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Single cell multi-omics reveal intra-cell-line
heterogeneity across human cancer cell lines

Qionghua Zhu 1,2,14 , Xin Zhao3,4,14, Yuanhang Zhang3,4,14, Yanping Li2,14,
Shang Liu3,14, Jingxuan Han2, Zhiyuan Sun2, Chunqing Wang3,4, Daqi Deng2,
Shanshan Wang3, Yisen Tang2, Yaling Huang3, Siyuan Jiang3,4, Chi Tian 2,
Xi Chen3, Yue Yuan3, Zeyu Li 3,4, Tao Yang 5, Tingting Lai5, Yiqun Liu5,
Wenzhen Yang5, Xuanxuan Zou3,4, Mingyuan Zhang3, Huanhuan Cui 1,2,6,
Chuanyu Liu 3, Xin Jin 3, Yuhui Hu 1,2,7, Ao Chen 3,8,9, Xun Xu 3,
Guipeng Li 1,2,6, Yong Hou3,10, Longqi Liu 3,11,12 , Shiping Liu 3,9,10,11,12 ,
Liang Fang 1,2,6 , Wei Chen 1,2 & Liang Wu 3,8,13

Human cancer cell lines have long served as tools for cancer research and drug
discovery, but the presence and the source of intra-cell-line heterogeneity
remain elusive. Here, we perform single-cell RNA-sequencing and ATAC-
sequencing on 42 and 39 human cell lines, respectively, to illustrate both
transcriptomic and epigenetic heterogeneity within individual cell lines. Our
data reveal that transcriptomic heterogeneity is frequently observed in cancer
cell lines of different tissue origins, often driven by multiple common tran-
scriptional programs. Copy number variation, as well as epigenetic variation
and extrachromosomal DNA distribution all contribute to the detected intra-
cell-line heterogeneity. Using hypoxia treatment as an example, we demon-
strate that transcriptomic heterogeneity could be reshaped by environmental
stress. Overall, our study performs single-cell multi-omics of commonly used
human cancer cell lines and offers mechanistic insights into the intra-cell-line
heterogeneity and its dynamics,whichwould serve as an important resource for
future cancer cell line-based studies.

The evolution of cancer starts with malignant transformation, fol-
lowed by progression to more aggressive and resistant forms,
toward poor clinical outcomes. The intratumoral heterogeneity in
human tumors plays a critical role in carcinogenesis and tumor

evolution1. In recent years, single-cell genomics has made incredible
progress toward characterizing specific tumor subtypes and disen-
tangling the cellular complexity of a given tumor2,3. However, most
of the effort has been so far focused on profiling the clinical samples.
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Yet, the molecular understanding of what drives such heterogeneity
remains elusive, which necessitates extensive follow-up studies in
different model systems. Human cancer cell lines have long served
as tools for cancer research and drug discovery, as they represent
key properties of their original tumors and provide context for
studying cellular or molecular mechanisms and testing therapy
responses. Given the establishment of cancer cell lines involves the
selection of tumor cells that adapt to in vitro culture conditions,
cancer cell lines were often thought to be homogenous and unable
to maintain the heterogeneity of the original tumor. However, it has
been shown that cell lines could evolve and develop into distinct cell
line strains4. Many recent studies have demonstrated that cellular
diversity could be detected in established cell lines by using tech-
niques including single-cell RNA-sequencing (scRNA-seq) and
fluorescence-activated cell sorting (FACS)5–7. Transcriptome het-
erogeneity within cell lines has facilitated the discovery of critical
regulators that drive the epithelial-mesenchymal transition (EMT)
program and drug resistance in subclones5,8. If certain intra-cell-line
heterogeneity is associated with therapeutic response, these cell
lines could potentially serve as suitable models to study the mole-
cular mechanisms underlying drug sensitivity and to test different
treatment schemes. Therefore, understanding the heterogeneity of
commonly used human cancer cell lines will not only provide
important information for cell line-based biomedical research but
also may help to identify suitable models for investigating novel
mechanisms underlying specific cancer phenotypes. More recently,
Kinker et al. systematically profiled 198 cancer cell lines by scRNA-
seq, which mainly consisted of those derived from lung cancer, and
revealed the landscape and recurring patterns of intra-cell-line
heterogeneity. However, the molecular mechanisms underlying the
heterogeneity still await to be uncovered.

The origin of intratumoral heterogeneity was traditionally
considered in genetic terms but has been extended into more
facets, including epigenetics and dramatic changes in the
microenvironment9–11. Although effective at resolving the hetero-
geneity in transcriptional programs, scRNA-seq is unable to reveal
the underlying driving force, such as epigenetic factors. For this
purpose, it requires techniques that capture cell-to-cell variations in
their epigenetic landscape. Since chromatin accessibility to a large
extent could reflect transcription factor binding, histone modifica-
tions and DNAmethylation, and offers greater insights into the gene
regulatory mechanisms, single-cell sequencing assay for
transposase-accessible chromatin (scATAC-seq) has recently
become the most widely used assay for epigenomic profiling at
single-cell resolution. A major advantage of scATAC-seq, compared
to scRNA-seq, is that it provides mechanistic insights into gene
regulation modulated by transcription factors12. The joined appli-
cation of scRNA-seq and scATAC-seq to cancer specimens helps
to discern precise cis-regulatory elements and target genes as
well as identify the key regulatory networks that govern tumor
development.

To characterize both transcriptomic and epigenetic hetero-
geneity within different cell lines, we perform scRNA-seq and scATAC-
seq on dozens of human cell lines, mainly consisting of breast and
colorectal origins. By integrating the scRNA-seq and scATAC-seq data,
we investigate themolecularmechanisms that drive heterogeneity and
find that copy number variation (CNV) only contributes partially to the
observed transcriptomic heterogeneity. Epigenetic diversity and
extrachromosomal circular DNA (ecDNA) distribution contribute sig-
nificantly to the intra-cell-line heterogeneity. Moreover, through line-
age tracing and hypoxia treatment, we demonstrate that the
transcriptomic heterogeneity is plastic and could be reshaped under
environmental stress. Taken together, our study performs single-cell
multi-omics of commonly used human cancer cell lines and offers
mechanistic insights into the intra-cell line heterogeneity.

Results
Pan-cancer scRNA-seq of human cell lines
In this study, 40 human cancer cell lines, which were distributed
among9 lineages anddominatedby solid tumors, and2humannormal
cell lines were selected for scRNA-seq profiling (Fig. 1a, Supplementary
Table 1). For mammary and colorectal cancer, 23 cell lines of different
molecular subtypes were selected (Supplementary Table 2). To
increase the throughput and reduce the cost of scRNA-seq experi-
ments, three cell lines from different lineages were pooled for each
scRNA-seq run and then computationally assigned to the corre-
sponding cell line according to their expression features (Fig. 1b and
Supplementary Fig. 1a, b; see “Methods”). The effectiveness of our
assignment analysis was then further validated (Supplementary
Fig. 1c–e, see “Methods”). We obtained a total of 23,089 cells with an
average of 513 cells per cell line, 34,641 transcripts (represented by
unique molecular identifier, UMI), and 5859 genes captured per cell,
underscoring thehighquality of our dataset (Supplementary Fig. 1f–h).
The correct assignment of individual cell lines was again confirmed by
matching the scRNA-seq profile with the bulk RNA-seq profile gener-
ated by the Cancer Cell Line Encyclopedia (CCLE) or GEO13–15 (Sup-
plementary Fig. 1i). To combine each batch of scRNA-seq data and
generate a single-cell transcriptomic encompassing all 42 cell lines,
Seurat16 was used and each of 42 cell lines formed a distinct cluster in
the Uniform Manifold Approximation and Projection (UMAP) (Fig. 1c
and Supplementary Fig. 1j; available also online: https://db.cngb.org/
cdcp/scatlashcl/). The cluster distributionwas not associatedwith read
counts or sequencing batches (Supplementary Fig. 1k, l). To further
examine the reproducibility of our scRNA-seq experiment, we ana-
lyzed three cell lines in two independent experiments, including Caco-
2, SCC-4, and MDA-MB-231. The results showed that cells of the same
cell line, but measured in two independent experimental runs, were
intermingled (Fig. 1c and Supplementary Fig. 1m).

To gain further insights into specific cancer lineages, we plotted
breast and colorectal cancer cell lines in UMAP, separately. For breast
cancer cell lines, cells of the same molecular subtypes, including
luminal A (LA), luminal B (LB), Her2+ (H), triple-negative A (TNA), and
triple-negative B (TNB), were adjacent to each other (Fig. 1d). The
expression of clinically relevant biomarkers, including ESR1 and ERBB2
(HER2), were in consistence with their reported status17. For instance,
ESR1 was mainly expressed in LA and LB subtypes, while ERBB2 was
upregulated in LB and H subtypes (Fig. 1e). Moreover, we analyzed the
expression of additional well-known stromal and epithelial markers of
clinical relevance (Fig. 1f)18,19. Luminal and Her2+ cell lines highly
expressed epithelium genes (EPCAM, CDH1, etc.), but neither basal
epithelial (KRT14, etc.) nor stromal markers (VIM, etc.), whereas triple-
negative cell lines expressed high levels of basal cellmarker genes, and
TNB cell lines further showed high expression levels of stromal and
epithelial-mesenchymal transition (EMT)-related genes (FN1, etc.). In
colorectal cancer, however, cells of the same subtype were not com-
pletely clustered together, in particular for those of CMS1 type (Sup-
plementary Fig. 1n). For instance, inUMAPprojectionHCT-15 andDLD-
1 cells,whichwerepreviouslydefined asCMS1 subtype,were separated
from another two CMS1 subtype cell lines20. Considering these cell line
subtypes were previously defined based on microarray data20, we
employed the same R package to redefine the cell line subtypes based
on RNA-seq data in the CCLE or GEO database. As a result, most of the
cell lines remained in their original subtype, but DLD-1was clustered as
CMS3 subtype (Supplementary Table 2). Notably, Sveen et al. have also
shown thatHCT-15 andDLD-1 could not be confidently assigned to any
subtype21, suggesting that these cell lines might not be suitable for
research strictly requiring CMS1 or CMS3 subtype.

Transcriptomic heterogeneity within individual cell lines
We then zoomed into the single-cell transcriptomeprofile of individual
cell lines. According to the pattern of transcriptome heterogeneity

Article https://doi.org/10.1038/s41467-023-43991-9

Nature Communications |         (2023) 14:8170 2

https://db.cngb.org/cdcp/scatlashcl/
https://db.cngb.org/cdcp/scatlashcl/


ba

c

ed

Epithelial Basal Epith Luminal Epith L.P. Stroma EMT

Tr
ip

le
 N

eg
at

iv
e

H
er

2+
Lu

m
in

al

A
A

B
B

Hs 578T

MDA−MB−231

BT−549

MDA−MB−468

HCC1937

SK−BR−3

MDA−MB−453

MDA−MB−361

BT−474

ZR−75−1

T−47D

MCF7

E
P
C
A
M

E
G
FR

C
D
H
1

E
R
B
B
2

E
R
B
B
3

E
R
B
B
4

E
S
R
1

A
R

P
G
R

C
A
LC
R

P
R
LR

K
R
T1
4

IT
G
A
6

K
R
T5

TP
63

K
R
T1
7

M
M
E

K
R
T8

K
R
T1
8

K
R
T1
9

FO
X
A
1

G
A
TA
3

M
U
C
1

C
D
24 K
IT

G
A
B
R
P

V
IM

FA
P

C
O
L1
A
1

C
O
L3
A
1

C
O
L5
A
1

A
C
TA
2

TA
G
LN

LU
M

FB
LN
1

C
O
L6
A
3

C
O
L1
A
2

C
O
L6
A
1

C
O
L6
A
2

C
D
H
2

FN
1

S
N
A
I1

S
N
A
I2

S
N
A
I3

TW
IS
T1

ZE
B
1

ZE
B
2

C
D
44

−1

0

1

2

Average expression

Percent expressed
0

25

50

75

100

f

Colorectal cancer 
(12)

Breast cancer (12)
Head and neck

 cancer (5)

Leukemia (3)

Brain cancer (3)

Non-tumor (2)
Liver cancer (2)

Lung cancer (1)
Kidney cancer (1) Cervical cancer (1)

