inter-
polation used to obtain estimates of the time derivatives. Below, we
outline the details of both steps and provide rigorous guarantees on
theprecisionof theprotocol. Importantly,we show that Lieb-Robinson
bounds on the spread of correlations in the system can be used to
ensure robust polynomial fitting of the time traces of expectation
values allowing for an exponential relaxation of the temporal resolu-
tion compared to finite difference methods rendering the protocol
feasible for near-term quantum devices.

Choosing the set of initial states and observables. The first step in
the classical pre-processing is to expand L in an operator basis

Fig. 1 | Sketch of the proposed protocol to estimate an unknown Lindbladian,
L, of a multi-qubit device. In the first step of classical pre-processing, the inter-
action graph between qubits is identified from the physical connectivity of the
device. Then the unknown Lindbladian is written in a general form using an
operator basis of Pauli strings, {Pi} and a suitable set of initial states and obser-
vables, {(ρj,Oi)} is chosen. In the second step of quantum processing, a time trace

(expectation value) of eachelement of the set is obtained from thepreparation and
evolution of single qubit Pauli eigenstates on the quantum device followed by
measurements in single qubit Pauli basis. In the last step of classical post-proces-
sing, each time trace is fitted to a low-degree polynomial to estimate the derivative
of the observable. From these, an estimate of the Lindbladian, Lest , is obtained
from the Master equation.
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constructed from tensor products of single-qubit Pauli matrices and
the identity. The right-hand side (rhs) of the Master equation
d
d t

tr½ρjOiðtÞ�= tr½ρjLðOiÞ� can be expanded as a sum of single Pauli
matrices and their products. Our goal is to isolate the unknown
expansion coefficients. To this end, we consider an initial state of the
form

ρði,jÞ
k,l =

I + σðiÞ
k

� �
2 � I + σðjÞ

l

� �
2 � ρn�2, ð2Þ

where k, l = x, y, z. Thus, the i’th and j’th qubit are prepared in eigen-
states of the Pauli matrices σk and σl while the state of the remaining
n − 2 qubits, ρn−2, is assumed to be the maximally mixed state.

For a state of the form in Eq. (2) the rhs of theMaster equation (see
above) can be simplified greatly depending on the choice of the
observableO. This is due to the properties of the Paulimatrices namely
that they have vanishing trace and that

σkσl = δkl I + iεklpσp, ð3Þ

where δkl is the Kroenecker delta function and εklp is the Levi-Civita
symbol. As we show explicitly in the Supplementary Note, if a single
qubit Pauli observable, O= σðiÞ

l , is chosen, then only the single qubit
terms of the rhs of the Master equation involving the i’th qubit will
have non-vanishing trace and, using the relation in Eq. (3), the different
single qubit Pauli expansion coefficients (the coefficients of terms in
the expansion that only involves single qubit Pauli matrices) can be
isolated.

After isolating the single qubit expansion coefficients, the coeffi-

cients related to two-qubit Pauli terms (σðiÞ
i � σð jÞ

j ) can be isolated by

choosing observables of the form O= σðiÞ
i � σð jÞ

j in a similar manner.

This procedure can be iterated to isolate higher order expansion
coefficients by considering observables involving more and and more
qubits.

In Supplementary Note, we provide a detailed derivation of how
all expansion parameters can be isolated for a general Hamiltonian
with terms coupling between two and k qubits and arbitrary single
qubit dissipation terms. We note that already for two qubit dissipation
terms, deriving linear combinations of initial states and expectation
values that allow us to isolate different parameters is quite cumber-
some and we do not do this explicitly. However, from a numerical
point of view, this is a trivial task. Indeed, as remarkedbefore, eachpair
of Pauli strings gives us access to a linear equation for the different
evolution parameters.

After collecting enough equations to ensure that the linear system
is invertible, the precision with which we need to estimate each
expectation value to ensure a reliable estimation of the parameters is
controlled by the condition number of the matrix describing the sys-
tem of linear equations. As both estimating the condition number and
solving the linear system can be done efficiently, we conclude that
estimating dissipative terms acting on a constant number of qubits
does not pose a significant challenge from a numerical perspective.

