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Practical Hamiltonian learning with unitary
dynamics and Gibbs states

Andi Gu 1,2,3 , Lukasz Cincio3 & Patrick J. Coles3,4

We study the problem of learning the parameters for the Hamiltonian of a
quantum many-body system, given limited access to the system. In this work,
we build upon recent approaches to Hamiltonian learning via derivative esti-
mation. We propose a protocol that improves the scaling dependence of prior
works, particularly with respect to parameters relating to the structure of the
Hamiltonian (e.g., its locality k). Furthermore, by deriving exact bounds on the
performance of our protocol, we are able to provide a precise numerical
prescription for theoretically optimal settings of hyperparameters in our
learning protocol, such as the maximum evolution time (when learning with
unitary dynamics) orminimum temperature (when learningwithGibbs states).
Thanks to these improvements, our protocol has practical scaling for large
problems: we demonstrate this with a numerical simulation of our protocol on
an 80-qubit system.

An increasingly relevant task for the study of many-body quantum
systems is to learn the associatedHamiltonian operator efficiently (i.e.,
without requiring resources that scale exponentially in system size). In
condensedmatter physics, we can experimentally verify ourmodels of
quantum materials by comparing theoretical predictions about their
effective interactions with the interactions inferred by Hamiltonian
learning1–4. This verification is also applicable for quantum device
engineering.With the expanding capabilities of quantumcomputers, it
is increasingly important to be able to certify their behavior5, andwhile
benchmarking protocols can give coarse-grained information about a
particular quantum device, knowing its Hamiltonian can be sig-
nificantly more powerful, allowing us to design improved devices6–8 or
better understand the physical origin of failure modes9–11.

Several promising approaches have been proposed for the
Hamiltonian learning problem. An early work12 demonstrated that
systems with local Hamiltonians can be efficiently characterized
without requiring full state tomography, which is costly in terms of
accuracy in the trace norm. However, this method was limited in its
applicability and found to be prohibitively expensive in general. Sub-
sequent approaches13–16 successfully employed machine learning on
small systems. Nonetheless, these methods lacked rigorous perfor-
mance guarantees or scaling results that would provide confidence in

their application to larger systems, as their performance on such sys-
tems has not been explored beyond limited numerical studies. Addi-
tionally, several proposals17–19 suggested learning the coefficients of
the Hamiltonian by solving a system of linear equations, with the
coefficient matrix determined by local measurement outcomes.
However, the performance of these approaches relies on the spectral
gap of the coefficient matrix, which remains poorly characterized.
Recent works20,21 have achieved asymptotically optimal sample com-
plexities, albeit with large constant prefactors that render them
impractical in real-world scenarios.

In this work, we propose a protocol for Hamiltonian learning that
aims to address these shortcomings. Our protocol is motivated by a
major application of Hamiltonian learning, which is the characteriza-
tion of near-term quantum computers. To accommodate this appli-
cation, our protocol is designed to make relatively weak assumptions
about the nature of the system. Specifically, we assume:

• The Hamiltonian we are interested in learning is sparsely inter-
acting (these are generalizations of k-local Hamiltonians; see
Definition 2).

• Our interaction with the system is limited to the ‘prepare-and-
measure’model – that is, we do not require the ability to interact
with the system under study via another trusted quantum
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simulator e.g.,22–24 or make interventions (other than measure-
ment) after initializing the system25. Two examples of this
prepare-and-measure setup are making measurements on time-
evolved states or on Gibbs states (Fig. 1). In these two settings,
we assume that we can control the evolution time and the
temperature, respectively.

• We can prepare fully separable states and make Pauli
measurements.

Wenote that thepracticality of these assumptions depends on the
experimental platform. Indeed there areother approaches that impose
evenmore stringent assumptions, such as the restriction of only being
able to prepare a single fixed initial state26, or the ability to make
measurements on only a single site27. In our work, we do not impose
such restricted assumptions, as they do not align with the application
we focus on, namely the characterization of near-term quantum
computers. In this context, it remains a natural assumption that we
have the ability to prepare arbitrary product states and perform Pauli
measurements on arbitrary sites. A further advantage of our protocol
is that it is easily parallelizable. In short, in this work, wewill describe a
Hamiltonian learning protocol that requires only O ϵ�2polylogðn=ϵÞ� �
samples to recover every parameter of a sparsely interacting n-qubit
Hamiltonian up to an error ϵ. Wewill conclude by providing a concrete
prescription for optimal configurations of the protocol when used in
practice, and demonstrate its performance with numerical examples.