−10

0

10

−10 0 10
UMAP_1

U
M

AP
_2

786−O

A-253

A549

BT-474

BT-549

Caco-2_2

Caco-2

COLO 205

HNSCCUM-03T

DLD-1

FaDu

Hap1

HCC1937

HCT 116

HCT-15

HCT-8

HeLa

Hep G2

HK-2

Hs 578T

HT-29

Huh7

HNSCCUM-02T

K-562

LoVo

LS 174T

MCF7

MDA-MB-231_2

MDA-MB-231

MDA-MB-361

MDA-MB-453

MDA-MB-468

RKO

RPE-1

RPMI 8226

SCC-4_2

SCC-4

SF268

SF295

SK-BR-3

SNB75

SW480

SW620

T-47D

ZR-75-1

−10

0

10

20

−10 0 10
UMAP_1

U
M

AP
_2

0.0

0.5

1.0

1.5

ESR1

−10

0

10

20

−10 0 10
UMAP_1

U
M

AP
_2

0
1
2
3
4

ERBB2
Relative 
expression
level

Relative 
expression
level

−10

0

10

20

−10 0 10
UMAP_1

U
M

AP
_2

BT−474

BT−549

HCC1937

Hs 578T

MCF7

MDA−MB−231

MDA−MB−361

MDA−MB−453 MDA−MB−468

SK−BR−3

T−47D

ZR−75−1

Subtype

Cell line 1

Cell line 2

Cell line 3

Pooling scRNA-seq
(DNBelab C4)

Mapping to
CCLE data set

UMAP1

U
M

AP
2

Cell line
assignment

Fig. 1 | Characterizing cellular heterogeneity within cell lines by scRNA-seq.
a Quantitative scRNA-seq analysis of 42 diverse cell lines from 9 lineages. The cell
line number of each lineage is indicated.b Schematic of the experimental workflow
of scRNA-seq analysis. Three cell lines were pooled for scRNA-seq and then data
from Harmonizome was utilized to assign cells to the most similar one based on
their gene expression profile. c UMAP plot of all cell lines demonstrating the
robustness of cell line assignment. Different cell lines were labeled in different
colors. d Graphical representation of single-cell transcriptomics of breast cancer

cell lines according to cancer subtype labeled in different colors. e Normalized
expression levels of indicatedbiomarker genes (ESR1 and ERBB2) in individual cells,
with redness indicating expression level. f Bubble plot represents the average
expression levels of marker genes and fractions of expressed cells in breast cancer
cell lines. Basal Epith = Basal Epithelial, Luminal Epith = Luminal Epithelial, L.P. =
Luminal Progenitor, EMT = Epithelial toMesenchymal Transformation. Source data
are provided in the Source Data file.
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reflected in UMAP, 42 cell lines could be roughly divided into two
types: discrete and continuous (Fig. 2a and Supplementary Fig. 2a).
Whereas distinct subclusters were observed as the spatially discrete
ones (e.g., Hs 578T and SNB75) likely due to the presence of subclones
in these cell lines, the continuous ones showed a hairball pattern
without a clear border between subclusters (e.g., A549) (Fig. 2a and
Supplementary Fig. 2a). In total, 25 and 17 cell lines (57% and 43%)
belong to the discrete and continuous group, respectively

(Supplementary Fig. 2b and Supplementary Table 1). Although the
distinction between discrete and continuous might suggest different
mechanisms underlying the intra-cell-line heterogeneity, such classi-
fication could not quantitatively reflect the level of heterogeneity
within individual cell lines, which could be better represented as the
spread of cells in their respective UMAP. Therefore, we used another
metric, i.e., ‘diversity score’, to systematically quantify the intra-cell-
line heterogeneity of each cell line based on scRNA-seq data22. Briefly,

Fig. 2 | Different patterns of transcriptome heterogeneity within cell lines.
a Illustration of two types of transcriptional heterogeneity: continuous vs discrete;
UMAP plot showing exemplary cell lines for different patterns: Hs 578T for discrete
and A549 for continuous. b Diversity scores for different cell lines, cell lines with
light blue indicating continuous pattern and cell lines with dark blue indicating
discrete pattern. A violin plot depicted the diversity score of the cell lines with the
two patterns, including continuous (n = 18 cell lines) and discrete (n = 24 cell lines).
For each boxplot, the center line represents the median, the box indicates the

upper and lower quartiles and the whisker represents 1.5-fold of the interquartile
range. A one-sided Wilcoxon test was used to test the statistical significance (p-
value = 0.021). c The main heatmap depicts pairwise similarities between all NMF
programs, quantified by Jaccard Index over the programs’ genes, ordered by
hierarchical clustering. Twelve clusters are indicated by squares and numbers.
d Annotation and selected top marker genes were shown for each cluster. Source
data are provided in the Source Data file.
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we employed PCA to project all cells captured in scRNA-seq to an
eigenvector space and defined the centroids of the individual cell line,
and then calculated the diversity score as the average distance within
individual cell lines to their specific centroids (“Methods”). In general,
thediscrete/continuous classification correlatedwellwith the diversity
score, where the majority of the cell lines with the top 25% highest
diversity scorewere those showing discrete pattern (9/10; Fig. 2b), and
the diversity score in the discrete group is significantly higher than in
continuous one (Fig. 2b right panel), suggesting cell lines with a high
degree of heterogeneity often derives distinct subclasses. However,
there were exceptions: some discrete cell lines had low diversity
scores, such as SW620, whereas continuous pattern cell lines derived
high diversity scores, such as SK-BR-3(Fig. 2b). For the former, the
within-cluster distances are significantly smaller than the between-
cluster ones. As a result, the cell line showed a discrete pattern
according to the classification, even though its diversity score is low
given that the collective distance is not that large. For the latter, the
collective distance can be large whereas the within-cluster distance is
not significantly different from the between-cluster ones. Taken
together, the intra-cell-line heterogeneity demonstrated by two
metrics indicated that transcriptome diversity couldbe affected by the
presence of distinct subclones, as well as the intrinsic plasticity of the
cell line, and the contribution of these two factors to the intra-cell-line
heterogeneity varies among individual cell lines.

Molecular features shaped by transcriptomic heterogeneity
To functionally characterize the extensive variability in gene expres-
sion, we employed a computational framework, which has previously
been used to determine the heterogeneous expression programs8. In
essence, non-negative matrix factorization (NMF) was used to search
heterogeneously activated expression programs (termed NMF pro-
grams) within each cell line (“Methods”) (Supplementary Fig. 2c). In
total, we determined 228 programs, with 2~8 programs for each cell
line (Supplementary Data 1). Next, we compared the NMF programs
based on their shared genes and merged similar NMFs into NMF
clusters to determine recurrent NMF programs among 40 cancer cell
lines. As a result, 12 clusters that were heterogeneously activated in
more than 3 cell lines were identified (Fig. 2c and Supplementary
Data 2). Subsequently, based on shared genes among the individual
programs within the same cluster, where the genes appearing in more
than 25% of programs were used as signature genes, gene set enrich-
ment analysis (GSEA) was employed to annotate each cluster. The two
most prominent program clusters, shared by the majority of cell lines
(39/40) are related to the cell cycle, including the G1/S and G2/M
programs (Fig. 2c, d and Supplementary Fig. 2d), suggesting that the
cell cycle variation is the primary cause of the observed transcriptomic
heterogeneity in most cell lines. Besides cell cycle-related programs,
another 10 program clusters represent various critical biological pro-
cesses (Fig. 2d), largely independent of cell cycle status (Supplemen-
tary Fig. 2e). For instance, program cluster 1 consists of genes related
to protein metabolisms, such as CD81, EEF1A1, CSTZ, UPF1, RPS16, and
PRS2. Program clusters 2 and 5 are both associated with the EMT, but
with different marker genes and reflect EMT-like processes in distinct
cell lines. Program cluster 2 (EMT II) includes SPARC, CTGF, FN1, VIM
and other genes, which resemble the partial EMT and are related to
cancer metastasis6, while Program cluster 5 (EMT I) includes VIM,
S100A4, TIMP1, KRT19, etc., which prompt the progression of different
cancer via EMT23–25. The identification of different EMT-associated
program clusters suggested EMT as a common but context-specific
driver of intra-cell-line heterogeneity. Program cluster 3 contains
interferon response genes, such as IFIT1, IFIT2, and IFIT3, whose het-
erogeneity has previously been observed in ovarian cancer26. Program
cluster 4 harbors stress response genes, including DNA damage-
induced genes DDIT3 and DDIT4, which are reported heterogeneously
activated in HNSCC6. Program cluster 6, which is termed as estrogen

response, was significantly enriched in breast cancer cell lines (11/12)
(Supplementary Fig. 2d). Program clusters 7, 8, 9, and 10 are related to
themitotic spindle, mitochondria (MT), interphase, andMYC pathway
respectively. Moreover, we further examined the co-occurrence of
these programs within cell lines. As expected, two EMT program
clusters (program 2 and 5) are significant co-occurrences in cell lines
and EMT II also coexists with the IFN response program (Supplemen-
tary Fig. 2f). Besides, the ‘Interphase’ tends to coincide with ‘Mitotic
spindle’ and ‘MT’. These results indicated that some heterogeneously
activated program clustersmay be entangled with each other or result
from common upstream factors.

Additionally, we compared program clusters identified in our
study with a recent study, where 198 cancer cell lines were analyzed by
scRNA-seq, and 12 programs were determined8. According to the
similarity of signature genes, six out of twelve program clusters were
identified in our study, including IFN response, stress response, EMT I,
EMT II, G1/S and G2/M (Supplementary Table 3). This suggests that
even with largely diverged transcriptome features, the heterogeneous
transcriptional programswere shared amongdifferent cancer cell lines
of different tissue origins. Moreover, due to the different spectrum of
cancer cell lines that were profiled in two studies, some recurrent
expression program clusters were only observed in our analysis, such
as estrogen response (Program6), whichwas enriched in breast cancer
cell lines (Supplementary Fig. 2d).

Pan-cancer scATAC-seq of human cell lines
Although single-cell transcriptomics allows the detection of cellular
diversity, it remains a challenge to interpret the epigenomic regulatory
code based solely on the transcriptome data. By comparison, scATAC-
seq provides a more direct characterization of the genome-wide
activity of enhancers and promoters in heterogeneous cell
populations27. Therefore, we further used scATAC-seq to investigate
the epigenomic heterogeneity within individual cell lines at single-cell
resolution. To increase the throughput and reduce the cost of scATAC-
seq experiments, at most six cell lines with distinct expression profiles
were pooled for each scATAC-seq run and then computationally
assigned to the corresponding cell line according to the accessibility
features of the differentially expressed genes (Fig. 3a and Supple-
mentary Fig. 3a).

We utilized a framework that has been used to identify cell
clusters in different types of samples to analyze scATAC-seq data28.
First, after quality filtering, 54,597 high-quality single nuclei were
obtained, with a median of 1170 nuclei (ranging from 203 to 4391
nuclei) per cell line and median fragments of 11,702 (ranging from
1000 to 99,444) per nucleus (Supplementary Fig. 3b, c). Then, we
aggregated the scATAC-seq profile to calculate the genomic dis-
tribution of open chromatin regions, which revealed that 35.5% of
ATAC peaks were localized in promoter-proximal regions (<±1.5 kb
TSS).We then usedUMAP to plot 39 cell lines together to present the
inter-cell-line distance at the chromatin level and each cell line
formed a distinct cluster (Fig. 3b).