Robust polynomial interpolation. As described above, a key step in
our learning algorithm is to obtain information about the time-
derivatives of observables at t =0. For this, we rely on robust poly-
nomial interpolation. Accordingly, based on expectation values
hOiðtkÞij for a set of times tkwewant to extract a polynomial pi,j(t) such

that we can estimate d
d t

tr½ρjOi� as d
d t

pi,jðtÞjt =0. For this approach to

work, we have to be able to control the degree of the polynomial pi,j(t)
in order to give an upper bound on the number of sampling points tk
for which we will have to determine hOiðtkÞij experimentally. In the

following, we briefly outline how such a guarantee on the degree of
pi,j(t) can be obtained and refer to the methods section for a more
detailed proof.

Our argument proceeds in two steps: establishing that local
expectation values are well approximated by low-degree polynomials
and then showing how to robustly extract the derivative of the poly-
nomial from this information. Before we give an overview of the ideas,
wewill also need to introduce some notation to deal with Lindbladians
acting on different parts of the system. We will denote by Λ the whole
systemof qubits and for some subset B⊂Λ of qubits, we denote byLB,
the generator truncated to those qubits.

Thefirst step of our proof is to establish that the expectation value
〈O(t)〉 of a local observable O that evolves under a Lindbladian LB

restricted to some sub-region B up to some time tmax, can indeed be
approximated up to error ε by a degree-d polynomial, where d
depends linearly on the size of B, tmax and logðε�1Þ.

For the second step of our argument, it remains to show under
which circumstances, we can restrict the evolution of the observable
O, thatwe identified in theprevious step, to a local generator. Themain
insight here is that forfinite range (or sufficiently quickly fastdecaying)
interactions, the dynamics of any local observable exhibits an effective
light cone quantified by a Lieb-Robinson bound (LRB)43–47. The LR-
bound, in turn, allows us to restrict the Lindbladian on the full system
to a generator coupling only systems in the vicinity of the support ofO,
where the size of this shielding region only grows linearly with tmax.

Bringing these two arguments together, we can first employ the
LR-bound to restrict the dynamics to a sub-region around the support
of the observable, O, and then approximate the corresponding evo-
lution on that finite region up to error ε by a polynomial of degree
O polyðtmax, logðϵ�1ÞÞ� �

. Now, making use of the techniques from
ref. 38, we can extract the first derivative of this polynomial from
measurements at O polylogðϵ�1Þ� �

different times tk. Indeed, in that
work, the authors show how to perform polynomial interpolation
reliably only given approximations of the values and even under the
presence of outliers.

Robustness of the protocol to experimental errors
In the previous sections, we assumed that we can prepare Pauli
eigenstates andmeasure in Pauli eigenbases and didnot consider state
preparation and measurement (SPAM) errors. Furthermore, we
assumed that the dynamics is described exactly be a generator that
is local. Such an idealized scenario rarely comes up in practice and it
is important to develop protocols that also work when these condi-
tions are only met approximately. Here, we will provide the main
arguments showing that our protocol is indeed robust to such
imperfections. We refer to Supplementary Note for the more detailed
technical derivations and statements.

First, we consider the setting where the SPAM errors are well-
characterized and independent of the basis we prepare and measure.
In this case, it is possible to adapt the protocol to incorporate this
information without changing its performance significantly. For
instance, if the SPAM errors are described by local depolarizing noise
with depolarizing probability p, we can still recover 2− local Hamilto-
nians with single qubit noise with a Oðð1� pÞ�4Þ sampling overhead
when compared to the noiseless case. In particular, this only depends
on the local noise rate. We then show that this is the case more gen-
erally: if the SPAM errors are not characterized well or are highly
dependent on the particular state we are preparing or the basis we are
measuring, then once again the effect of SPAM errors will be inde-
pendent of the system’s size and only depend on the precisionwewish
to obtain.