Results
In this work, wewill treat the systemunder study as a black box system
with anunknownHamiltonianH, andour goalwill be to efficiently infer
H with access to only a limited number of inputs to, and outputs from
the black box. Importantly, we use the ‘prepare-and-measuremodel’of
interaction with our system (see Fig. 1). This model of interaction
prohibits any quantum channel between the system under study
(whose Hamiltonian we are trying to learn) and some other quantum
processing unit. Furthermore, after initializing the system in some
state, it prohibits any interaction with the system other than making
measurements. Two typical examples of this are Hamiltonian learning
using unitary dynamics and Gibbs states. For the former, we initialize
the system in some known state ρ0, and evolve it forward in time by t,
resulting in the state:

ρðtÞ= e�iHtρ0e
iHt : ð1Þ

For the latter, we assume we have access to a system in thermal
equilibrium at a temperature β−1. That is, we have access to the Gibbs

state

ρðβÞ= expð�βHÞ
Trðexpð�βHÞÞ : ð2Þ

We assume that we can control the parameters t and β, respectively.
Finally, we assume that we can measure some observable P of the final
states ρ(t) and ρ(β). However,we do not insist on arbitrary control over
ρ0 and P; weonly consider the casewhereρ0 is fully separable and P is a
local Pauli operator.

Using these two interaction models, we propose a method for
Hamiltonian learning that relies on a simple intuition. For some
particular state preparation and measurement (SPAM) settings
(consisting of a prescription for the observable P, and in the case
of unitary dynamics, the initial state ρ0), which we write as S, we
can define a function f S as the expectation value of P on the state
ρ(t) and ρ(β):

f SðxÞ=
TrðPρðt = xÞÞ for unitary evolution

TrðPρðβ= xÞÞ forGibbs states:

�
ð3Þ

Wewill show that for the appropriate choice of SPAM parameters, f SðxÞ
can be viewed as black box function in x. Using this framework, we
describe our basic approach below. For concreteness, we will consider
learning with unitary evolution (the analysis for Gibbs states follows
similarly in the Supplementary Note 5). First, to assist the reader, we
provide below a glossary of notation (Table 1) to serve as reference.

Preliminaries
To set the stage, we first give a formal definition of the Hamiltonian
learning problem and define a sparsely interacting Hamiltonian.

Definition 1. (Hamiltonian learning problem). Fix a Hamiltonian on an
n-qubit system that has an expansion in the Pauli basis:

H =
Xr
i = 1

θiPi, ð4Þ

where each Pi 2 I,σx ,σy,σz

n o�n
is a Pauli operator and

Θ= θ1, . . . ,θr

� �T 2 Rr are the Hamiltonian coefficients. We assume the
Hamiltonian is traceless (i.e.,Pi ≠ I⊗n), and thatwe know the structureof
theHamiltonian (i.e., whichPaulisPm are present in the expansion), but
that the coefficients θm are unknown. The Hamiltonian learning pro-
blem is to infer all of the coefficients θm up to an additive error ϵ �
maxm θm

�� �� with success probability at least 1 − δ. We will assume two

Fig. 1 | Classical interaction with quantum systems. The 'prepare and measure'
model for interactingwith a quantum system.We view the systemas a set of oracles
indexed by the state preparation and measurement parameters ρ0, P in the time
evolution case, and P in the Gibbs state case. These oracles take some input t or β,
and we use their output to characterize the Hamiltonian. In (a), we show ourmodel

for time evolution, wherein we control three quantities: ρ0, t, and P. We assume we
can evolve the input state ρ0 forward in time, and after a time t, we make a mea-
surement of the observable P. In (b), we show our model for learning from Gibbs
states, wherein we control two quantities β and P. We assumewe have access to the
Gibbs state at temperature β−1, and then measure the observable P.
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types of data access which define different variants of the Hamiltonian
learning problem.
1. Unitary evolution: We can prepare the system in some initial

product state ρ0 and evolve for a specifiable duration of time t.We
can then make a measurement of some local Pauli observable on
this time-evolved state.

2. Gibbs states: We can prepare the system in a Gibbs state at some
specifiable temperature. We can then make a measurement of
some local Pauli observable on this Gibbs state.

Definition 2. (Sparsely interacting Hamiltonian). The interaction graph
G (called the “dual” interaction graph by Haah et al.21) of a Hamiltonian
consists of a set of vertices V and edges E.

V = Piji= 1, . . . ,r
� 	

, ð5Þ

E = Pi,Pj


 �
j supp Pi

� � \ supp Pj


 �
≠+


 �
^ i≠ jð Þ

n o
: ð6Þ

Each vertex represents one Pauli operator Pi in the Hamiltonian, and
there are edges between two vertices if the support of their corre-
sponding Pauli operators overlap. The support of a Pauli, supp(P), is
the set of sites that P acts nontrivially on. We also define the degreeD

of the Hamiltonian to be the maximum degree of any node in the
interaction graph:

D= max
v2V

°ðvÞ: ð7Þ

A Hamiltonian is sparsely interacting if D=O 1ð Þ (that is, D does not
depend on system size). Notably, this class of Hamiltonians includes
geometrically k-local Hamiltonians, as this locality constraint implies
that the number of terms overlapping with any Pauli term is a function
of k alone.

Example2.1. In Fig. 2, we showa sample interaction graph for a 9-qubit
transverse field Ising model (TFIM), whose Hamiltonian is

H =
X8
i = 1

σðiÞz σði+ 1Þz +
X9
i= 1

σðiÞx : ð8Þ

The TFIMwill serve as a prototypical example for the rest of this work.