To assess the intra-cell-line heterogeneity at the epigenomic level,
we partitioned cells into preliminary clusters within cell lines. In con-
trast to scRNA-seq data, the scATAC-seq data was highly sparse and
therefore it was challenging to define distinct cell clusters based on
scATAC-seq data using UMAP, even for cell lines harboring clusters
based on scRNA-seq data. Therefore, according to the shape of the cell
population projected in UMAP, cell lines were roughly classified into
two categories: indiscriminate and differential ones. Cells in the
indiscriminate ones showed no obvious clustering pattern (e.g., COLO
205),while distinct clusterswere observed in the differential ones (e.g.,
MDA-MB-231 and SF268). As a result, 62% of cell lines showed an
indiscriminate pattern,while 38% showedadifferential pattern (Fig. 3c,
Supplementary Fig. 3d and Supplementary Table 4). Interestingly,
among cell lines with the differential pattern, only half of them (7/15)
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exhibited discrete pattern determined by scRNA-seq data. This result
suggested that scRNA-seq and scATAC-seq could reveal cellular het-
erogeneity at different regulatory levels. Meanwhile, we also applied a
diversity score to quantify the intra-cell-line heterogeneity of each cell
line based on scATAC-seq data. Similar as done for scRNA-seq data, we
employed PCA from ArchR analysis result to project all cells captured
in scATAC-seq to aneigenvector space anddefined the centroids of the

individual cell line, and then calculated the diversity score as the
average distance within individual cell lines to their specific centroids.
In general, the indiscriminate/differential classification correlated well
with the diversity score, and the diversity score of cell lines belonging
to the differential group was significantly higher than those from
indiscriminate groups (Fig. 3d, e), suggesting cell lines with a high
degree of heterogeneity often derives distinct subclusters.
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Transcriptomic heterogeneity associated with CNVs
To identify the origin of observed transcriptional heterogeneity, we
first turned to genetic variation, which is commonly observed in
malignant tumors. For this purpose, the large-scale copy number
variations (CNVs) were inferred based on scRNA-seq data using
inferCNV29, where we calculated the average expression levels in win-
dows of 400 genes around each locus in comparison to a set of
reference normal cells (RPE-1 and HK2) (“Methods”). The analysis
identified CNV subclones within 25 of 40 (62.5%) cancer cell lines
(Fig. 4a, b and Supplementary Fig. 4): 8 (20%) cell lines showed the
match between transcriptional subclusters and CNV-based subclones
(Fig. 4b upper and Supplementary Fig. 4a), which suggested that CNV
induced copy number variation considerably contributes to the tran-
scriptional variation; 17 (42.5%) cell lines showed no association
(Fig. 4bmiddle and Supplementary Fig. 4b). Among these 25 cell lines,
18 and 7 cell lines showed discrete and continuous pattern, respec-
tively, while, for the rest 15 cell lines, 6 and 9 cell lines showed discrete
and continuous pattern, respectively (Supplementary Table 1). It sug-
gests that cell lines tend to present a heterogeneous transcriptomic
activity in a more discrete manner when genetic variation contributes
to intra-cell-line heterogeneity. Indeed, among cell lines with a discrete
pattern, 78.2% of cell lines had CNV subclones, and, in 30.4% of these
cell lines, CNV subclones were matched to transcriptional subclusters
(Fig. 4a middle). We then investigated whether the genes located in
CNV regions contribute to the transcriptomic variability in these
matched cell lines. The results showed that the differentially expressed
genes are indeed significantly enriched in CNV regions (Fig. 4c), sug-
gesting that genetic variation is an important factor determining the
intra-cell-line heterogeneity for discrete pattern cell lines. However,
the fact that not all discrete pattern cell lines have CNV subclones and
CNV subclones are not always linked to transcriptional subclusters also
suggests that even for those with distinct patterns there are other
factors influencing the transcriptomic heterogeneity.

Transcriptomic heterogeneity modulated by chromatin
accessibility
In addition to genetic heterogeneity, accumulating data suggested
that different cellular states are also encoded and propagated epi-
genetically. To explore the mechanisms underlying epigenomic het-
erogeneity, first, we applied two approaches, including ArchR28 and
ChromVAR30, to seek to infer potential transcription factors (TFs) that
drive the differential chromatin accessibility between cell subclusters
and focused on common TFs that appeared in at least three cell lines
(Fig. 5a and Supplementary Data 3, see “Methods”). TFs such as IRF1,
IRF2, IRF9, and STAT2, which were involved in regulating the IFN
response, were heterogeneously activated within LS 174T and
HNSCCUM-02T cell lines. The analysis based on scRNA-seq data also
showed that the IFN response transcription program heterogeneously
activated in LS 174T and HNSCCUM-02T (Supplementary Data 2).
Another group of common TFs including EGR3, ELF1, KLF4, and
TFAP2C, which were associated with the estrogen response, were
heterogeneously activated in ten cell lines. These ten cell lines, except
for HT-29, K-562, and SW480, also showed heterogeneity in the
Estrogen response program based on scRNA-seq data (Supplementary
Data 2). These results suggested that scATAC-seq data could help to
reveal the TFs responsible for the transcriptional heterogeneity.

Then, we focused on seven cell lines that exhibited discrete and
differential patterns in scRNA-seq and scATAC-seq data, respec-
tively, intending tomatch subclusters between the two datasets. The
gene score matrix was calculated based on scATAC-seq data, which
was then used to align cells from scATAC-seq to cells from scRNA-
seq according to the similarity between the gene score and gene
expression measured by scRNA-seq28. As a result, in three out of
seven cell lines, including MDA-MB-231, RPMI 8226, and SNB75, cell
subclusters could be confidently matched between the two datasets
(Fig. 5b–d). MDA-MB-231 cells were clustered into four and three
subgroups according to scATAC-seq and scRNA-seq data, respec-
tively, where subgroup 2 of the scATAC-seq dataset was matched to
a mix of subgroup 1 and 2 of the scRNA-seq dataset (Fig. 5b–d left).
RPMI 8226 cells were divided into subgroup 0 and 1 based on scRNA-
seq (Fig. 5c middle), while subgroup 1 was further divided into three
subclusters according to scATAC-seq (Fig. 5b, d middle). For SNB75,
subgroup 3 of scATAC-seq data was matched to a mix of subgroup 0
and 1 of scRNA-seq data, the remaining subgroups of scATAC-seq
data showed a one-to-one correlation with scRNA-seq subgroups
(Fig. 5b–d right). Detection of increased open chromatin could be
attributed to either increased chromatin accessibility or increased
DNA copy numbers. To exclude the influence caused by the latter,
i.e., CNVs, we demonstrated that the chr15 and chr9, which showed
CNV in subclusters of SNB75 and MDA-MB-231 respectively, did not
show evident heterogeneity in chromatin accessibility among dif-
ferent subclusters (Supplementary Fig. 5a, b). This suggested that
heterogeneous chromatin accessibility and CNV could indepen-
dently contribute to transcriptomic heterogeneity, and for these
three cell lines, chromatin accessibility contributes considerably to
transcriptomic heterogeneity.

To further explore the molecular mechanisms that drive hetero-
geneous chromatin accessibility and RNA expression, we sought to
infer potential TFs that bind to differentially accessible chromatin
regions. We applied chromVAR30, a package designed for analyzing
sparse scATAC-seq data to infer TF activity by measuring the gain or
loss of chromatin accessibility within sets of genomic features while
controlling for technical biases, to reveal the potential TFs showing
variability among subclusters (See “Methods”, Fig. 5e and Supple-
mentary Data 4). To further select confident TFs, we applied three
criteria: (1) the accessibility of TF-specific binding motifs differed
between subgroups; (2) the expression of TF target genes, derived
from the regulons identified through the SCENIC workflow, contribute
to the transcriptomic heterogeneity within the cell line; (3) the
expression or chromatin accessibility of TF should be variable among
the subclusters of the cell line. In MDA-MB-231, the activity of FOXA2
was found to be specifically upregulated in subgroup 0 (Fig. 5f), and
the promoter accessibility of FOXA2, an indicator of its transcription,
was also increased in subgroup 0 (Fig. 5g). According to the tran-
scriptomic feature, subgroup 0 had activated expression profile rela-
ted to the hallmark of ‘Kras_signaling_up’ (Supplementary Data 1). We
then analyzed the downstream targets of FOXA2 and discovered that
they were more related to genes involved in ‘Kras_signaling_up’
(Fig. 5h), which were especially upregulated in subgroup 0 (Fig. 5i).
Recent studies have demonstrated that FOXA2 could cooperate with
KrasG12D activation during tumor development31,32. Our result implies
that FOXA2mayplay an important role in controlling theheterogeneity

Fig. 3 | Characterizing the heterogeneity of chromatin accessibility within cell
lines by scATAC-seq. a Schema of the experimental workflow of scATAC-seq
analysis. Cell lines were pooled for scATAC-seq and then differential genes were
utilized to assign cells to the most similar cell line based on the gene score calcu-
lated according to their chromatin accessibility. b UMAP representation of all cell
lines’ scATAC profile. Different cell lines were labeled in different colors. c UMAP
plot illustration of two types of expression variability: with (differential, MDA-MB-
231 and SF268) or without (indiscriminate, COLO 205) distinct chromatin

accessibility. d Diversity scores for different cell lines. Cell lines with light blue
indicate an indiscriminate pattern and cell lines with red indicate a differential
pattern. e A violin plot depicted the diversity score of the cell lines with the two
patterns, including differential (n = 15 cell lines) and indiscriminate (n = 25 cell
lines). For each boxplot, the center line represents the median, the box indicates
the upper and lower quartiles and the whisker represents 1.5-fold of the inter-
quartile range. A one-sided Wilcoxon test was used to test the statistical sig-
nificance (p-value =0.045). Source data are provided in the Source Data file.
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related to ‘KRAS_signaling_up’ within MDA-MB-231. In RPMI 8226,
NFE2L2 was upregulated and showed increased promoter accessibility
in subgroup 1 (Supplementary Fig. 5c, d), which showed an activated
EMT signature (Supplementary Data 1). It is in line with the fact that
NFE2L2 is a crucial regulator of tumor metastasis33,34, and the down-
stream targets of NFE2L2 were more related to genes involved in EMT
regulation (Supplementary Fig. 5e, f). In SNB75, NFYB is a critical TF in

cluster 4 (Supplementary Fig. 5g, h). We analyzed the downstream
targets of NFYB, which are functionally enriched for ‘E2F_targets’
(Supplementary Fig. 5i). These ‘E2F_targets’-related genes mainly
accumulated in cluster 4 (Supplementary Fig. 5j). Taken together,
these results demonstrated that the combination of scRNA-seq and
scATAC-seq data could facilitate the discovery of key epigenetic reg-
ulators underlying the observed cellular heterogeneity.

Article https://doi.org/10.1038/s41467-023-43991-9

Nature Communications |         (2023) 14:8170 8



Transcriptomic heterogeneity induced by ecDNA distribution
Recent studies showed that oncogene amplification could be found
both on chromosomes as well as extrachromosomal circular DNAs
(ecDNAs)35,36. Since a centromere is absent in the ecDNA, compared
with chromosomal amplicons, they are less stable and segregate sto-
chastically to daughter cells, which could potentially serve as a driving
force for cellular heterogeneity. To investigate the contribution of
ecDNA to the transcriptomic heterogeneity, we first established an
analytic method, which is able to detect highly potential ecDNAs
regions using scATAC-seq data, based on the assumptions: (1) ecDNAs
are highly amplified; (2) ecDNAs have much higher accessibility37.
Based on the scATAC-seq data, the read coverage showed multiple
peaks in every single cell, of which the first peak was considered as the
read coverage for the genome regions of two copies and therefore
defined here as reference coverage (Supplementary Fig. 6a). To search
for potential ecDNA fragments,we first divided thewhole genome into
bins of 100,000bp, quantified the read coverage of each bin in each
cell after normalizing the sequencing depth. We then calculated the
relative read coverage as the ratio of the coverage of each bin to the
reference coverage of the cell. Since ecDNAs have much higher
accessibility, regions with a relative coverage of at least six were
defined as potential ecDNA fragments, and further filtered by TSS
enrichment score and cell number (more detail in “Methods”) (Sup-
plementary Fig. 6b–d). In addition, given the sparsity of scATAC-seq
data, even an ecDNA derived from a continuous genomic region could
be detected as more than one ecDNA fragment based on scATAC-seq
data if the region was not evenly and sufficiently covered by scATAC-
seq reads due to experimental and/or mapping biases. Therefore, the
number of the ecDNA fragments that we have identified should be
higher than the number of different ecDNA species found in the cell.
To address this, we further investigate the correlation of their read
coverage across different potential ecDNA fragments in individual cell
line and merged nearby and highly correlated fragments as potential
ecDNA regions (see “Methods”). We then defined regions that have
been merged as potential ecDNA regions.