Besides SPAM errors, our protocol is also robust to perturbations
of the generators, even nonlocal ones.More precisely, assume that the
true generator is of the form L=L0 +Δ, where L is a Lindbladian that
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satisfies a LR-bound and Δ is an arbitrary, potentially global pertur-
bation. A naive bound would imply that for short times, the expecta-
tion value of this perturbed evolution could be up to t∥Δ∥∞→∞ away
from the unperturbed value, where k Δk1!1 = sup

kXk1 ≤ 1
k ΔðX Þk1.

However, we show that only the effect of Δ on few-qubit observables
contributes to the bound. A precise statement is given in Thm. 9.1. of
the Supplementary Note 9. As an illustrative example, assume thatΔ is
a small all-to-all coupling between all pairs of qubits of order τ, e.g.,

ΔðX Þ= τ Pn
i,j = 1,i ≠ j

i½σðiÞ
x σðjÞ

x ,X �: ð4Þ

Clearly, such an evolution does not satisfy a LR-bound and
k Δk1!1 =Oðτn2Þ. However, we show that under such a perturbation,
the expectation value is only perturbed byOðtτnÞ, which corresponds
to the local effect of this global perturbation. To show this, we once
again resort to LR bounds and the fact that we only need to measure
local observables. Taken together, these results show thatour protocol
is robust to both SPAM noise and deviations from the assumptions we
impose on the generators.

Learning the structure of the interactions. So far, we have also
assumed that we have knowledge of the interaction graph. However,
an astute reader might have remarked that we do not require this
explicit knowledge for our protocol to work: indeed, we just use it to
decide which parameters to estimate and need to restrict the possible
interaction graphs to have an LR bound for the evolution. Thus, a
brute-force approach to learning the interaction structure also follows
from our results if we wish to estimate all k-body couplings of strength
at least η: we just estimate all k body-couplings up to a precision
η/4 and discard all of those that we see are smaller than 3

4η. This
can be done with a number of samples that scales
like Oð9kη�2polylogðη�1Þ logðnÞÞ.

Numerical examples
To investigate the performance of our protocol for experimentally
relevant parameters, we performed numerical simulations of a multi-
qubit superconducting device. We consider a system with tunable
couplers similar to the Google Sycamore chip1. This design relies on a
cancellation of the next-next-nearest coupling between two qubits
through the direct coupling with a coupler48,49. We consider a generic
system consisting of a 2D grid of qubits with exchange coupling
between nearest neighbors. The dynamics are described through a
Lindblad equation with the effective two-qubit Hamiltonian for each
neighboring qubit pair (i, j)48,49

Hij =
P
k = i,j

1
2
~ωkσ

ðkÞ
z +

gigj

Δij
+ gij

h i
ðσðiÞ

+ σ
ðjÞ
� + σðiÞ

� σðjÞ
+ Þ ð5Þ

for i ≠ j = 1,…, n and a dissipation term acting on the i’th qubit and
having jump operators σðiÞ

� , σðiÞ
+ (generalized amplitude damping) and

σðkÞ
z (pure dephasing). Here ~ωk =ωk +

g2
k

Δk
is the Lamb-shifted qubit

frequency, gi is the coupling between the i’th qubit and the coupler,
and gij is the direct two-qubit coupling. We have assumed that
Δk =ωk −ωc < 0 where ωc (ωk) is the frequency of the coupler (k’th
qubit) and have defined 1/Δij = (1/Δi + 1/Δj)/2. By adjusting the frequen-
cies of the coupler and the qubits, the effective qubit-qubit interaction
can be canceled up to experimental precision. Typical qubit
frequencies are around 5 − 6 GHz1), while Δk ~−1 GHz, gij ~ 10−20MHz,
and gj ~ 100MHz48,49. In our simulation, we assume that all qubit
frequencies and couplings havebeen characterizedup to aprecisionof
100 kHz using standard characterization techniques1 and conse-
quently, that all couplers have been tuned off with the same precision
i.e.,

gigj

Δij
+ gij ∼ 100 kHz. Considering a layout of 16 qubits (see below for

the interaction graph), we randomly sample all qubit frequencies and
qubit-qubit interactions according to Gaussian distributions with zero
mean and standard deviation of 100 kHz.