Collecting necessary data
Writing the Taylor expansion of Eq. (3) f SðtÞ=

P1
m=0 cm

tm
m!, our pro-

tocol will focus on extracting Hamiltonian parameters using only the
first order coefficient of the Taylor expansion c1. To infer this coeffi-
cient, we will need to collect data that allows us to estimate f SðtÞ. The
amount and nature of this data will depend on the higher order deri-
vatives cm. More specifically, together with the desired accuracy of the
learning protocol ϵ, a bound on the norm cm

�� �� will determine the
required accuracy for our estimate of f SðtÞ, the number of different
points at which we evaluate the function, and the specific times at
which we evaluate it. The scaling we find for cm

�� �� varies depending on
whether we are using unitary dynamics or Gibbs states, and also
depends on the assumptions we make about the Hamiltonian (i.e., the
structure parameter D, and whether the Hamiltonian is commuting).
This bound is a crucial determining factor for the rest of our algorithm.
In this work, we find

cm
�� ��∼

O Dmm!ð Þ for sparsely interactingHamiltoniansusingunitary dynamics

O Dmð Þ for commutingHamiltoniansusingunitary dynamics

O D2mm!
� �

for sparsely interactingHamiltonianswithGibbs states:

8><
>:

ð9Þ

Importantly, due to the structure of the Hamiltonian (i.e., it is sparsely
interacting), cm

�� �� does not depend on the size of the system. This
enables our protocol to achieve a sample complexity that scales only
polylogarithmically in n.

Having characterized the higher order derivatives, we return to c1:
as mentioned above, this is the only derivative we are interested in. This
is because, with the appropriate SPAM configuration, the first order
Taylor coefficient c1 will correspond to exactly one Hamiltonian para-
meter. More precisely, by expanding H in the Pauli basis, we find that
there is always at least one pair (P, ρ0) such that c1 = Trði½H,P�ρ0Þ cor-
responds exactly to one of the Hamiltonian coefficients θm. However,
this approach only allows us to extract one Hamiltonian parameter at a
time. It turns out that if we are careful, we can learn entire sets of
parameters at once by applying simultaneousmeasurements. These sets
of parameters can be chosen with an efficient classical analysis of the
Hamiltonian’s interaction graph: the key idea is that if two Pauli terms in
the Hamiltonian are far enough apart, they have no effect on each other
(to first order in time). After these sets are chosen, we can use a single
fixed state ρ0, and a set of commuting observables Pi

� 	
such that each

Table 1 | Glossary of Notations

Symbol Definition

ϵ Targeted error (in the ℓ∞ norm) for recovering the Hamiltonian coefficients (Definition 1)

δ Maximum allowable probability that the recovery (up to an error ϵ) fails (Definition 1)

r Number of coefficients to learn in the Hamiltonian (Definition 1)

D The degree of the Hamiltonian – measures the connectedness of H (Definition 2)

τ A typical time scale for the Hamiltonian H (Definition 3)

N Number of samples required in evaluating f at one point (Definition 4)

A Maximum evolution time prescribed by the Hamiltonian learning algorithm (Definition 4)

L Fitting polynomial degree prescribed by the Hamiltonian learning algorithm (Definition 4)

Fig. 2 | Interaction graph for a transverse field Isingmodel. Interaction graph G for a 9-qubit transverse field Ising model. The degree of this Hamiltonian isD=4, since
for instance P2 is connected to 4 other Pauli terms.
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Tr i H,Pi

� �
ρ0

� �
extracts one Hamiltonian parameter, and all the obser-

vables Pi can be measured simultaneously. Furthermore, the obser-
vables Pi can be chosen to be single qubit Paulis and the initial state ρ0
will be a fully separable state. The reduced state for each site will be
either themaximallymixed state I/2 or an eigenstate of X, Y, or Z; the full
state ρ0 is a tensor product of these single qubit states. These states are
easily prepared from 0j i�n by applying a constant number of single
qubit gates. This simultaneous measurement technique allows us to
learn all the Hamiltonian parameters with a sample complexity that is
only logarithmic in the number of parameters.

After the SPAM parameters have been determined, we then eval-
uate f S to collect a dataset that will subsequently allow us to infer c1.
This dataset collection is the only part of our protocol that requires
interactionwith the systemunder study. ForHamiltonian learningwith
unitary dynamics, this involves initializing the system in a product
state ρ0, evolving for some time t1, then measuring the set of obser-
vables Pi. This is repeated L times for different (predetermined) evo-
lution times t1, t2, …tL∈ [0, A] up to some maximum time A.

Classical postprocessing
Having constructed our dataset, our Hamiltonian learning protocol
can be summarized as follows. For each Hamiltonian parameter θi, we
fit the correspondingdata in our datasetwith a degree L − 1 polynomial
in t. The first derivative of this fitted polynomial at t = 0 serves as an
estimate for the parameter θi. The following is an informal sketch of
our algorithm.

By using a form of polynomial regression known as Chebyshev
regression (which simply consists of choosing tℓ judiciously), we can

guarantee that c1 can be estimatedwith a biasO AL cLj j
L!