We applied our method to all the cell lines with scATAC-seq data.
As shown in Supplementary Data 5 and Fig. 6a, a median of 229
potential ecDNA regions was detected in each of the 31 cell lines. The
length distribution of potential ecDNA regions ranged from 0.1M to
30M with a median of 0.60M (Supplementary Fig. 6f). Importantly,
our method successfully discovered the experimentally confirmed
ecDNAs, such as chr9:130700000-131400000 in K562, in which ABL1
and NUP214 are located11. Oncogenes were significantly enriched in
potential ecDNA regions (Fig. 6a). The result, that, compared to ecD-
NAs without oncogenes, ecDNAs with oncogenes appeared in a higher
proportion of cells within individual cell lines (Fig. 6b), suggested that
the ecDNA containing oncogenes provide cells with a growth advan-
tage and therefore heterogeneity. Given that ecDNAcouldenhance the
amount of transcribed RNA by increasing DNA copy number, we fur-
ther calculated the correlation between the expression of genes loca-
ted on ecDNAs and the relative coverage number of ecDNAs across
each cell and found that they are partially correlated (Fig. 6c). As an
example, geneKRT14 andKRT17, LGALS2, SERPINE1 and PCOLCE, which
located in different ecDNAs in SCC-4 cell line, were specifically
expressed in distinct three subclusters within SCC-4 cell line (Fig. 6d,

Supplementary Data 5 and Supplementary Fig. 6g). Although scRNA-
seq and scATAC-seq data couldn’t be matched for SCC-4, the cell
proportion with high expression of these genes, identified by scRNA-
seq data, was highly correlated with the cell proportion containing
ecDNA with these genes, identified by scATAC-seq data (Fig. 6e). This
result implied that the high copy number of ecDNA contribute to the
high expression of genes located in ecDNA. To further evaluate ecD-
NAs’ influence on transcriptional heterogeneity, we selectedMDA-MB-
231, whose scATAC-seq and scRNA-seq data could be integrated
(Fig. 5b–d left), to reflect the copy number of ecDNA in the UMAP
profiled by scRNA-seq data. As shown in Fig. 6f, Chr12:
5900000_7200000 ecDNA was especially enriched in subcluster 0.
Meanwhile, the genes located on this ecDNA, including CD9, LTBR,
PTMS, TPI1, ENO2, and C12orf57, were also highly expressed in sub-
cluster 0 (Fig. 6g and Supplementary Fig. 6h), andCD9 is one of the top
marker genes for subcluster 0. These results demonstrated that ecD-
NAs could affect gene expression and therefore cell clustering.
Moreover, a diverse range of TFs was found to be located within
ecDNAs (Supplementary Fig. 6i). We then took the SNB75 cell line as an
example to look into specific TFs located in ecDNA region. As shown in
Fig. 5b, c, by utilizing transcriptome and chromatin accessibility data,
we identified five distinct subclusters (R0-R4) within SNB75. Notably,
the potential ecDNA region (chr22:37439388_38039388) exhibited a
significantly higher copy number specifically in subcluster R3 com-
pared to the other clusters (Supplementary Fig. 6j, k). Gene set varia-
tion analysis (GSVA) revealed that all the 29 genes within the ecDNA
region (chr22:37439388_38039388), including theTF SOX10, exhibited
significantly higher expression levels specifically in subcluster R3
(Supplementary Fig. 6l). Importantly, the targets of SOX10 were also
found to be significantly more activated in subcluster R3 (Supple-
mentary Fig. 6m). These results strongly demonstrated that the pre-
sence of ecDNA could impact the activity of specific transcription
factors and further influence their targets, ultimately contributing to
cellular heterogeneity. Taken together, these results suggest that
ecDNAs could change the copy number of specific genes and therefore
contribute to transcriptomic heterogeneity.

The transcriptomic heterogeneity dynamics
Recent work has revealed that even single-cell-derived populations of
cancer cells harbor subpopulations, which are marked by fluctuations
of particular gene expressions and could respond differently upon
drug treatment38,39. To experimentally explore the relative contribu-
tion of this intrinsic plasticity to the observed transcriptome hetero-
geneity, we choseMDA-MB-231 andHCT 116 cell lines showing discrete
and continuouspatterns, respectively, for lineage tracing experiments.
In brief, each cell was first transduced with a lentiviral particle that
encoded a PuroR-T2A-GFP with a unique 28-SW nucleotide barcode
(termed Cell-ID) in its 3’UTR (“Methods”, scheme Supplementary
Fig. 7a). We seeded 200 cells carrying Cell-ID for each cell line and
expanded cells for approximately 10doublings to establish the starting
population and further cultured them for another two weeks. We then
performed scRNA-seq for the two cell lines at two different time points
(T1 and T2). Cells at different time points showed similar clustering
patterns with no significant changes in the proportion composition of
subgroups in bothHCT 116 andMDA-MB-231 (P > 0.05), demonstrating

Fig. 4 | Assessing the role of CNVs in cellular transcriptomic heterogeneity.
a Percentage of cell lines whose transcriptomic subclusters are associated or not
associated with CNV subclones in all cell lines (left), discrete pattern cell lines
(middle), and continuous pattern cell lines (right), respectively. b Representative
cell lines with or without the association between transcriptomic subclusters and
CNV-based subclones: CNV subclone, identified by chromosomes 2, 5 and 18, is
linked to transcriptomic subcluster (upper, HeLa,); CNV subclones, identified by
chromosome 13, arenot linked to transcriptional subclusters (middle, HT-29); there

is only one CNV clone type existing within the cell line (bottom, MDA-MB-453).
c The differentially expressed genes between subclusters are enriched in CNV
regions for listed cell lines (DEG number: n = 284 in cluster 3 of 786-O, n = 284 in
cluster 0 of HeLa, n = 289 in cluster 2 of Hep G2, n = 159 in cluster 1 of HNSCCUM-
03T, n = 643 in cluster 2 of Huh7, n = 256 in cluster 1 of MDA-MB-468, n = 638 in
cluster 4 of RKO, n = 1351 in cluster 4 of SNB75). A one-tailed hypergeometric test
was used to test the statistical significance. Source data are provided in the Source
Data file.
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a stable cellular composition along with the cell expansion (Fig. 7a and
Supplementary Fig. 7b). Based on the scRNA-seq data, we calculated
the barcode number in different time points. At T1, we detected a total
of 93 and 87 distinct cell barcodes in HCT 116 and MDA-MB-231,
respectively (Fig. 7b and Supplementary Fig. 7c). At T2, we detected a
total of 88 and 92 distinct cell barcodes in HCT 116 and MDA-MB-231,
respectively (Fig. 7b and Supplementary Fig. 7c). In HCT 116 cells at T1,

only 34 of 93 barcodes were exclusively observed in one subgroup (21
for cluster 0, 4 for cluster 1, and 9 for cluster 2), whereas the cells
labeled with the remaining 59 barcodes were distributed in more than
one subgroup. Given that the cells labeled with the identical barcode
were likely derived from the sameancestor, the observation suggested
that one cell could evolve different transcriptomic features during
expansion. Among the 34 barcodes, 14 could still be detected in cells at
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T2 (Fig. 7b). Among the 14 barcodes, eight barcodes were exclusively
distributed in cluster 0 at T1 (appeared inmore than one cell), but only
two of them were restricted in cluster 0 at T2 and the remaining ones
were detected in other subgroups at T2 (Fig. 7c, left panel). For the
other six barcodes,whichwereobservedonly in cluster 2 at T1, noneof
them was restricted in cluster 2 at T2 (Fig. 7c, right panel). A similar
result was also observed in the MDA-MB-231 cell line (Supplementary
Fig. 7b–d). These results demonstrated that although the tran-
scriptome heterogeneity is retained, the transcriptome of individual
cells is highly plastic and able to transit between different states, and
this phenomenon is common for discrete and continuous cell lines.

Hypoxia treatment remodels intra-cell-line heterogeneity
Tumor initiation and progression are dynamic processes, which are
accompanied by dramatic changes in the microenvironment. Micro-
environment plays important roles in tumor progression, therapy
resistance, and metastasis formation, and adds another layer of reg-
ulation that could drive intratumoral heterogeneity18. Here, we sought
to evaluate if these transcriptomic heterogeneities are static or rather
plastic under different conditions. Given that in solid tumors, tumor
cells are often under different extents of hypoxia, hypoxia treatment
was chosen as environmental stress for perturbation, and scRNA-seq
was performed after 24-h hypoxia incubation on three cell lines
(Supplementary Table 5). The result showed that hypoxia-related
genes were significantly changed after hypoxic treatment (Supple-
mentary Fig. 8a). To match cell subclusters before and after hypoxia
treatment, we utilized Seurat’s FindIntegrationAnchors to find anchors
between the two datasets, which could reflect cell-to-cell correlations
(“Methods”). As a result, we observed two types of correlating pattern:
(1) the clusters were one-to-one matched before and after hypoxia
treatment, which suggested the difference between cell clusters is not
changed by hypoxia treatment, such as ZR-75-1 (Fig. 8a); (2) some
clusters were divided from one to more, which indicates that cells
within one cluster may respond differently to the hypoxia, such as
DLD-1 and SW620 (Fig. 8c, e). Notably, despite the influence of
hypoxia, the distinct properties and specific features of different
subclusters were maintained across both normal and hypoxia condi-
tions, as evidenced by the significant overlap between the DEGs (dif-
ferentially expressed genes) identified across clusters under normal
and hypoxia conditions (Supplementary Fig. 8b). To identify the
potential mechanisms that caused the differential responses to
hypoxia stress within one subcluster, we focused on the subclusters
that were split under hypoxia. For instance, subcluster 0 of DLD-1 was
divided into 2 clusters (cluster 0-1 and 0-2) under the hypoxia condi-
tion (Fig. 8c). We examined the differentially expressed genes (DEGs)
between cluster 0 and0-1/0-2: themost variable genes between cluster
0 and0-1 are hypoxia-related genes such asBNIP3L, SLC2A1 and ERO1A,
while there are limited hypoxia-relatedDEGsbetween cluster 0 and0-2
(Fig. 8d and Supplementary Fig. 8c). This indicates that there were two
groups of cells in the original cluster 0, which responded differently to

the hypoxia, but the difference was not evident at the transcriptional
level before hypoxia treatment (Fig. 8d and Supplementary Fig. 8c).
Similarly, in SW620 cells, cluster 0 was divided into cluster 0-1 and 0-2
(Fig. 8e); although all cells responded tohypoxia, the cells in cluster 0-1
showed changes of additional genes related to EMT (Fig. 8f).

Previous studies showed that changes in histone modifications
and binding of specific TFs may precede and foreshadow changes in
gene expression, indicating primed chromatin states influence cell fate
by potentiating genes for activation or repression40,41. Here, by cross-
checking scRNA-seq and scATAC-seq data, we aimed to identify such
primed accessible chromatin, which might underlie the different
responses to hypoxia treatment. For this purpose, we compared the
scATAC-seq data under normoxia with scRNA-seq data under hypoxia
and identified cell subclusters that could be confidently matched
between the two datasets (Fig. 9a, c). Within DLD-1 cells, subcluster 0-1
was sensitive to hypoxia. scATAC-seq data revealed that ETS (ELK4,
FLI1) and E2F (E2F3, E2F6) familieswere activated in subcluster 0-1 cells,
whichwere sensitive to hypoxia. This is in linewith theprevious studies
showing the role of ETS transcription factors in hypoxia-induced gene
expression (Fig. 9b)42,43. Within SW620 cells, subcluster 0-1 showed
changes in EMT-related genes in addition to hypoxia-related ones.
Based on scATAC-seq data, we found that HMG (TCF4, TCF3) family
members were the differential TFs in cluster 0-1 (Fig. 9d). Given pre-
vious studies showed thatHMG family could regulate EMT, this implies
that these TFs might contribute to the hypoxia-induced EMT
activation44,45. These results suggested that heterogeneous chromatin
accessibility could contribute to the heterogeneous stress response of
a seemingly homogenous cell population.

Discussion
In this study, we provided a multi-omics single-cell profiling of dozens
of human cancer cell lines of nine tissue origins. Detailed analysis
revealed that transcriptomic heterogeneitywas frequently observed in
established cancer cell lines and shaped by multiple common tran-
scriptional programs. CNV inferred by scRNA-seq, epigenomic diver-
gence, and extrachromosomalDNA (ecDNA) distributionmeasured by
scATAC-seq were found to contribute to the observed intra-cell-line
heterogeneity. Through lineage tracing and hypoxia treatment, we
found that transcriptomic heterogeneity is dynamic and could be
reshaped by environmental stress.