In addition to the Hamiltonian evolution, we also include dis-
sipative dynamics in our numerical simulation. We include quasi-static
random frequency shifts of the qubits leading to effective dephasing
with a characteristic timescale of T *

2 ∼ 150μs as well as pure dephasing
resulting in a transverse relaxation on a timescale T2 ~ 60μs repre-
senting state of the art coherence times1,49. Finally, we include long-
itudinal relaxation of the qubits through an amplitude damping
channel on the time scale of T1 ~ 60μs. We refer to Supplementary
Note 2 for a more detailed discussion and Table III for the sampled
parameters of our simulation.

In Fig. 2, we plot the average estimation error as a function of the
temporal resolution set by the value of the initial time step, t0. For this
plot, we only included the Hamiltonian evolution in the numerical
simulation together with quasi-static random frequency shifts of the
qubits. This was to lower the run time of the simulation allowing us to
investigate the performance for a broad range of initial times. We
assumed the total run time of the experiment was fixed such that t0 × S
is constant, where S is the number of samples. From the figure, we
clearly see the improved scaling of our protocol of the estimationerror
with the time-step size compared to using a finite difference
method30–32. Besides already performing better at the time resolution
for moderate values of the initial time, we see that after a threshold
initial time around 10−0.7, the performance is not limited by the initial
time, only the shot noise. In contrast, the finite differencemethod still
requires smaller initial times to improve on the error with the same
shot noise.

We also investigated the robustnessof ourmethodwith respect to
shot-noise for a fixed time resolution. For these simulations, we again
only included the Hamiltonian evolution together with quasi-static
random frequency shifts of the qubits to have a practical run time of
the simulation. From Fig. 3, we see that for a fixed time resolution of
30 ns our protocol results in an average estimation error that improves

Fig. 2 | The median quality of recovery of one 2-qubit coupling using inter-
polation methods and those based on numerical derivatives30–32 as a function
of the initial time.We assumed that the total time of the experiment is fixed. That
is,we let the initial time times the total numberof samples for each time step tobea
constant (107 for this plot). We used the expectation value of 40 equally spaced
times which had the same distance between each other as the initial time. For each
initial time, we simulated 1000 instances of the recovery protocol, always adding
shot noisewith the same standarddeviation to thedata. Thedots correspond to the
median quality of recovery, whereas the lower and upper end correspond to the 25
and 75 percentile. We ran the simulation on a system with 16 qubits.

Article https://doi.org/10.1038/s41467-023-44012-5

Nature Communications |          (2024) 15:311 5



linearly with the shot-noise down to an error below 10−4. This is in
contrast to finite difference methods, where the estimation error pla-
teaus around 10−3 since it becomes limited by the time resolution. This
is a clear effect of the exponential improvement of our protocol w.r.t.
the time resolution compared to finite difference methods.

Finally, we performed a numerical simulation that included
the pure dephasing and amplitude damping noise as described
above and estimated the σXσX couplings between the qubits. As
shown in Fig. 4, we obtain reliable estimates of all 22 couplings
demonstrating how our method allows the estimation of specific
terms in the Hamiltonian despite the dynamics being governed by
the full (dissipative) Lindbladian. For simplicity, we did not
explicitly estimate the single qubit Hamiltonian parameters and
the Lindbladian decay rates.