 �
. If cL

�� �� grows no
faster than a factorial, as is the case in Eq. (9), the bias decreases (at
least) as a power law in L for suitably chosen A. However, our overall
error scaling cannot achieve this bound due to the presence of noise
when evaluating f S , as increasing L will result in an increase in the
variance of our estimator for c1. The modeling error (bias) must be
carefully traded against the effects of noise (variance). By appro-
priately balancing these two, we show that we are able to achieve
almost shot noise-limited performance. This is made precise by the
following theorem.

Theorem 1. (Hamiltonian learning with unitary dynamics). For the
appropriate choice of Chebyshev degree L∼O log ϵ�1

� �
and evolution

time A∼O 1ð Þ, the algorithm shown in Box 1 solves the Hamiltonian
learning problem with sample complexity

O D4 logðr=δÞpolylogðD=ϵÞ
ϵ2

� 

, ð10Þ

and classical processing time complexity

O D2r logðr=δÞpolylogðD=ϵÞ
ϵ2

� 

: ð11Þ

Proof. See Supplementary Note 4.

Similar to the results of França et al.28, this can be generalized, via
careful selection of initial states and measurements, to learn the
Lindbladian (when expanded in the Pauli basis) of open quantum
systems undergoing Markovian dynamics. The sample and classical
processing time complexity usingGibbs states is onlyworseby a factor
D and D2, respectively.

Numerical simulations
In Theorem 1, we have established the theoretical sample and proces-
sing time complexities of our Hamiltonian learning protocol, indicating
its effectiveness under certain settings of the Chebyshev degree L and
evolution time A. However, to provide practical guidance, we now delve
into the optimal configurations of our algorithm for real-world appli-
cations. This includes prescribing specific values for L and A based on
numerical considerations. Additionally, we present compelling numer-
ical results obtained from an 80-qubit transverse field Ising model
(TFIM), providing empirical evidence that further supports the utility of
our protocol. Our aim will be to learn the following TFIM Hamiltonian:

H =
Xn�1
i= 1

Jiσ
ðiÞ
z � σði + 1Þz +

Xn
i = 1

Biσ
ðiÞ
x , ð12Þ

where Ji, Bi~Unif(−1, 1). We choose the TFIM for its broad range of
applications29, including its relevance for quantum computing plat-
forms such as Rydberg atom arrays30. The dynamics of this Hamilto-
nian are simulated with the time evolution block-decimation
method31–35.

Our protocol has two hyperparameters that determine its per-
formance: the maximum evolution time A and the fitting polynomial
degree L. Setting theseparameters is a delicate balancebetween noise-
induced error and modeling errors. If A is too low or L is too high, the
variance in the dataset will dominate the error, and on the other hand,
if A is too high or L is too low, the modeling error will dominate. It is
generally desirable to set these twoparameters such that themodeling
and noise errors are comparable. However, in some settings, it may be
desirable to let the dataset variance grow somewhat larger than the
modeling error, since this error can be quantified exactly (see Sup-
plementary Note 3), where σ2

‘ can be obtained by a bootstrap estimate
from the dataset. There are no similar methods to quantify the mod-
eling error. One possiblemethod for settingA and L canbe to optimize
the error bounds (see Fig. 3). Numerically, these optimal values behave

BOX 1

Algorithm for Hamiltonian learning with unitary dynamics (informal)
1: procedure INFERCOEFFICIENTS (N, L,A)
2: Partition the r Hamiltonian coefficients into D2 subsets Viji= 1, . . . ,D2� 	
3: for each subset Vi do
4: Define the observables Pj

n o
(one for each coefficient cj∈Vi) and initial state ρ0 such that Trði½H,Pj �ρ0=2Þ=θj.

5: Choose L different times t‘ 2 ½0,A�j‘= 1, . . . ,L
� 	

at which to evaluate f jðtÞ � TrðPje
�iHtρ0e

iHtÞ.
6: For each ℓ, use an N-sample mean estimator to estimate fj(tℓ)
7: Fit a degree L − 1 polynomial to the data (tℓ, fj(tℓ)).
8: c1← first derivative of the fitted polynomial at t = 0.
9: Output c1/2.
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as anticipated in our theoretical analysis (Theorem 1): the optimal L*

scales with O log ϵ�1
� �

, and A~1. This leads to a sampling complexity
that scales with O polylogð1=ϵÞϵ�2� �

.
In Fig. 4, we show the error in the recovered Hamiltonian para-

meters corresponding to a target error of ϵ = 0.01. As expected, the
theoretical prediction for the noise error is close to perfect. However,
themodeling error is drastically overestimatedbynearly four orders of
magnitude. This miscalculated modeling error has important con-
sequences for the algorithm, since it results in a poorly specified
evolution time A. We propose a number of remedies for this in Sup-
plementaryNote 6; the improvements enabledby these techniques are
shown in Fig. 5. As demonstrated by the figure, we are able to recover
all 159 Hamiltonian parameters up to an error ≲10% using just ~106

samples.

