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Real-time photonic blind interference
cancellation

Joshua C. Lederman 1 , Weipeng Zhang 1, Thomas Ferreira de Lima1,2,
Eric C. Blow1,2, Simon Bilodeau1, Bhavin J. Shastri 3 & Paul R. Prucnal 1

mmWave devices can broadcast multiple spatially-separated data streams
simultaneously in order to increase data transfer rates. Data transfer can,
however, be compromised by interference. Photonic blind interference can-
cellation systems offer a power-efficient means of mitigating interference, but
previous demonstrations of such systems have been limited by high latencies
and the need for regular calibration. Here, we demonstrate real-time photonic
blind interference cancellation using an FPGA-photonic system executing a
zero-calibration control algorithm. Our system offers a greater than 200-fold
reduction in latency compared to previous work, enabling sub-second can-
cellation weight identification. We further investigate key trade-offs between
system latency, power consumption, and success rate, and we validate sub-
Nyquist sampling for blind interference cancellation. We estimate that pho-
tonic interference cancellation can reduce the power required for digitization
and signal recovery by greater than 74 times compared to the digital electronic
alternative.

Technological development has driven an ever-increasing demand for
wireless communication bandwidth1–3. With sub-7GHz bands heavily
utilized, the industry has turned to 30–300 GHz (mmWave) bands to
meet these growing needs4,5. At these frequencies, further capacity
gains can be realized using beamforming—the angular steering and
filtering of radio-frequency (RF) signals to optimize wireless commu-
nication links. mmWave beamforming may be implemented using an
array of mm-scale antennas in one package3–6. Hybrid analog-digital
beamformers are capable of transmitting or receiving signals at mul-
tiple angles simultaneously, allowing independent data streams to be
transmitted along different spatial paths concurrently (Fig. 1)3–5,7,8. This
multiple-input multiple-output (MIMO) approach multiplies the
capacity of an RF link3–6.

Beamforming receivers are imperfect, receiving signals from off-
target angles, particularly those close to the angles of target signals.
Interfering signals arriving at such angles introduce noise that
degrades network capacity5,9–12. This interferencemay stem fromother
spatial channels, including those of other devices on the network

sharing the same spectral resources as in a multi-user MIMO system
(Fig. 1a)4,5, or from a malicious actor (Fig. 1b).

Interference may be mitigated by isolating each incoming signal
according to its angle of incidence and subtracting it from the target
signals, improving their signal-to-noise ratios (SNRs)5,9,13–15. When
implemented digitally, this technique requires a power-hungry RF chain
for every interference source in order to generate the associated digital
reference signal4,7,12,16. Analog interference cancellation, where inter-
ference is subtracted prior to signal digitization, can reduce system
power consumption. We propose to implement it using RF photonics.

The RF photonics platform, where RF signals are modulated
onto optical carriers and processed in the optical domain, offers
high bandwidths, low loss, and resistance to electro-magnetic
interference17. A single integrated silicon photonic waveguide can
carry dozens of high-bandwidth RF signals each on a separate wave-
length, enabling hardware-efficient interconnection18. These
wavelength-division-multiplexed (WDM) RF signals can be weighted
and summed in parallel using micro-ring resonators (MRRs) and
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photodetectors, implementing tunable linear signal combination19.
Applications of RF-photonic linear combination include self-
interference cancellation20,21 and blind interference cancellation22–27.
Notably, we have recently demonstrated photonic blind interference
cancellation (PBIC)with 9bits ofweight precision and effective control
of signals from DC to 19.2 GHz27. However, like all previous MRR
photonic systems, that PBIC system required re-calibration after any
small shift in operating temperature or optical input power, and
identifying the correct cancellation weights required minutes,
incompatible with real-time operation.

In this work, we demonstrate a PBIC system with key advance-
ments that address limitations observed in prior work. Our system
relies on a zero-calibration approach to MRR control for PBIC that
greatly reduces the complexity of adapting to changes in temperature
and optical power. Digital processing in our system is implemented on
a Xilinx Zynq chip containing a field-programmable gate array (FPGA)
and a central processing unit (CPU), resulting in a greater than 200-
fold reduction in latency and sub-second cancellation weight identifi-
cation. We demonstrate low-latency coordinated processing between
an MRR photonic system and an FPGA as well as real-time applied
photonic weight adaptation. Our results highlight that the statistic
sampling rate and sample count represent critical parameters
impacting the latency, power consumption, and success rate of a PBIC
system. We establish that sub-Nyquist sampling is a crucial technique
for reducing power consumptionwithout compromising PBIC success.
Finally, we propose a mmWave beamforming receiver architecture
capable of PBIC and estimate that it can achieve a greater than 74-fold
reduction in digitization and signal recovery power in comparison to
the conventional digital electronic alternative.