For all estimations above, we fitted to degrees 1−7 and picked the
one with the smallest average error on the sampled points. In Sup-
plementary Note 6, we give explicit rigorous bounds on how to pick
the parameters like the degree for a given desired precision, but we
believe that a heuristic approach like the one pursued in the numerics
performs well in practice: as long as the interpolating polynomial
approximates well the observed points and new points we did not fit
to, the degree should be adequate. We note that, although the robust
interpolation methods of ref. 38, in principle, require random times,
we performed numerical experiments with deterministic times on
systems with 16 qubits.

Discussion
In conclusion, we have proposed a Hamiltonian learning protocol
based on robust polynomial interpolation that has rigorous
guarantees on the estimation error. Our protocol offers an
exponential reduction in the required temporal resolution of the
measurements compared to previous methods and a quadratic

reduction in the overall sampling complexity for finite-range
interactions. Our protocol only requires the preparation of single
qubit states and single qubit measurements in the Pauli bases and
is robust to various imperfections such as SPAM errors and
Hamiltonian perturbations. This makes it suitable for the char-
acterization of both near-term and future quantum devices.

Furthermore, the recovery of multiple parameters can be highly
parallelized by resorting to a variation of classical shadows to quantum
channels we improve here.

Our method allows for the characterization of a general local
Markovian evolution consisting of a unitary Hamiltonian part and a
dissipative part. While we have only explicitly considered single-qubit
dissipation here, we believe that our protocol is also valid for general
multi-qubit dissipation as outlined above but leave the explicit analysis
of this to future work. We have also analyzed the performance of our
protocol for algebraically decaying interactions whichwe believe to be
the first results for Hamiltonian learning of such systems. The con-
vergence of our method can be ensured for interactions decaying
faster than the dimension of the system. We note, however, that
improved bounds on the locality of such systems might improve this
result in the future.

Methods
Here, we detail and formalize our results regarding the estimation
error guarantees of our protocol. In particular, we detail the use of
Lieb-Robinson bounds on the spread of correlations in the system to
bound the error. Furthermore, we outline the shadow tomography
method for the parallelization of the measurements.

Derivative estimation
Define f ðtÞ= tr etLðOÞρ� �

and LB to be the Lindbladian truncated to a
subregion B of the interaction graph. Our protocol consists of first
estimating f(ti) up to anerrorOðϵÞ for randomtimes t1,…, tm. The curve
of f(t) is then fitted to a low-degree polynomial p, and p0ð0Þ is taken as
an estimate for the derivative f 0ð0Þ= tr LðOÞρ½ �. Below we prove the
accuracy and robustness of this method. The first step is Theorem 1,
which establishes under what conditions f(t) is indeed well-
approximated by a low-degree polynomial.

Theorem 1. Let LΛ be a local Lindbladian on a D-dimensional lattice Λ.
Moreover, let tmax,ϵ>0 and OY be a 2-qubit observable, supported on
some regionY∈Λ, such that∥OY∥ ≤ 1, holds. Then there is a polynomial
p of degree

d =O polyðtmax, logðϵ�1ÞÞ� �
, ð6Þ

such that for all 0 ≤ t ≤ tmax:

tr etLΛ ðOY Þρ
� �� pðtÞ

�� ��≤ ϵ, ð7Þ

and p0ð0Þ= tr LΛðOY Þρ
� �

, holds.
The main technical tool required for the proof are LRB43–47, which

ascertain that the dynamics of local observables under a time evolu-
tion with a local Lindbladian have an effective lightcone. More pre-
cisely, we need that for regions Y⊂B we have

k ðetLB � etLΛ ÞðOY Þ k ≤

c1 expð�μdistðY ,ΛnfBgÞÞðevt � 1Þ, ð8Þ

to hold for constants c1, μ and v, where dist() is the distance in
the graph.