Discussion
In this work, we have discussed the quantum Hamiltonian learning
problem. We introduced a unifying model for Hamiltonian learning
using both unitary dynamics andGibbs states. By subsuming these two

approaches into the samemodel, we were able to describe an abstract
routine for learning the Hamiltonian of a quantummany-body system
given limited access to the system. This routine was based on fixing
certain SPAM parameters, then viewing the system as a function f of a
single variable. In thiswork,weconsider this variable to be either time t
(in which case f represents the time-evolved expectation value of a
Pauli observable) or inverse temperature β (in which case f represents
the thermal expectation value of a Pauli observable). We argued that
for the appropriate choice of SPAM parameters, the derivatives of f –
particularly f 0ðt =0Þ – would correspond exactly to particular coeffi-
cients in the Hamiltonian. We then showed that f 0ðt =0Þ could be
inferred both accurately and efficiently from noisy evaluations of f.
Finally, we concluded by describing how our protocol could achieve
better than linear sample complexity in r (the number of Hamiltonian
parameters) by using SPAM configurations amenable to simultaneous
measurements.

This culminated in our main result, wherein we proposed an algo-
rithm that achieves an almost noise-limited (∼ polylogðϵ�1Þ

ϵ2 ) sample com-
plexity, similar to that of Haah et al.21 and França et al.28. However, our

Fig. 3 | Optimal hyperparameter settings. Settings for N, L, and A as a function of
the desired error ϵ. These settings are found based onminimizing the upper bound
on N ⋅ L (in practice, L can only take integer values, so the values shown would be
rounded to the nearest integer). For the case of arbitrary Hamiltonians, we observe

L∼O log ϵ�1
� �

, A∼O 1ð Þ, and N ∼O polylogð1=ϵÞϵ�2� �
. We find similar scaling for the

case of the commuting Hamiltonian in every variable except A, which also scales as
O log ϵ�1
� �

. Despite this, the overall sample complexity is only better than the
general case by a constant factor.

Fig. 4 | Empirical error of the Hamiltonian learning protocol. The empirical
modeling and noise error of the Hamiltonian learning protocol using the optimal A
and L for ϵ =0.01 as prescribed in Fig. 3. The modeling errors are calculated with a

noise-free dataset, and the noise errors are calculated from a single noisy dataset.
The dashed line indicates the maximum theoretical modeling error on the left and
indicates the predicted variance due to noise on the right.
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work represents an advance for several reasons. In comparison to Haah
et al.21, we significantly reduce the sample complexity dependence on
the parameterD fromD21 toD4. In comparison to França et al.28, while
their approach includes only Hamiltonian learning from unitary
dynamics, our protocol is generalizable to Gibbs states. Furthermore,
our approach also offers an additional advantage. Unlike28, which
requires a geometrically local Hamiltonian, our protocol operates effi-
ciently with a “sparsely interacting" Hamiltonian, which is a considerably
weaker assumption. This advantage is particularly significant as it
eliminates the need for geometric locality. Moreover, we enhance the
measurement parallelization overhead from Oð16kÞ (assuming a
geometrically k-local Hamiltonian) to O D2� �

, a substantial improve-
ment. This is especially relevant in practical applications, where we
can often a priori rule out the presence of certain terms in our
Hamiltonian from physical constraints or symmetry considerations.
That is, oftentimes, we haveD≪4k ; in these settings, our protocol can
provide a significant advantage. Furthermore, by deriving explicit
bounds on the performance of our algorithm, we were able to pro-
vide precise numerical prescriptions for theoretically optimal
hyperparameters such as maximum evolution time and Chebyshev
degree. We concluded by proposing a number of heuristic
improvements to our algorithm, and argued they were reasonable to
apply in general. This combination of improvements makes sig-
nificant steps towards achieving a practically useful protocol that can
be applied experimentally, as indicated by the demonstration of our
protocol on a large (80-qubit) simulated problem.

Although we have demonstrated a successful application of our
learning algorithm on a simulated problem, this simulation did not
include possible detrimental experimental effects. With respect to
SPAM errors, our algorithm makes minimal SPAM requirements
(requiring only single qubit measurements and simple product states).
To the first order, the effect of SPAM errors will only be in the mea-
surement of the first order commutator Trði½H,P�ρ0Þ. For instance, if our
initial state is subject to decoherence, this will result in a systematic
underestimate of the Hamiltonian parameters. Therefore, a natural
future direction for investigation is how this protocol can be made
robust to SPAM errors. Another consideration is the potential dis-
crepancy between the Hamiltonian ansatz used by the learning algo-
rithm and the actual underlying Hamiltonian governing the physical
system. In realistic scenarios, the system Hamiltonian may deviate from
the assumed form due to various factors such as unaccounted interac-
tions, noise, or experimental limitations. To the first order, terms that
are unaccounted for do not affect the performance guarantees of our
algorithm except for their effect on D. However, as noted previously, a
good estimate of D is a strong determining factor in the practical per-
formance of our protocol; further investigation is needed to understand
the extent to which model mismatches adversely affect performance in
practice. We also leave for later works a study of how this protocol can
be improved bymaking stronger assumptions on either theHamiltonian
or the suite of interactions available to us. For instance, we already
showed a constant (but significant) drop in the number of measure-
ments required for learning a commuting Hamiltonian with unitary