The intra-cell-line heterogeneity observed in commonly used
cancer cell lines may have a profound influence on cell line-based
biomedical research. Itmay change the way researchers interpret their
results and provide new explanations for unsolved questions. Our
previous study has shown that cellular response to PARP inhibitors
could be affected by the EMT program, which was heterogeneously
activated within the cell line5. Srivatsan et al. also found heterogeneity
in the cellular response to HDAC inhibitors, which is caused by the
variation in cells’ acetate reservoirs46. The transcriptional variation
revealed by scRNA-seq could provide information on how

Fig. 5 | Expression heterogeneity regulated by epigenetic plasticity. a The
heatmap depicted the hierarchical clustering of cell lines and TFs heterogeneously
activated in more than three or at least four cell lines. The exact number and
identity of cell lines for each TF are listed in the accompanying source data file. Five
clusters of subgroups of cell lines and seven functional groups of TFs were iden-
tified, respectively.b–d Integrationof scRNA-seq and scATAC-seq of three cell lines
(MDA-MB-231, RPMI 8226, and SNB75): b UMAP plot scATAC-seq clusters of three
cell lines; cMapping between transcriptomic subclusters and scATAC-seq clusters.
UMAP plot scATAC-seq data with transcriptomic subcluster labels indicated. d Dot
plot showing the corresponding scRNA-seq clusters (X-axis) and scATAC-seq clus-
ters (Y-axis). Dot color indicates the matching degree between scRNA clusters and
scATAC clusters, and dot size indicates the cell proportion in the scATAC-seq
cluster that overlaps with corresponding scRNA-seq clusters. A/R combined with
the original cluster number was indicated, e.g., A1 represented cluster 1 from

scATAC-seq data, and R0 represented cluster 0 from scRNA-seq data. e TFs sorted
with the motif enriched in the peaks of heterogenous accessibility of MDA-MB-231.
f Ridge plot showed the activity of FOXA2 across subclusters ofMDA-MB-231. g The
chromatin accessibility of FOXA2 gene locus in different subclusters of MDA-MB-
231. h Functional enrichment analysis of FOXA2 downstream target genes with
Hallmark gene set. A one-tailed hypergeometric test was used to test the statisti-
cally significant differences. FDR-adjusted p-value < 0.05. Q value for Kras_signa-
ling_up is0.074. iComparisonof the average expression level of ‘KRAS signaling up’
related genes among FOXA2 target genes across subclusters of MDA-MB-231
(n = 208 in subcluster 0, n = 687 in subcluster 1, and n = 724 in subcluster 2). For
each boxplot, the center line represents the median, the box indicates the upper
and lower quartiles and the whisker represents 1.5-fold of the interquartile range. A
two-sidedWilcoxon test was used to test the statistical significance. Source data are
provided in the Source Data file.

Article https://doi.org/10.1038/s41467-023-43991-9

Nature Communications |         (2023) 14:8170 11



heterogeneously cells may react to drug treatment and how mechan-
istically drug resistancemay occur.Moreover, scRNA-seq data provide
more precise information for molecular subtype classification of the
cancer cell lines, which may help to identify cell lines resembling
specific features of human tumors.Meanwhile, scATAC-seq data reveal
cellular heterogeneity at a different regulatory level. As a resource, it
offers a comprehensive dataset for the analysis of intra-cell-line

heterogeneity at both the transcriptomic and epigenomic levels, which
could be used as a reference to choose suitable cell lines for intended
studies, such as mechanistic investigation, drug tests, and high-
throughput screening.

Besides illustrating the intra-cell-line heterogeneity at a given
time, our study also measured the dynamic nature of cellular states by
combining the cellular genetic barcode tracing technique and
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Fig. 6 | Contribution of ecDNAs to the cellular transcriptomic heterogeneity.
aThenumber of ecDNA indifferent cell lines and ecDNAampliconswith oncogenes
accumulate in cells. A one-tailed hypergeometric test was used to test the statistical
significance. b ecDNAs with oncogenes (n = 2149), compared to ecDNAs with non-
oncogenes (n = 5469), appeared in ahigherproportion of cellswithin individual cell
line. For each boxplot, the center line represents the median, the box indicates the
upper and lower quartiles and the whisker represents 1.5-fold of the interquartile
range. Each dot stands for the cell proportion of cells with one specific ecDNA
within an individual cell line. A two-sided Wilcoxon test was used to test the sta-
tistical significance. c The correlation between the relative coverage number of
ecDNAs and the RNA expression level of genes that appeared in ecDNAs. Spear-
man’s rank correlation coefficient was used to evaluate the correlation between the
scATAC-seq read coverage of ecDNA amplicon (x-axis) and the RNA expression
level. A two-tailed Spearmancorrelation testwas used to test statistical significance.
d The expression of genes appearing in ecDNA regions in the subcluster of SCC-4.

e The percentage of ecDNA-positive cells and high expression cells was correlated
in SCC-4. fUMAPmap of coverage of ecDNA (chr12: 5900000_7200000). Each dot
represents a cell, the color fromblue to yellow represents the coverage from low to
high, and the red circlemarked out is cluster 0 ofMDA-MB-231 (n = 208 in cluster 0,
n = 687 in cluster 1, and n = 724 in cluster2). For each boxplot, the center line
represents the median, the box indicates the upper and lower quartiles and the
whisker represents 1.5-fold of the interquartile range. A two-sided Wilcoxon test
was used to test the statistical significance. g The expression of genes located on
ecDNA (chr12: 5900000_7200000) in different clusters (n = 208 in cluster 0,
n = 687 in cluster 1, and n = 724 in cluster2). For each boxplot, the center line
represents the median, the box indicates the upper and lower quartiles and the
whisker represents 1.5-fold of the interquartile range. A two-sided Wilcoxon test
was used to test the statistical significance. Source data are provided in the Source
Data file.

Fig. 7 | The plasticityof cellular transcriptomic heterogeneity. a AUMAP plot of
HCT 116 at time point 1 (T1, left) and time point 2 (T2, right) (n = 2008 cells at T1,
n = 1638 cells at T2). N represents cell numbers in different subclusters. b Venn
diagram of barcodes in different subclusters of HCT116 at T1 (left) and T2 (right).

c The distribution of unique barcodes in subclusters at T1 was rearranged at T2
for HCT 116. Time point combined with the original cluster number was indi-
cated, e.g., T1_0 represented cluster0 from T1. Source data are provided in the
Source Data file.
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demonstrated that, in somecell lines, the daughter cells from the same
progenitor might enter different transcriptomic statuses, suggesting
that even apparently homogeneous cells may have latent variability.
Such latent variability was also observed in the hypoxia experiment,
where hypoxia treatment drove the heterogeneous cellular response
from the same cell line, even from the same subpopulation. the
emergence of a new transcriptomic subcluster in DLD-1 and SW620

cell lines. This suggests that transcriptomic heterogeneity within can-
cer cell linesmaybe farmore complex thanwe observed under normal
culture conditions, or the current scRNA-seq technique is not sensitive
enough to reveal the latent variability. Therefore, we further investi-
gated if the latent transcriptomic variability could be observed at the
epigenomic level by using scATAC-seq, given epigenomic hetero-
geneity may reflect not only the present but also the past and future
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cell status. Indeed, within one transcriptomic subcluster, differential
primed chromatin states driven by specific TFs preceded hypoxia. This
reminds us that when targeting observed heterogeneous transcrip-
tional programs for cancer therapy, cells may evolve newmechanisms
to overcome the treatment and the knowledge of epigenetic hetero-
geneity may help us to predict and prevent it from happening.

Furthermore, in this study, scATAC-seq was utilized for the first
time to characterize the ecDNAs. Our data revealed the pervasive
presence of ecDNA in cancer cell lines. The ecDNAs could drive high
gene expression of the contained genes and their variable copy
numbers in individual cells contribute to the observed transcrip-
tional heterogeneity. Compared to previously published techniques,
including AmpliconArchitect47, Circle-seq48, and Circle-Finder49 that
are based on bulk sequencing, our method developed for analyzing
single-cell ATAC-seq data could identify highly potential ecDNA
regions at single-cell resolution and therefore reveal specific events
in rare cell populations, which could be neglected as noise in bulk
sequencing data47–49. We observed on average hundreds of ecDNA
events in individual cell lines, including ecDNAs that were validated
by FISH and other sequencing-based techniques11. The ecDNAs
identified by our method potentially contained a higher fraction of
false positives than bulk sequencing-based approaches, owing to the
fact that with the limited scATAC-seq read length, we could not use
junction site reads for further filtering as in those methods. Never-
theless, the results derived from our single-cell data could provide
important resources for further validation experiments using
imaging-based tools.

In conclusion, this study advances the understanding of cellular
heterogeneity within commonly used cancer cell lines and provides
insights into the molecular mechanism driving it. We envision that the
data and analysis provided in this studywill facilitate all sorts of cancer
cell line-based biomedical research, form a basis for investigating
intratumor heterogeneity using available cancer cell lines, enable new
biological insights into different research models, and eventually
contribute valuable insights into tumor biology and have implication
for the further development of precision therapies.

Methods
Cell line cultures
The 786-O (CRL-1932), A-253 (HTB-41), A549 (CCL-185), BT-474 (HTB-
20), BT-549 (HTB-122), Caco-2 (HTB-37), COLO 205 (CCL-222), DLD-1
(CCL-221), FaDu (HTB-43), HCC1937 (CRL-2336), HCT 116 (CCL-247),
HCT-15 (CCL-225), HCT-8 (CCL-244), HeLa (CCL-2), Hep G2 (HB-8065),
HK-2 (CRL-2190), Hs 578T (HTB-126), HT-29 (HTB-29), K-562 (CCL-
243), LoVo (CCL-229), LS 174T (CL-188), MCF7 (HTB-22), MDA-MB-231
(HTB-26), MDA-MB-361 (HTB-27), MDA-MB-453 (HTB-131), MDA-MB-

468 (HTB-132), RKO (CRL-2577), RPE-1 (CRL-4000), RPMI 8226 (CCL-
155), SCC4 (CRL-1624), SK-BR-3 (HTB-30), SW480 (CCL-228), SW620
(CCL-227), T-47D (HTB-133) and ZR-75-1 (CRL-1500) cells were
obtained from the ATCC. The HAP1 (C631) cells are from Horizon
Discovery and Huh7 (SCSP-526) cells are from The Cell Bank of the
Chinese Academy of Sciences. The SF268 and SNB75 cells are from
NCI, and the SF295 (C0005005) cells are from AddexBio. The
HUNSCCUM-02T and HUNSCCUM-03T cells were kindly gifted by
Walter Birchmeier’s lab at Max-Delbrueck-Center for Molecular Medi-
cine, Berlin. All cell lines used in this study were maintained in DMEM
(Gibico, #11995040) or RPMI1640 (Gibico, #22400089) medium sup-
plemented with 10% fetal bovine serum (FBS, Gibico, #10270106), 1%
Penicillin/Streptomycin (P/S, Gibico, #15070063) in a humidified
atmosphere of 5% CO2 at 37 °C. Cell line identity was confirmed by the
Multiplex human cell line Authentication Test (MCA, Mutiplexion) or
Cell Line Authentication (GENEWIZ, Suzhou). We regularly checked all
cell lines for mycoplasma contamination.

Hypoxia treatment
The normoxic set of plates was placed in an aerobic incubator. To
create hypoxia, the hypoxic set was moved to a Hypoxia Incubator
Chamber (StemCell) which was equilibrated at 37 °C in a humidified
atmosphereof 5%CO2 and 1%O2. After 24 h incubation, the cells, which
were 80–90% confluent, werewashed once by PBS, and thenharvested
with 0.05%Trypsin-EDTA. After neutralizationwith completemedium,
centrifugation, and resuspension in PBSwith 0.04% BSA, the cells were
measured.

Cloning procedures
The vector encoding PuroR-T2A-GFP protein followed by a 28-SW
sequence in its 3’UTR was constructed based on CROPseq-Guide-Puro
(Addgene#86708) by inserting a T2A-GFP coding sequence after
PuroR and replacing the U6 promoter and filler sequences with a 28-
SW sequence.

Virus package and transduction
HEK293T cells were seeded one day before and were transfected with
lentiviral plasmid, psPAX2 (Addgene), and pMD2.G (Addgene) at ratio
of 4:3:1 using PEI (Sigma). The medium was replaced 12 h after trans-
fection. The supernatant was collected after 48 h with centrifugation
and filtering through a 0.45 μm filter. The transduction was worked by
incubating the viral particles containing supernatantwith the targeting
cells overnight in the presence of polybrene (Sigma). To ensure each
cell was labeled with only one distinct barcode, we transfected
150,000 cells with a barcode library consisting of 230,000 distinct
barcodes at a MOI of 0.1.