From the LRB we can show that the dynamics is well-
approximated by a low-degree polynomial. We leave the details of
the proof to Supplementary Note 3 and only discuss the main steps
here. The general idea of going from the LRB to the low-degree

Fig. 3 | Median quality of recovery of one 2-qubit coupling using interpolation
methods and those based on numerical derivatives30–32 as a function of the
standard deviationof the shot noise.The initial time for this estimate is 30ns and
herewe also generated 1000 instances of the noisewith a given standard deviation.
Theplot shows themedianquality of the recovery and the 25and75 percentiles.We
see that the quality of the recovery for the interpolation decays approximately
linearly with the shot noise, before plateauing at shot noise −6. For the numerical
derivative, we see two regimes: first a linear decay of the error until a shot of noise
of order 10−3. After that, the error plateaus and does not improve even with smaller
shot noise. This is because for numerical derivative methods, at this point the
dominant error source comes from the choice of initial time, whereas for inter-
polation it is at −6. Importantly, we see that interpolation consistently provides
estimates that are no worse than the numerical derivatives method.
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Fig. 4 | Error in the recovery of σXσX couplings of a quantum system with a
geometry similar to the Sycamore processor using numerical derivatives and
interpolation. Note that while we only plot the estimation of the Hamiltonian
couplings, the numerical simulation included the full Lindbladian including both
dephasing due to quasi-static random frequency shifts of the qubits, pure

dephasing and amplitude damping noise. The initial time for each coupling was
0.1μs in the simulation. Note that interpolation consistently outperforms numer-
ical derivatives, sometimes by several orders of magnitude. We chose the time
steps and the number of samples to compare both methods, as in Fig. 2.
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polynomial is to truncate the Taylor series of the evolution under LB

for B large enough and take that as the approximating polynomial. As
the derivatives of the evolution underLB only scale with the size of the
region B, this allows us to show that the Taylor series converges
quickly. To simplify the presentationwedid not give explicit numerical
constants in the bounds, but in Section A of the Supplementary Note 7
we explicitly determine the constants for the polynomial
approximation.

Now that we have concluded that the expectation value is well-
approximatedby a small degreepolynomial,we continue to show thatwe
can reliably extract the derivative from approximations of the expecta-
tion values for different t. This is formally stated in the following theorem.

Theorem 2. Let L be a Lindbladian on a D-dimensional regular lattice.
Suppose we can measure the expectation value of two-body Pauli
observables on Pauli eigenstates in the time interval ½t0,tmax� under L
for t0 as

t�1
0 =O polylogðϵ�1Þ� � ð9Þ

and tmax = 2 + t0. Then, measuring the expectation values at

m=O polylogðϵ�1Þ� � ð10Þ

random times up to precisionOðϵ=polylogðϵ�1ÞÞ, is sufficient to obtain
an estimate of the Lindbladian coefficients âi of ai satisfying

âi � ai

�� ��= ϵ: ð11Þ

This yields a total sample complexity of S=O ϵ�2polylogðϵ�1Þ� �
.

Importantly, Theorem 2 bypasses both requiring small initial
times and Oðϵ�4Þ sample complexities.

To go from Thm. 1 to Thm. 2 we first need to establish that we can
robustly infer an approximation of p from finite measurement data
subject to shot noise. Subsequently, we need to show that it will also
allow us to reliably estimate p0ð0Þ. Let us start with approximating p.

Robust polynomial interpolation
We will resort to the robust polynomial interpolation methods of38 to
show Thm. 2. We review their methods in more detail in Supplemen-
tary Note 6. In our setting, the randomly sampled points xi,i 2 1,m
correspond to different times 2 ½t0,tmax� and the yi 2 R to approx-
imations of the expectation value of the evolution at that time. Fur-
thermore, the yi satisfy the promise that there exists a polynomial p of
degree d and some σ >0 such, that

yi =pðxiÞ+wi, jwij≤ σ, ð12Þ

hold, for strictly more than half of the yi. The rest might be outliers. In
our setting, the magnitude of σ corresponds to the amount of shot
noise present in the estimates of the expectation values.