Fig. 5 | Empirical error distribution.On the left, we show the maximum absolute
error across all 159 coefficients of the 80-qubit TFIM model, plotted against the
total number of samples used by the learning protocol, and on the right, we show
the quotient of the theoretical error upper bound and the empirical errors from
numerical simulations (note the log-log scale for both plots). The violin plots show
the distribution ofmaximumabsolute errors from 100 random initializations of the

TFIM (with coefficients sampled uniformly between −1 and 1). The distributions
show the [1%, 99%] interval in a narrow line, a [16%, 84%] interval in a wider line, and
the median marked in white. The violin plots are offset by a small amount for
visualization purposes, but each cluster of four violin plots used the same number
of queriesmarked by the dotted gray lines. We set the failure probability to δ = 15%.
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dynamics. We expect a similar effect for Hamiltonian learning with
Gibbs states. Furthermore, if we assumewe can interact with our system
using a trusted quantum simulator of our own, a variety of approaches
become possible. Among these is Hamiltonian learning with Loschmidt
echoes, as done in Wiebe et al.22. Rigorous performance bounds have
not yet been found for this approach, but we speculate that a similar
application of our techniques may yield improved performance –

however, we leave this for future works.

Methods
In this section, we will describe our derivative estimation protocol, and
show that this allows us to make guarantees on the error. First, we
establish an elementary procedure for estimating thefirst order derivative
f 0ð0Þ given access only to noisy estimates of f. We then apply this pro-
cedure to Hamiltonian learning with unitary dynamics and Gibbs states.

Inferring the first-order commutator
For a system evolving under a Hamiltonian H and an initial state given
by some densitymatrixρ0, the expectation value of any operator P can
be written as:

P tð Þ� �
=Tr Pρ0ðtÞ

� �
=Tr Pe�iHtρ0e

iHt� �
=

X1
m=0

ðitÞm
m!

Tr HmP
� �

ρ0

� �
, ð13Þ

where HmP
� �

= H, H, . . . , H½½½|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m times

,P� . . .��with H0P
� �

=P: ð14Þ

This equality is simply using the Heisenberg expansion of the time-
evolved operator P(t).

In this section, we define a critical subroutine of our Hamiltonian
learning algorithm that infers the expectation Trð i H,P½ �ð Þρ0Þ, for P
being a local Pauli operator, by measuring time-evolved expectation
values. Themain idea behind our algorithm is that Tr i½H,P�ð Þρ0

� �
is the

time derivative of the expectation TrðPe�iHtρ0e
iHtÞ. More specifically,

the Heisenberg expansion in Eq. (13) expresses the time-evolved
expectation of an observable as

PðtÞ� �
=

X1
m=0

im

m!
Trð HmP

� �
ρ0Þtm: ð15Þ

Therefore PðtÞ� �
can be modeled as a univariate power series in time,P1

m=0 cmt
m, with coefficients

cm =
im

m!
Tr HmP

� �
ρ0

� �
: ð16Þ

If we were able to access PðtÞ� �
exactly, themost effective way to find c1

would be to simply differentiate PðtÞ� �
via finite differences with very

small Δt (i.e., c1≈
PðΔtÞh i� Pð0Þh i

Δt ). Since our measurements of PðΔtÞ� �
are

subject to shot noise, the variance of this estimator scales with
OððΔtÞ�2Þ, preventing us from using arbitrarily small Δt. However, as Δt
grows, the bias in the finite difference estimator grows. The algorithm in

Box 2 is a generalization of finite differencing, and uses Chebyshev
regression (see Supplementary Note 1) to estimate c1. This algorithm
takes as input amaximum evolution time A and an cutoff degree for the
Chebyshev polynomial L. This finite cutoff degree induces biases in the
recovered polynomial coefficients, however, we will demonstrate that
this bias is suppressed much more effectively than for the finite-
difference estimator, as it turns out that these errors scale in apower-law
with power L. As mentioned in the beginning of this section, this error
bound depends on a bound for the derivative j dLhPðtÞi

dtL
j= jTrð½HmP�ρðtÞÞj.

Since ρ(t) is a density matrix, a simple application of the Höelder
inequality shows that Trð HmP

� �
ρðtÞÞ

�� ��≤ HmP
� ��� �� (where �j j denotes the

spectral norm). We can bound spectral norms of iterated commutators
with the Hamiltonian as follows:

Definition 3. (Typical scales). We define a typical time scale

τ =
1

2D Θj j1
ð17Þ

of our Hamiltonian. The appearance of Θj j1 in these scales is unsur-
prising; scaling all the coefficients up by some constant factor will
decrease the time scale of the time evolution by the same factor. The
structure parameter D appears in this time scale because, all things
being equal, we expect a highly connected Hamiltonian to have obser-
vables that change faster compared to weakly connected ones. Indeed,
in Supplementary Note 2, we show an upper bound for the norm of the
mth iterated commutator between H and P scales roughly with ~τ−m.