Fig. 8 | Cells responded differently under hypoxia. a The subclusters could be
matched before and after hypoxia treatment in ZR-75-1. Left, UMAP plots scRNA-
seq of ZR-75-1 before hypoxia treatment. Middle, UMAP plots scRNA-seq of ZR-75-1
upon hypoxia treatment. Right, the barplot shows the abundance of clusters in ZR-
75-1 with or without hypoxia treatment. Different clusters are labeled with different
colors. b Volcano plot showing log2 fold change (x-axis) and −log10-transformed
FDR-adjusted P-value (y-axis) of differentially expressed genes in corresponding
clusters of ZR-75-1 between control and hypoxia treatment (n = 83 DEGs in corre-
sponding cluster 0 of ZR-75-1 between control and hypoxia, n = 182 DEGs in cor-
responding cluster 1 of ZR-75-1 between control and hypoxia, n = 144 DEGs in
corresponding cluster 2 of ZR-75-1 between control and hypoxia). A moderated
t-statistics and empirical Bayes methods was used to test statistical significance.
Upregulated genes are shown in red, and downregulated genes are highlighted in
blue. Insignificant genes are colored in gray. c Cells in the same subcluster
responded differently to hypoxia in DLD-1. Left, UMAP plots scRNA-seq of DLD-1
before hypoxia treatment. Middle, UMAP plots scRNA-seq of DLD-1 upon hypoxia
treatment. Right, the barplot shows the abundance of clusters in DLD-1 with or
without hypoxia treatment. Different clusters are labeled with different colors.

d Volcano plot showing log2 fold change (x-axis) and −log10-transformed FDR-
adjustedP-value (y-axis) of differentially expressedgenes in corresponding clusters
of DLD-1 between control and hypoxia treatment (n = 337 DEGs between cluster 0
and 0-1, n = 422 DEGs between cluster 0 and 0-2, n = 332 DEGs in corresponding
cluster 1 of DLD-1 between control and hypoxia). A moderated t-statistics and
empirical Bayes methods was used to test statistical significance. Upregulated
genes are shown in red, and downregulated genes are highlighted in blue. Insig-
nificant genes are colored in gray. eCells in one subcluster responded differently to
hypoxia in SW620. Left, UMAP plots scRNA-seq of SW620 before hypoxia treat-
ment.Middle, UMAPplots scRNA-seqof SW620uponhypoxia treatment. Right, the
barplot shows the abundance of clusters in SW620 with or without hypoxia treat-
ment. Different clusters are labeled with different colors. f Functional enrichment
analysis of differentially expressed genes in subclusters of SW620 between control
and hypoxia treatment (n = 93 DEGs between 0 and 0-1, n = 190 DEGs between 0
and 0-2). A one-tailed hypergeometric test was used to test the statistical sig-
nificance. EMT-related genes were differentially induced by hypoxia treatment in
one subcluster of SW620. Source data are provided in the Source Data file.
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Fig. 9 | TFs are responsible for heterogeneous response under hypoxia treat-
ment. a UMAP plot of integration of scATAC-seq under normoxia and scRNA-seq
with hypoxia treatment of DLD-1 (left). UMAP plot of scRNA-seq of DLD-1 upon
hypoxia treatment (right). b The activity of ETS (ELK4, FLI1) and E2F (E2F3, E2F6)
familyTFs across clusters inDLD-1. cUMAPplot of integration of scATAC-sequnder

normoxia and scRNA-seq with hypoxia treatment of SW620 (left). UMAP plot of
scRNA-seq of SW620 upon hypoxia treatment (right).d The activity of HMG (TCF4,
TCF3) family TFs across clusters in SW620. Source data are provided in the Source
Data file.
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scRNA-seq with DNBelab C4 system
Single-cell RNA-seq of all cell lines, with and without hypoxia treat-
ment, was performed with the DNBelab C4 Series Single-Cell Library
Prep Set (MGI, #1000021082) according to the corresponding
protocols50,51. Cells were harvested with 0.05% Trypsin-EDTA. After
neutralization with complete medium, centrifugation, and resuspen-
sion in PBSwith 0.04% BSA, the cells were filtered through a 35-µmCell
Strainer (Corning 352235) and a single-cell suspension was prepared.
Cells and barcoded beads were diluted at the concentration of 1000
cells/μL in cell resuspension buffer and 1000 beads/μL in lysis buffer,
respectively. For each pool containing two or three cell lines in equal
quantity, 100,000 single cells and anequal number of beadswereused
for droplet generation. After incubation at room temperature, the
droplets were broken, and the beads were recovered, reverse tran-
scribed, and amplified to generate sufficient cDNA.

scATAC-seq sample preparation
For all cell lines, single-cell ATAC-seq libraries were generated by
DNBelab C Series Single-Cell ATAC Library Prep Set (MGI,
#1000021878). Single cells (80% viability) were lysed and transposed
to generate single nucleus suspensions according to the correspond-
ing protocols50. Successful preparation of intact, isolated nuclei was
confirmed through visual inspection in phase-contrast microscopy,
and nucleus concentration was assessed before proceeding immedi-
ately to transposing with transposase (BGI, China). For each pool,
10,000 single nuclei containing four to six cell lines in equal quantity
and an equal number of beads were used for droplet encapsulation.
Through further procedures including pre-amplification, emulsion
breakage, capture beads collection, DNA amplification, and purifica-
tion, dsDNA fragments were generated.

scRNA-seq library preparation and sequencing
Indexed sequencing libraries were prepared according to the operat-
ing standards forMGI library preparation. Thequality control of ssDNA
libraries was performed using QubitTM ssDNA Assay Kit and DNA
nanoballs (DNBs) were sequenced on BGISEQ500 sequencer or DIP-
SEQ T1 sequencer.

Processing of scRNA-seq data
Raw sequencing readswere processed using the PISA (v0.4). The reads
were aligned to the hg38 reference genome by STAR (v.2.7.9). Aligned
reads were then used to parse out the cell barcodes and unique
molecular identifier (UMI). Next, PISA corrwas used to correct the UMI
or barcode sequence based on Hamming distance. UMI counting
definedby PISAwas further usedwith default parameters to generate a
cell versus gene UMI countmatrix. Cells withmore than 1000UMI and
500 genes were retained for further analysis.

Cell clustering
The Seurat (v.4.1.0) was applied to the expression matrix to perform
quality control, normalization and scaling, detection of highly variable
features, dimensional reduction and clustering: (1) data were normal-
ized by the LogNormalize functionwith default parameters; (2) the top
2000 most variable genes of each sample were detected by FindVar-
iableFeatureswith the vstmethod; (3) dimensionality reduction of PCA
was performed using RunPCA; (4) to cluster the cells, a KNN graphwas
constructed based on the Euclidean distance and modularity optimi-
zation techniques were applied using FindNeighbors and FindClusters
(resolution = 0.3/0.15); (5) the top 15 PCs were used to perform UMAP
to visualize the cells; (6) the differentially expressed feature genes
across different clusters were detected by the FindAllMarkers func-
tion. The cluster biomarkers were defined as genes with adjusted P-
value < 0.01 and log2FC>0.5.

In the process of setting up a UMAP profiling for all cell lines,
filtered data in each cell line were used and the procedures of merged

data were similar to those for a single cell line, except that we per-
formed FindClusters with resolution 0.5 and RunUMAP with top 30
PCs on merged data.

Cell line assignment
We used both expression-based and CNA-based methods to assign
cells to cell lines. For the expression-based method, marker genes of
unidentified cell lines were detected by the FindAllMarkers function in
Seurat with adjusted P <0.01 and log2FC >0.5. We then compared
these marker genes with the highly expressed genes in external bulk
RNA-seq data of the corresponding cell line from Harmonizome52 to
assign the cells to the most similar cell line. For CNV-based methods,
InferCNV (v1.8.1) was used for constructing the CNV profile in each cell
line.We then compared the CNVswith the reportedmain CNVs in each
cell line fromcBioPortal53. To further confirmcell line identification,we
also compared the single-cell expression data to bulk-seq data from
the CCLE database or GEO (SK-BR-3: GSE7562, https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE7562; LS 174T: GSE18560, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18560)13. Only cell
lines whose assignments were consistent among different methods
were retained for further analysis.

To validate the effectiveness of our assignment, we integrated the
bulk RNA-seq dataset generated by CCLE of three cell lines13, including
A-253, HCT 116 and MCF7, with our scRNA-seq data. The analysis
showed that pseudo-single cells deriving from the bulk RNA-seq
dataset were distributed within the corresponding cell populations on
UMAP, and differentially expressed genes across the cell lines were
also consistently expressed in both bulk and single-cell datasets
(Supplementary Fig. 1c–e).

Systematic characterization of transcriptional heterogeneity
We analyzed each cell line separately using NMF to identify pro-
grams of expression heterogeneity as described before:8 (1) Data
preprocessing was applied by normalization and transforming all
negative values to zero. (2) NMF was performed with the number of
factor k ranging from 6 to 9, and the top 50 genes were defined as
feature genes for the NMF programs. (3) Robust NMF programs
that were identified with different factor k were retained. (4)
Common NMF programs across cell lines (>3 cell lines) were the
focus of further analysis. (5) ClusterProfiler (v.4.2.2) was applied to
identify the functional characteristics for each retained common
program with adjusted p-value (<0.01) and the maximum matching
counts.

Function enrichment
Function enrichment analysis was performed using the enricher
function in clusterProfiler (v4.2.2). Only functions with p-value < 0.05
were retained.

Defining diversity scores in each cell line
To quantify intratumoral heterogeneity, we calculate the diversity
score of each cell line based on the gene expression profiles22. First, we
employed PCA to project the expression profiles of all cells to derive
PCs, which could capture key features and reduce noise. The top 30
PCs were selected. We then define diversity as the average distance of
all cells within the cell line to the centroid. To exclude the impact of
outliers,we removed the extremevalues thatwerebeyond the rangeof
3 standard deviations from the mean.

Cell cycle analysis
We calculated the program cluster score of individual cells using the
AddModuleScore function of the Seurat R package with the default
parameter. The input data was normalized scRNA-seq data of all cell
lines. Then cells with the top 5%programcluster scorewere selected as
representative cells for each program cluster. We assessed the cell
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cycle phase of representative cells using the Seurat CellCycleScoring
function of the Seurat R package with default parameter.

Processing of scATAC-seq data
PISA was used to parse out the cell barcodes and UMIs based on the
raw FASTQ files of scATAC-seq data. Clean reads were aligned to the
hg38 reference genome by BWA (v.2.2)54. Deconvolution was per-
formed to remove doublets in scATAC sequencing data. MACS2
(v2.2.7.1) was applied to call peaks. The ArchR (v.1.0.2) was applied to
perform quality control, dimensionality reduction, clustering, calcu-
lation of gene scores and motif enrichment: (1) those with a low
number of TSS proportion (<4) and a lownumber of unique fragments
(<1000) were filtered out; (2) the doublet score for each cell was cal-
culated by the addDoubletScores function and the predicted doublet
cells were filtered according to the filterDoublets function with the
default parameters; (3) due to the sparsity of the data, Latent Semantic
Indexing (LSI) was first used for dimensionality reduction, then sin-
gular value decomposition (SVD) was applied to identify the most
valuable information across samples in a lower dimensional space; (4)
the addClusters function was used for clustering (resolution = 0.3); (5)
the addGeneScoreMat function was performed to add gene score for
each gene based on the weighted distance from each peak (start or
end) to the gene body. The getMarkerFeatures function was used to
mark feature identification: each cell group was compared to its own
background group to determine if the given cell group had sig-
nificantly higher accessibility. The plotEmbedding function was
applied for visualization.

Defining diversity scores in each cell line for scATAC-seq
To quantify intratumoral heterogeneity in scATAC-seq, we calculate
the diversity score of each cell line based on chromatin accessibility.
First, we employed Iterative Latent Semantic Indexing (LSI)28 to project
the chromatin accessibility profiles of all cells to derive LSIs, which
could capture key features and reduce noise, for the sparsity of the
data. The top 30 LSIs were selected. We then define diversity as the
average distance of all cells within the cell line to the centroid. To
exclude the impactof extremevalues ondiversity score calculation,we
used mean ± 3*standard deviation to detect extreme values and
removed the extreme value-related cells for diversity calculation.