The authors of38 then show that by sampling m=Oðd logðdÞÞ
points from the Chebyshev measure on ½t0,tmax�, a combination of ℓ1
and ℓ∞ regression allows us to find a polynomial p̂ of degree d that
satisfies:

max
x2½t0,tmax �

jpðxÞ � p̂ðxÞj =OðσÞ: ð13Þ

Although the details of the ℓ1 and ℓ∞ interpolation are more
involved and described in the Supplementary Note 4, a rough simplifi-
cation of the procedure is the following. First, we find a polynomial p1 of
degree d that minimizes ∑i∣p1(xi)− yi∣. After finding p1 we compute the
polynomial p∞ that minimizes max

i
jp1ðxiÞ � ðyi � p1ðx1ÞÞj. We then

output p̂=p1 +p1 as our guess polynomial. Note that finding both p1

and p∞ can be cast as linear programs and thus can be solved
efficiently50.

By combining this result with Thm. 1, we robustly extract a poly-
nomial that approximates the curve t 7!tr etLðOY Þρ

� �
up to OðϵÞ for

t 2 ½t0,tmax�. Indeed, we only need to estimate the expectation value
f(ti) up to ϵ for enough ti and run the polynomial interpolation.

Note that Eq. (13) only allows us to conclude that p� p̂ is small.
However, we are ultimately interested in the curve’s derivative at t =0,
as the derivative contains information about the parameters of the
evolution. For arbitrary smooth functions, two functions being close
on an interval does not imply that their derivatives are close as well.
Fortunately, for polynomials the picture is simpler. By the Thm. 1 one
has to estimate thefirst derivative of a polynomial at t = 0but not of the
actual function. A classical result from approximation theory, Markov
brother’s inequality51, allows us to quantify the deviation of the deri-
vatives given a bound on the degree and a bound like Eq. (13). Putting
these observations together, we arrive at Thm. 2. The details of the
proof are given in the Supplementary Note 4.

Generalizations of Thm. 2
Wealsogeneralize Thm. 2 in twodirections. First, we extend the results
to interactions acting on k qubits instead of two. As long as the noise is
constrained to act on one qubit and k =Oð1Þ, this generalization is
straightforward. Indeed, we only need to measure an observable that
has the same support as the Pauli string and does not commutewith it,
as it is then always possible to find a product initial state that isolates
the parameter. Generalizing to noise acting on more than one qubit
makes it more difficult to isolate the parameters of the evolution as
described in the main text. In that case, it then becomes necessary to
solve a system of linear equations that couples different parameters.
Although our method still applies, analyzing this scenario would
require picking the observables and initial states in a way that the
system of equations is well-conditioned and we will not discuss this
case in detail here.

Second, another important generalization is to go beyond
short-range systems. Although we have only stated our results for
short-range systems in Thm. 2, our techniques apply to certain long-
range systems. As this generalization is more technical, we leave the
details to the Supplementary Note 4 and constrain ourselves to
discussing how the statement of Thm. 2 changes for more general
interactions.

Only one aspect of the previous discussion changes significantly
for long-range interactions: how the r.h.s. of Eq. (8) generalizes. More
precisely, let us assume that for some injective function h : R ! R
with h(x) = o(1), we have

k ðetLB � etLΛ ÞðOY Þ k ≤

hðdistðY ,VnfBgÞÞðevt � 1Þ: ð14Þ

For instance, for short-range or exponentially decaying interactions, h
will be an exponentially decaying function. Thenwe can restate Thm. 2
in terms of h−1. As we show in Thm. 6.1. of the Supplementary Note 6,
for a precision parameter ϵ >0 and evolution on a D-dimensional
lattice, assume that we pick the initial time as

t0 =O h�1 ϵ
2ðe2:5v�1Þ

	 
D
logðϵ�1Þ

� ��2
" #

: ð15Þ

Furthermore, assume that we estimate the expectation value of local
observables up to precision OðϵÞ at ~O½ðh�1ð ϵ

2ðe2:5v�1ÞÞÞ
D
logðϵ�1ÞÞ� points.