Definition 4. (Dataset). Assume we are given the following
hyperparameters:

• L, which tells us how many different times at which to evalu-
ate PðtÞ� �

;
• A, which tells us the maximum time at which we want to evalu-

ate PðtÞ� �
; and

• N, which tells us how many samples we use to estimate a single
evaluation of PðtÞ� �

.

We construct the dataset D by evaluating PðtÞ� �
at the roots

ziji= 1, . . . ,L
� 	

of the Lth Chebyshev polynomial (see Supplementary
Note 1 for a review of Chebyshev polynomials). Our dataset comprises
of L points:

D= ðt1,y1Þ,ðt2,y2Þ, . . . ,ðtL,yLÞ
� 	

, where

ti =
A
2
ð1 + ziÞ,

yi ∼ Y i,

ð18Þ

where Yi is an N-sample mean estimator of PðtiÞ
� �

. That is, it satisfies
E½Y i�= PðtiÞ

� �
and var½Y i�= σ2

i =N, where σ2
i is the variance for a single

measurement of PðtiÞ
� �

. The mapping ti =
A
2 ð1 + ziÞ ensures that the

evolution time is nonnegative and never exceeds A.
Having collecting the dataset, it is simple to infer the first deri-

vative c1.

BOX 2

Algorithm for estimating the first derivative Trð i½H,P�ð Þρ0Þ
1: procedure ESTIMATEDERIVATIVE(N, L, A; P, ρ0)
2: for ℓ← 1,…, L do ⊳ Construct the dataset D (Definition 4)
3: t‘  A

2 1� cos 2‘�1
L π

� �� �
4: y‘  estimateof TrðPe�iHt‘ρ0e

iHt‘ Þ ⊳ Average N measurement outcomes of P
5: Fit the coefficients ~ck in

PL�1
k =0 ~ck

tk
k! to the data ðt‘,y‘Þj‘= 1, . . . ,L

� 	
6: return ~c1
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The following theorem shows that for the appropriate choice of
evolution time A and Chebyshev degree L, the error of the estimator ~c1
in Box 2 is close to being noise-limited.

Theorem 2. (Sample complexity for one coefficient). Fix some max-
imum failure probability δ and an error ϵ. Assume that we have access
to an unbiased (single-shot) estimator of PðtÞ� �

with variance σ2 ≤ 1.
Furthermore, assume Pj j≤ 1. Then there is some choice of maximum
evolution A ~ τ and Chebyshev degree L∼ log ϵ�1 such that with

N =O logð1=δÞpolylogð1=ϵÞϵ�2� � ð19Þ

sample complexity, we can construct an estimator ~c1 such that
c1 � ~c1
�� ��≤ ϵ �D, except with a failure probability at most δ.

Proof. See Supplementary Note 3. □

Recovering Hamiltonian coefficients
With an efficient algorithm for accurately estimating first order com-
mutators Trði½H,P�ρ0Þ, it is possible to construct an algorithm that can
infer the coefficients of H using these commutators. The idea is to
carefully choose ρ0 and P so that Trði½H,P�ρ0Þ corresponds to one
parameter at a time.

First, we introduce the notation that ρðX Þ0 and PðX Þ will be the
reduced state or Pauli matrix (respectively) that is restricted to the
qubits in X , and X 0 will be the set of all qubits not in X .

Lemma 1. (Term selection) Let P be some Pauli operator such that
there exists some i 2 1, . . . ,rf g where suppP⊆ suppPi and

i½Pi ,P�
2 ≠0. Let

X = suppPi, ð20Þ

Y =
[

suppPj jsuppPj \ X ≠+
n o
 �

n X , ð21Þ

Z = ðX ∪YÞ0, ð22Þ

ρ0 =
I+ i½Pi,P�=2

2 Xj j

� 
ðX Þ
� I

2 Yj j

� 
ðYÞ
� ρðZÞ0 : ð23Þ

In words, Y is a neighborhood around X that contains the support of
all Paulis that intersectwithX , andZ is the set of all qubits that are not
in X ∪Y. The state ρ0 is defined such that for all qubits in Y, it is the
maximally mixed state and for qubits inside X , ρ0 is defined in a way
such that Trði½Pi,P�ρðX Þ0 =2Þ= 1, and for all other qubits, ρ0 can be any-
thing. Then:

Trði½H,P�ρ0Þ= θi: ð24Þ

Proof. See Supplementary Note 4. □

This defines a simple algorithm for Hamiltonian learning. For
simplicity, for any Pauli Pi, we will simply set the observable P to be a
single qubit Pauli actingonone site inX such that [Pi, P] ≠0 (seeBox 3).