Transcription factor motif enrichment analysis
To identify key TFs responsible for subgroup-specific accessible
chromatin regions, two approaches, including ArchR (v.1.0.2)28 and
ChromVAR (v.1.16.0)30, were used for identifying TFs with motif enri-
ched in differential ATAC peaks from subgroups of a same cell line.
ArchR was employed to identify potential TFs that drive differential
chromatin accessibility across cell subclusters. More specifically, for
ArchR, addMotifAnnotations was used to determine the motif pre-
sented in the peak set and peakAnnoEnrichment was used to identify
the motifs enriched in differentially accessible peaks. Based on the
motif determined by addMotifAnnotations, ChromVARwas applied to
predict the enrichment of TF activity on a per-cell basis. Initially, the
chromVAR::getBackgroundPeaks function was used to get back-
ground peaks based on similarity in GC-content and the number of
fragments across all samples using theMahalanobis distance, then the
addDeviationsMatrix functionwas used to compute per-cell deviations
across all of our annotated motifs.

TFs clustering
We obtained cluster-specific TF of each cell line which was enriched
from differential peak using the ArchR package. Then, we generated a
cluster by TF matrix, which only consists of 0 and 1 according to
whether the TF existed in the cluster. After hierarchical clustering, five
modules were identified. For each module, we selected TFs that exis-
ted in over 50% of clusters as main TFs. Finally, these main TFs were

used to perform functional enrichment analysis by clusterProfiler
package using the Hallmark gene set.

Integration of scATAC-seq data with scRNA-seq data
The FindTransferAnchors function implemented in ArchR was used
to integrate scATAC-seq and scRNA-seq data by comparing the
scATAC-seq gene score matrix with the scRNA-seq gene expression
matrix. The anchors were used to transfer cluster-label identifiers
between the two data types using the TransferData function. Each
cell in the query was assigned the cluster label with the highest
prediction score, and only query cells with prediction scores above
0.9 were considered to have been successfully label transferred.
Each cell in the scATAC-seq data was aligned to the most similar cell
from the scRNA-seq data.

TFs targets analysis
The SCENIC55 or pySCENIC (v.0.12.0)56 workflowwas applied to scRNA-
seq data of individual cell lines to infer TFs and their target genes. First,
GENIE3 (GRNboost) was used to identify potential targets for each TF
based on the co-expression regulatory network. Then, RcisTarget
identified direct-binding targets (regulons) in gene networks based on
motif enrichment analysis. Furthermore, AUCell was applied to
determine the AUC score for these regulons in each cell by calculating
the enrichment of the regulon as an area under the recovery curve
(AUC) across the ranking of all genes in aparticular cell, whereby genes
are ranked by their expression value.

GSVA analysis
Gene set variation analysis (GSVA, v1.44.2) was used to estimate the
activity of a set of genes by transforming an input gene-by-sample
expression data matrix into a corresponding gene-set-by-sample
expression data matrix. The average normalized expression for cells
was obtained. Then, GSVA scores of gene sets associated with ecDNA
or hypoxia were calculated.

CNV estimation
The copy number variation of single cells was calculated with
InferCNV,which analyzes gene expression intensity across the genome
based on scRNA_seq data. RPE-1 and HK2 cells were selected as refer-
ence normal cells. The inferCNV analysis was performed with para-
meters including “denoise”, default hidden Markov model (HMM)
settings, and a value of 0.1 for “cut0ff”. A heatmap was generated to
illustrate the relative expression intensities across each chromosome.

Association between the CNV subclones and transcriptional
subclusters
Hierarchical clustering was employed to detect CNV subclones within
individual cell lines. We concentrated on chromosomal locations that
differed considerably and reasoned that the presence of multiple CNV
subclones in a single cell line would be reflected in a multimodal dis-
tribution of CNV signal for at least one chromosome arm across cells.
We then classified cell lines into three types (A, B, C).Within the A-type
cell line, cells in the same CNV subclone were only present in one
transcriptomic subcluster. Within the B-type cell line, cells in the same
CNV subclone were scattered across multiple transcriptomic sub-
clusters. C-type cell lines have no CNV subclones.

To further investigate the contribution of CNV to transcriptional
variability, we focused on A-type cell lines and extracted genes located
within CNV regions. Then the hypergeometric test was used to assess
whether these CNV genes overlapped significantly with differentially
expressed genes between subclusters.

EcDNA detection
EcDNA amplicon in single cells was detected based on scATAC-seq
data by the following steps: (1) The whole genome was divided into
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bins of length 100,000bp. Then, we calculated the ‘normalized cov-
erage’ of each bin in each cell as (read counts in each bin) / (fragment
counts in the whole chromosome) × 10,000. Given that the coverage
distribution shows multiple peaks in every single cell, we defined the
first peak as ‘referencecoverage’ for the regions of twogenomic copies
in the cell and calculated ‘relative coverage’ as (normalized coverage of
each bin) / (reference coverage). (2) To define the ecDNA based on the
relative coverage, we investigated the relative coverage of known
ecDNA, CNV and random regions in K-562 and MDA-MB-231 cell lines.
We selected following ecDNA regions: chr9:130,731,514-131,280,213
and chr22: 23,280,553-23,290,953 in K-562, and chr6: 33,066,224-
43,717,063 in MDA-MB-231. CNV regions were selected based on the
CCLE dataset. For the ‘random region’, we randomly selected 500
regions, each of which contains one gene and ±50,000 bp region. The
result showed that the relative coverage of ecDNA was apparently
higher than CNV and random region (Supplementary Fig. 6b), and we,
therefore, discarded the regions with relative coverage ≤6. (3) In order
to improve confidence, only high-coverage bins presented in more
than 15 cells were retained. Afterward, consecutive bins were merged.
(4) Most of the human genome is tightly packed into complex hier-
archical structures, while ecDNA shows relatively more accessible
chromatin. To test this, we evaluate the accessibility of ecDNA in K562
and MDA-MB-231 cell lines using a TSS enrichment score (Supple-
mentary Fig. 6c), which was calculated via signal-noise-ratio, namely,
(fragments count within ±50 bp region centered at TSS position)/
(fragments count within ±2000bp region centered at TSS position).
Finally, we used TSS enrichment score <0.25 as another condition to
separate the candidate ecDNA amplicon region fromCNV and random
region. In addition, given the sparsity of scATAC-seq data, even an
ecDNA derived from a continuous genomic region could be detected
as more than one ecDNA fragment based on scATAC-seq data if the
region was not evenly and sufficiently covered by scATAC-seq reads
due to experimental and/ormapping biases. Therefore, the number of
the ecDNA fragments thatwe have identified should be higher than the
number of different ecDNA species found in the cell. To explore this
possibility, we investigate the correlation of the coverage across dif-
ferent ecDNA fragments identified in individual cell lines by con-
structing the ecDNA fragment × cell matrix, with row as ecDNA
fragments, column as single cell, and the value as coverage of the
corresponding ecDNA fragment in the corresponding cell. Interest-
ingly, ecDNA fragments pairs located in the vicinity (<1MB) often
showed a high correlation (average Pearson correlation coefficient
(PCC) equal to 0.4) than those from distant regions (>1MB) (average
PCC equal to 0), as exemplified by SF268 cell line (Supplementary
Fig. 6e). Thefinding to a large extent supports our hypothesis. Thenwe
integrated the ecDNA fragments using an unsupervised hierarchical
clustering method. First, we calculated the correlations between
ecDNA fragments using the cell x ecDNA coverage matrix, where cells
are represented as columns, ecDNA as rows, and coverage values as
elements. Subsequently, hierarchical clustering was performed based
on this correlation matrix. To ensure higher similarity of ecDNA cov-
erage within clusters, we set the number of clusters to one-third of the
total ecDNA fragments. If more than 70% of ecDNA fragments in one
cluster showed PCC greater than 0.3 and were derived from neigh-
boring chromosome regions, they would be merged.

Hypoxia data analysis
Limma (v.3.50.0) was used to analyze differential expression between
normoxia and hypoxia treatment57. The genes with adjusted p-
value < 0.01 and log2FC > 2 were selected as significant differentially
expressed genes in each cell line for further analysis.

To match cell subclusters before and after hypoxia treatment
within the individual cell line, first, Seurat’s FindIntegrationAnchors
was performed to identify anchors between the two datasets. Then,
IntegrateData was used to integrate cells from two conditions.

Clustering was performed on all cells from the integrated data. Then
wematched the cell subclusters in two conditions with cell subclusters
in the integrated data. If more than 80% of cells in the subclusters in
two conditions are clustered together in the integrated data, these two
subclusters were matched in two conditions.

To evaluate the response of both the entire cell lines and their
subpopulations to hypoxia, we employed the AddModuleScore func-
tion of Seurat to score their HALLMARK_HYPOXIA and publicly avail-
able HIF signature58. To evaluate how different cell subclusters
responded differently, differential gene expression analysis and gene
set enrichment analysis were applied to the matched subclusters. To
explain why different cell subclusters respond differently from the
epigenetic perspective, we apply the FindTransferAnchors function in
ArchR to integrate scATAC-seq data before hypoxia treatment with
scRNA-seq data after hypoxia treatment and identified key TFs by
enriching motifs from subgroup-specific accessible peaks.

Quantification and statistical analysis
All data analyses were conducted in R v.4.2.1 and Python 3.11.4. Sta-
tistical analyses are described in the respective “Methods” subsections
and are briefly described in the figure legends. P-values were false
discovery rate-corrected for multiple hypotheses testing where indi-
cated. P < 0.05 was considered statistically significant. All data are
presented as mean ± SD unless otherwise indicated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The bulk cancer cell line RNA-seq data used in this study are publicly
available through depmap portal at https://depmap.org/portal and
GEO (SKBR3: under accession code GSE7562 at https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE7562; LS174T: under accession
code GSE18560 at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE18560). The raw scRNA-seq and scATAC-seq data generated in
this study have been deposited in China National GeneBank DataBase
(CNGBdb) Sequence Archive (CNSA) with accession number
CNP0004330 and also in the Genome Sequence Archive (GSA)
database59,60 under accession number PRJCA021248. The processed
scRNA-seq and scATAC-seqdata generated in this study are available in
CNSA with accession number CNP0003658 and also in GSA under
accession number PRJCA020910. TheCCLAwebsite canbe accessed at
https://db.cngb.org/cdcp/scatlashcl/, which is an open and interactive
database for exploration. The remaining data are available within the
article, Supplementary Informationor SourceDatafile. Sourcedata are
provided with this paper.

Code availability
Custom code used for this paper is available from GitHub at https://
github.com/liushang17/CCLA61.

References
1. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor

evolution: past, present, and the future. Cell 168, 613–628 (2017).
2. Method of the Year 2019: single-cell multimodal omics. Nat.

Methods 17, 1 (2020).
3. Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in

cancer with single-cell sequencing. Nat. Rev. Cancer 17,
557–569 (2017).

4. Ben-David, U. et al. Genetic and transcriptional evolution alters
cancer cell line drug response. Nature 560, 325–330 (2018).

5. Fang, L. et al. CASB: a concanavalin A-based sample barcoding
strategy for single-cell sequencing. Mol. Syst. Biol. 17, e10060
(2021).

Article https://doi.org/10.1038/s41467-023-43991-9

Nature Communications |         (2023) 14:8170 19

https://depmap.org/portal
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7562
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7562
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7562
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18560
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18560
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18560
https://db.cngb.org/search/project/CNP0004330/
https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA021248
https://db.cngb.org/search/project/CNP0003658/
https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA020910
https://db.cngb.org/cdcp/scatlashcl/
https://github.com/liushang17/CCLA
https://github.com/liushang17/CCLA


6. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and
metastatic tumor ecosystems in head and neck cancer. Cell 171,
1611–1624.e1624 (2017).

7. Yi, H. et al. Integrative multi-omics analysis of a colon cancer cell
line with heterogeneous Wnt activity revealed RUNX2 as an epige-
netic regulator of EMT. Oncogene 39, 5152–5164 (2020).

8. Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recur-
ring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218
(2020).

9. Dentro, S. C. et al. Characterizinggenetic intra-tumor heterogeneity
across 2,658 human cancer genomes. Cell 184, 2239–2254.e2239
(2021).

10. Neftel, C. et al. An integrative model of cellular states, plasticity,
and genetics for glioblastoma. Cell 178, 835–849.e821 (2019).

11. Turner, K. M. et al. Extrachromosomal oncogene amplification
drives tumour evolution and genetic heterogeneity. Nature 543,
122–125 (2017).

12. Granja, J. M. et al. Single-cell multiomic analysis identifies reg-
ulatory programs in mixed-phenotype acute leukemia. Nat. Bio-
technol. 37, 1458–1465 (2019).