Then we can estimate each parameter up to an error of

O ϵ h�1 ϵ
2ðe2:5v�1Þ

	 
D
logðϵ�1Þ

� �2
" #

, ð16Þ
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through, the same procedure as in the local case. Note that the error in
Eq. (16) only tends to 0 as ϵ→0 if h�1ð ϵ

2ðe2:5v�1ÞÞ
D logðϵ�1Þ= oðϵ�1Þ, holds,

i.e., the function h must decay fast enough. In the Supplementary
Note 5, we discuss examples of systems with algebraically decaying
interactions for which this is satisfied. For instance, for potentials that
decay like r−α with α > 5D − 1 we obtain that h�1ðϵÞ=Oðϵ� 1

α�3DÞ, holds.We
summarize the resulting resources in the Supplementary Table 6.

Themessage of bounds like (16) is that it is still possible to obtain
bounds on the error independent of the system’s size beyond short-
range systems. However, this comes at the expense of requiring higher
precision and sampling from more points.

Another important observation is that the assumption that we
know the structure of the interactions exactly is not required.
Indeed, our method is robust to Hamiltonian perturbations of the
model as long as the resulting evolution still satisfies a LR bound.
For instance, suppose that there actually is a non-negligible inter-
action between qubits i and j that is not accounted by our model. As
long as the resulting time evolution still satisfies a LR bound, our
results still hold. As the linear equation to isolate any parameter is
independent of that parameter, we can still apply our techniques in
this setting.

Parallelizing the measurements
To parallelize the measurement procedure and ensure that we
can obtain experimental data to estimate all parameters simul-
taneously, we resort to a classical shadow process tomography
method. Although some papers in the literature already discussed
classical shadows for process tomography39,40, we present a sim-
plified and streamlined proof that also gives an improved sample
complexity for the observables relevant to this work in the
Supplementary Note.

More precisely, we show that given a quantum channel Φ, Pauli
strings P1

a, . . . ,P
K1
a that differ from the identity on at most ωa sites and

Pauli strings P1
b, . . . P

K2
b that differ from the identity on atmostωb sites,

it is possible to obtain estimates êm,l of 2
�ntr Pm

a ΦðPl
bÞ

h i
satisfying

j2�ntr Pm
a ΦðPl

bÞ
h i

� êm,l j≤ ϵ ð17Þ

for all m, l with probability at least 1 − δ from

Oð3ωa +ωbϵ�2 logðK1K2δ
�1ÞÞ ð18Þ

samples. More precisely, the protocol of shadow process tomography
requires preparing Eq. (18)many different random initial product Pauli
eigenstates and measuring them in random Pauli bases. This makes it
feasible to implement it in the near-term.Wediscuss it inmore detail in
the Supplementary Note 7, as this protocol may be of interest beyond
the problem at hand.

The shadowprocess tomography protocol is ideally suited for our
Hamiltonian learning protocol. Indeed, note that to learn k-body
interactions, we only required the preparation of initial states ρl that
differ from the maximally mixed state on k qubits and measure Pauli
strings supported on at most k qubits. Furthermore, for a system of n
qubits in total, there are at most 16kðn

k
Þ≤ 16knk such states or Pauli

strings. We conclude that we can estimate all required expectation
values for a given time step using

Oð9kϵ�2k logðnδ�1ÞÞ ð19Þ

samples. As our protocol requires estimating expectation values at a
total of polylogðϵ�1Þ time steps, we can gather the data required to
recover all the OðnÞ parameters of the evolution from
Oðϵ�2polylogðn,ϵ�1ÞÞ samples through the shadow process tomo-
graphy protocol whenever k =Oð1Þ.

Data availability
Thedata generated and analyzedduring the current study are available
from the authors upon request.

Code availability
The computer codes developed and tested by the authors, and the
input files used for producing the presented data, are available upon
request. The current version of the codes is not designed for broad
distribution and requires substantial hardware resources for repro-
ducing the presented results. Correct installation of the current ver-
sion of the codes, preparation of correct input files, and correct
analysis of the results require substantial expertise, and may need
separate instructions in each specific case.
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