However, the runtime of this algorithm is Ω(r), since this proce-
dure must be called once for each term in the Hamiltonian. We pro-
pose an improvement of this algorithm wherein we estimate
TrðPe�iHtρ0e

iHtÞ for many different choices of P simultaneously. We
aim to set ρ0 in such a way that we can extract coefficients for many
terms simultaneously. Yet, rather than using shadow tomography (as
done in França et al.28), which can result inO 16k


 �
scaling, we carefully

take advantage of our knowledge about the Hamiltonian structure to
get a smaller parallelization overhead. The way forward relies on the
fact that in Lemma 1, ρðZÞ0 can be anything. Similarly to Haah et al.21, we
partition the terms of our Hamiltonian into groups of terms that can
each be inferred simultaneously. This partition is based on a graph
coloring; for details, see the Supplementary Note 4.

Definition 5. (Squared graph). Let the square of the interaction graph,
G2, be the graph with the same vertex set as G and in which any two
vertices are connected if their distance in G is at most 2. In words, the
edges for G2 are

ði,kÞj9j suppPi \ suppPj≠+

 �

^ suppPj \ suppPk≠+

 �

^ ði≠kÞ
n o

ð25Þ

Our algorithm will rely on a graph coloring of G2. The essential
idea is that for Paulis of the same color, there is always a “moat"
separating them. This moat will then be filled with maximally mixed
states, which completely suppresses the influence of terms that we are
not interested in. A partitioning of the Hamiltonian terms via some C-
coloring of G2 makes it natural to rewrite the Hamiltonian using a
double sum notation:

H =
XC
i= 1

XVij j

j = 1

θi,jPi,j, ð26Þ

whereVi is the set of all Paulis with the same color Ci. For instance, see
Supplementary Fig. 3 for a coloring of the squared interaction graph
for a 9-qubit TFIM.

Lemma2. (Simultaneous inference for a partition) LetVi be a partition
in a coloring of G2. The coefficient for each Pauli in Vi can be inferred
with up to an error ϵ Θj j1, with failure probability for each individual
coefficient being at most δ (so the overall failure probability is upper
bounded by δ � Vi

�� ��). This can be done with sample complexity

O D2 logð1=δÞpolylogðD=ϵÞϵ�2� �
: ð27Þ

Proof. See Supplementary Note 4. □

BOX 3

Algorithm for Naive Hamiltonian learning
1: procedure NAIVEINFERCOEFFICIENTS (τ, L, A, N)
2: for i← 1,…, r do
3: P← single qubit Pauli acting on one site in X where [Pi, P] ≠0

4: ρ0 =
I+ i½Pi ,P�=2

2 Xj j


 �ðX Þ
� ð I

2 Yj jÞðYÞ � ρðZÞ0 ⊳ ρðZÞ0 is any density matrix

5: ~θi  ESTIMATEDERIVATIVE (N, L, A; P, ρ0) ⊳ See Box 2
6: return ~c1
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Theorem 3. (Hamiltonian learning with unitary dynamics). Fix a spar-
sely interacting Hamiltonian H that has r terms in its Pauli expansion
with coefficientsΘ. For the appropriate choice of Chebyshev degree L
and evolution time A, the algorithm in Box 3 and Box 4 solves the
quantum Hamiltonian learning problem (with an additive error ϵ Θj j1
and failure probability at most δ) with sample complexity

O D4 logðr=δÞpolylogðD=ϵÞ
ϵ2

� 

, ð28Þ

and classical processing time complexity

O D2r logðr=δÞpolylogðD=ϵÞ
ϵ2

� 

: ð29Þ

Proof. We partition our Hamiltonian terms into sets that can be
simultaneously inferred. There are at most D2 of these sets (for a
proof, see Supplementary Note 4) –morevoer, this partitioning into at
mostD2 can be foundwith classical greedy algorithm that has runtime
O D2� �

36. Now,we apply Lemma2 to eachof these sets. For the detailed
proof, see Supplementary Note 4. □

In a different setup, we may be given access to copies of a Gibbs
state at a temperature β−1. If we measure an observable Pi, the expec-
tation will be

Pi

� �
β =

TrðPi expð�βHÞÞ
Trðexpð�βHÞÞ ð30Þ

In what follows, we apply the analysis ofHaah et al.21 to formulate Pi

� �
β

as a polynomial in β, in accordance to the framework in Eq. (3). We will
show that we can learn the coefficients of the Hamiltonian from the
first order term in this polynomial, therefore mapping the problem of
Hamiltonian learning from Gibbs states onto Hamiltonian learning
with unitary dynamics.

Theorem4. (Hamiltonian learningwith Gibbs states). TheHamiltonian
learning problem (with an additive error ϵ Θj j1 and failure probability
at most δ) can be solved using

O D5 logðr=δÞpolylogðD=ϵÞ
ϵ2

� 

ð31Þ

copies of the Gibbs state. This can be achieved with a time complexity

O D4r logð1=δÞpolylogðD=ϵÞ
ϵ2

� 

: ð32Þ

Proof. The protocol is a near mirror image of the Hamiltonian learning
protocol using unitary dynamics. For the full proof, see Supplemen-
tary Note 5. □

Data availability
The simulation data used to produce Fig. 5 has been deposited in
Zenodo37.

Code availability
The code for the 80-qubit TFIM numerical simulation can be found on
Github37.
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