13. Ghandi, M. et al. Next-generation characterization of the Cancer
Cell Line Encyclopedia. Nature 569, 503–508 (2019).

14. Mokry, M. et al. Integrated genome-wide analysis of transcription
factor occupancy, RNA polymerase II binding and steady-state RNA
levels identify differentially regulated functional gene classes.
Nucleic Acids Res. 40, 148–158 (2012).

15. Vivanco, I. et al. Identification of the JNK signaling pathway as a
functional target of the tumor suppressor PTEN. Cancer Cell 11,
555–569 (2007).

16. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial
reconstruction of single-cell gene expression data.Nat. Biotechnol.
33, 495–502 (2015).

17. Neve, R.M. et al. A collectionof breast cancer cell lines for the study
of functionally distinct cancer subtypes. Cancer Cell 10, 515–527
(2006).

18. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov.
12, 31–46 (2022).

19. Karaayvaz, M. et al. Unravelling subclonal heterogeneity and
aggressive disease states in TNBC through single-cell RNA-seq.Nat.
Commun. 9, 3588 (2018).

20. Berg, K. C. G. et al. Multi-omics of 34 colorectal cancer cell lines—a
resource for biomedical studies. Mol. Cancer 16, 116 (2017).

21. Sveen, A. et al. Colorectal cancer consensus molecular subtypes
translated to preclinical models uncover potentially targetable
cancer cell dependencies. Clin. Cancer Res. 24, 794–806 (2018).

22. Ma, L. et al. Tumor cell biodiversity drives microenvironmental
reprogramming in liver cancer. Cancer Cell 36, 418–430.e416
(2019).

23. D’Costa, Z. et al. Gemcitabine-induced TIMP1 attenuates therapy
response and promotes tumor growth and liver metastasis in pan-
creatic cancer. Cancer Res. 77, 5952–5962 (2017).

24. Lo, J. F. et al. The epithelial-mesenchymal transition mediator
S100A4maintains cancer-initiating cells in head and neck cancers.
Cancer Res. 71, 1912–1923 (2011).

25. Saha, S. K. et al. KRT19 directly interacts with beta-catenin/RAC1
complex to regulate NUMB-dependent NOTCH signaling pathway
and breast cancer properties. Oncogene 36, 332–349 (2017).

26. Izar, B. et al. A single-cell landscape of high-grade serous ovarian
cancer. Nat. Med. 26, 1271–1279 (2020).

27. Bravo Gonzalez-Blas, C. et al. cisTopic: cis-regulatory topic mod-
eling on single-cell ATAC-seq data. Nat. Methods 16, 397–400
(2019).

28. Granja, J. M. et al. ArchR is a scalable software package for inte-
grative single-cell chromatin accessibility analysis. Nat. Genet. 53,
403–411 (2021).

29. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral het-
erogeneity in primary glioblastoma.Science344, 1396–1401 (2014).

30. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR:
inferring transcription-factor-associated accessibility from single-
cell epigenomic data. Nat. Methods 14, 975–978 (2017).

31. Li, Y. et al. Mutant Kras co-opts a proto-oncogenic enhancer net-
work in inflammation-induced metaplastic progenitor cells to initi-
ate pancreatic cancer. Nat. Cancer 2, 49–65 (2021).

32. Tomoshige, K. Guo, M., Fink-Baldauf, I., Stuart, W. & Maeda, Y.
FOXA2 controls tumor-associated inflammation inKRAS-mutant
lung cancer. Cancer Res. 79, 4629 (2019).

33. Lignitto, L. et al. Nrf2 activationpromotes lungcancermetastasis by
inhibiting the degradation of Bach1. Cell 178, 316–329.e318 (2019).

34. Polonen, P. et al. Nrf2 and SQSTM1/p62 jointly contribute to
mesenchymal transition and invasion in glioblastoma. Oncogene
38, 7473–7490 (2019).

35. Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular
oncogene expression. Nature 600, 731–736 (2021).

36. Yi, E. et al. Live-cell imaging shows uneven segregation of extra-
chromosomal DNA elements and transcriptionally active extra-
chromosomal DNA hubs in cancer. Cancer Discov. 12, 468–483
(2021).

37. Wu, S. et al. Circular ecDNA promotes accessible chromatin and
high oncogene expression. Nature 575, 699–703 (2019).

38. Marin-Bejar, O. et al. Evolutionary predictability of genetic versus
nongenetic resistance to anticancer drugs in melanoma. Cancer
Cell 39, 1135–1149.e1138 (2021).

39. Pillai, M. & Jolly, M. K. Systems-level network modeling deciphers
the master regulators of phenotypic plasticity and heterogeneity in
melanoma. iScience 24, 103111 (2021).

40. Ma, S. et al. Chromatin potential identified by shared single-cell
profiling of RNA and chromatin. Cell 183, 1103–1116.e1120 (2020).

41. Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the
developing human cerebral cortex at single-cell resolution. Cell
184, 5053–5069.e5023 (2021).

42. Aprelikova, O.,Wood,M., Tackett, S., Chandramouli, G. V. & Barrett,
J. C. Role of ETS transcription factors in the hypoxia-inducible fac-
tor-2 target gene selection. Cancer Res. 66, 5641–5647 (2006).

43. Bindra, R. S. et al. Hypoxia-induced down-regulation of BRCA1
expression by E2Fs. Cancer Res. 65, 11597–11604 (2005).

44. Cubillo, E. et al. E47 and Id1 interplay in epithelial-mesenchymal
transition. PLoS ONE 8, e59948 (2013).

45. Sanchez-Tillo, E. et al. beta-catenin/TCF4 complex induces the
epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate
tumor invasiveness. Proc. Natl Acad. Sci. USA 108, 19204–19209
(2011).

46. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics
at single-cell resolution. Science 367, 45–51 (2020).

47. Deshpande, V. et al. Exploring the landscape of focal amplifications
in cancer using AmpliconArchitect. Nat. Commun. 10, 392 (2019).

48. Koche, R. P. et al. Extrachromosomal circular DNAdrives oncogenic
genome remodeling in neuroblastoma. Nat. Genet. 52, 29–34
(2020).

49. Kumar, P. et al. ATAC-seq identifies thousands of extra-
chromosomal circular DNA in cancer and cell lines. Sci. Adv. 6,
eaba2489 (2020).

50. Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes
compared in matched cortical cell types. PLoS ONE 13, e0209648
(2018).

51. Liu, C. et al. A portable and cost-effective microfluidic system for
massively parallel single cell transcriptome profiling. Preprint at
bioRxiv https://doi.org/10.1101/818450 (2019).

52. Rouillard, A. D. et al. The harmonizome: a collection of processed
datasets gathered to serve and mine knowledge about genes and
proteins. Database 2016, baw100 (2016).

Article https://doi.org/10.1038/s41467-023-43991-9

Nature Communications |         (2023) 14:8170 20

https://doi.org/10.1101/818450


53. Gao, J. et al. Integrative analysis of complex cancer genomics and
clinical profiles using the cBioPortal. Sci. Signal 6, pl1 (2013).

54. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

55. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086 (2017).

56. Van de Sande, B. et al. A scalable SCENIC workflow for single-cell
gene regulatory network analysis. Nat. Protoc. 15, 2247–2276
(2020).

57. Ritchie, M. E. et al. limma powers differential expression analyses
for RNA-sequencing andmicroarray studies.Nucleic Acids Res. 43,
e47 (2015).

58. Lombardi, O. et al. Pan-cancer analysis of tissue and single-cell HIF-
pathway activation using a conserved gene signature. Cell Rep. 41,
111652 (2022).

59. Chen, T. et al. The genome sequence archive family: toward
explosive data growth and diverse data types. Genomics Pro-
teomics Bioinformatics 19, 578–583 (2021).

60. CNCB-NGDC Members and Partners. Database resources of the
National Genomics Data Center, China National Center for Bioin-
formation in 2022. Nucleic Acids Res. 50, D27–D38 (2022).

61. Zhu, Q. et al. Single cell multi-omics reveal intra-cell-line hetero-
geneity across human cancer cell lines. liushang17/CCLA. Zenodo
https://doi.org/10.5281/zenodo.10054944 (2023).

Acknowledgements
We are grateful to Xudong Zhou and Xiyang Chen for helpful sugges-
tions on computational analysis; Jichang Wang and Zhongjian Chen for
kindly sharing human cancer cell lines; the Center for Computational
Science and Engineering of SUSTech for the support on the computa-
tional resources. This work was supported by the National Key Research
and Development Program of China (to W.C.: 2021YFF1201000), the
National Natural Science Foundation of China (to Q.Z.: 32100613), the
National Key Research and Development Program of China (to W.C.:
2022YFC3400400), Shenzhen Science and Technology Program (to
W.C.: KQTD20180411143432337; to Q.Z.: JCYJ20210324104605014; to
L.F.: JCYJ20190809154407564;), Shenzhen Key Laboratory of Gene
Regulation and Systems Biology (toW.C.: ZDSYS20200811144002008),
SUSTech Research Foundation (toW.C.), Guangdong Basic and Applied
Basic Research Foundation (to L.W.: 2021A1515110832), Guangdong-
Hong Kong Joint Laboratory on Immunological and Genetic Kidney
Diseases (to S.-P.Liu: 019B121205005), Shenzhen Key Laboratory of
Single-Cell Omics (to S.-P.Liu: ZDSYS20190902093613831), and China
National GeneBank.

Author contributions
W.C., Q.Z., L.F., L.W. and Y.Hou conceived the study. Q.Z. and L.F.
designed the experiments. Q.Z., Y.Li, J.H. and Y.T. prepared the cell
lines. Q.Z. and L.F. constructed the plasmid. Y.Z., Y.Li., J.H., Z.S., S.W.,

D.D., C.W., Y.Huang, S.J., and Y.Y. processed single-cell experiments
with help from C.L. X.Zhao, Y.Z., S.Liu, and C.T. designed and imple-
mented computational strategieswithQ.Z., L.W., L.F., and analyzed data
with help from G.L., X.Zou, Z.L. and M.Z. T.Y., T.L., Y.Liu and W.Y.
developed an online database. Q.Z. and L.F. wrote the paper with input
from X.Zhao. and Y.Z. L.W., W.C., Y.Hu, H.C., S.W., X.C. and Y.Li.
reviewed and revised the manuscript. X.J., A.C. and X.X. discussed the
manuscript. Q.Z., L.W., W.C., L.F., L.L. and S.-P.Liu coordinated and
supervised the study.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43991-9.

Correspondence and requests for materials should be addressed to
Qionghua Zhu, Longqi Liu, Shiping Liu, Liang Fang, Wei Chen or Liang
Wu.

Peer review information Nature Communications thanks Zhana Duren
and the other anonymous reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43991-9

Nature Communications |         (2023) 14:8170 21

https://doi.org/10.5281/zenodo.10054944
https://doi.org/10.1038/s41467-023-43991-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Single cell multi-omics reveal intra-cell-line heterogeneity across human cancer cell�lines
	Results
	Pan-cancer scRNA-seq of human cell�lines
	Transcriptomic heterogeneity within individual cell�lines
	Molecular features shaped by transcriptomic heterogeneity
	Pan-cancer scATAC-seq of human cell�lines
	Transcriptomic heterogeneity associated with�CNVs
	Transcriptomic heterogeneity modulated by chromatin accessibility
	Transcriptomic heterogeneity induced by ecDNA distribution
	The transcriptomic heterogeneity dynamics
	Hypoxia treatment remodels intra-cell-line heterogeneity

	Discussion
	Methods
	Cell line cultures
	Hypoxia treatment
	Cloning procedures
	Virus package and transduction
	scRNA-seq with DNBelab C4�system
	scATAC-seq sample preparation
	scRNA-seq library preparation and sequencing
	Processing of scRNA-seq�data
	Cell clustering
	Cell line assignment
	Systematic characterization of transcriptional heterogeneity
	Function enrichment
	Defining diversity scores in each cell�line
	Cell cycle analysis
	Processing of scATAC-seq�data
	Defining diversity scores in each cell line for scATAC-seq
	Transcription factor motif enrichment analysis
	TFs clustering
	Integration of scATAC-seq data with scRNA-seq�data
	TFs targets analysis
	GSVA analysis
	CNV estimation
	Association between the CNV subclones and transcriptional subclusters
	EcDNA detection
	Hypoxia data analysis
	Quantification and statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