Results
We consider a set of Ns spatially-separated transmitters communicat-
ing with a single receiver. There are Ns independent source signals
sðtÞ= fs1ðtÞ, s2ðtÞ, . . . , sNs

ðtÞg. These source signalsmixover the air, such

that the receiver detects a set of Nr distinct linear mixtures of those
signals rðtÞ= fr1ðtÞ, r2ðtÞ, . . . , rNr

ðtÞg, where we require Nr ≥ Ns. The
mixing process, neglecting non-interference noise sources, may be
modeled:

rðtÞ=MsðtÞ ð1Þ

whereM 2 RNr ×Ns represents an unknown mixing matrix.
Blind interference cancellation describes the task of recovering,

from the received signals, a subsection of the source signals number-
ingNt, the target source signals, whereNt ≤ Ns. For each of these target
source signal si(t), there exists a cancellation weight vector ci that
recovers the source:

siðtÞ= ci � rðtÞ= cTi MsðtÞ ð2Þ

Under photonic blind interference cancellation, also called pho-
tonic blind source separation, this signal recovery is implemented
in the analog domain with photonics22–27. As shown in Fig. 2, each
received signal is modulated onto a distinct wavelength of light.
The signals are multiplexed and coupled onto a silicon photonic
chip. On-chip tunable micro-ring resonators (MRRs) apply
photonic weights w and balanced photodetectors sum over all
signals, producing a recovered signal m(t) representing a linear
combination of the received signals19:

mðtÞ=w � rðtÞ ð3Þ

We seek to perform cancellation weight identification: the adjustment
ofw to match one ci and thereby recover a target signal si(t). To do so,
we apply iterative implementations of principal and independent
component analysis (PCA and ICA). Different photonic weight vectors
w are tested in sequence, and the resulting m(t) is sampled and its
statistical properties evaluated. PCA requires maximization of the

Fig. 1 | mmWave interference scenarios. a A spatial channel associated with one device interferes with another device’s spatial channels. b A malicious source directs
interference at a device. Target channels are shown in blue and interfering channels in orange.
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variance of m(t), σ2 =E m2ðtÞ� �
, and ICA requires minimization of the

kurtosis of m(t), κ =E m4ðtÞ� �
=σ4 � 3 (where it is assumed E½mðtÞ�=0

for an RF signal). Specifically, ICA relies on a property stemming from
the Central Limit Theorem: when w = ci for some i—i.e., when the
recovered signal matches one of the independent source signals—κ is
at a local minimum. The source signals are the independent compo-
nents (ICs). PCA allows the identification of a transformedweight basis
in which the cancellationweight vectors are orthogonal, ensuring they
can be deterministically identified.

Experimentally, we test two representative mixing matrices with
Nr =Ns = 2:

M1 =
0:6 0:4

0:4 0:6

� �
M2 =

1 0:5

1 0:2

� �
ð4Þ

M1 represents a symmetrical case in which there is a similarly powerful
interfering signal, corresponding to Fig. 1a. M2 represents a case in
which powerful jamming interference masks a weaker target signal,
corresponding to Fig. 1b. We use binary phase-shift keyed (BPSK)
source signals with a 1 GHz carrier frequency and a 200 MBaud
symbol rate.

PBIC without Calibration
A photonic MRR weight is tuned by applying electrical current,
typically to a resistive heater embedded within or near the MRR. A
set of MRRs produce a weight vector w and are tuned by current
vector i of the same length. While each element of w depends pri-
marily on the corresponding element of i, thermal, electrical, and
optical cross-talk between the MRRs results in a current-weight
transfer function best represented w = f(i). This transfer function is
generally modeled through calibration in order to apply accurate
weights, and the sensitivity of MRRs to variations in operating
temperature and optical power requires recalibration after even
minute changes in either quantity28. While daily calibration can
suffice when using a temperature- and vibration-stabilized labora-
tory testbed, during field operation of a PBIC system environmental
stability cannot be guaranteed. Calibration is required prior to each
weight identification run, and it is made complex and time-

consuming by the need to model and compensate for multiple
modes of MRR cross-talk. As the number of MRRs scale and they are
placedmore closely tominimize chip area, the number and strength
of cross-talk interactions rises dramatically, further increasing the
challenge of calibration. Nevertheless, all previous reports of useful
MRR photonic systems, including systems capable of PBIC, rely on
pre-calibration to determine this transfer function23,24,27. Alternative
MRR control techniques that reduce the need for calibration require
additional sensing hardware for each MRR28,29. Instead, we propose
and demonstrate an error-robust approach to MRR control for PBIC
that eliminates the need to calibrate with no additional hardware
required:

We consider the shape of f about the zero-weight point i0, where
f(i0) =0. Figure3 shows themeasuredoutputweight of eachMRRas its
associated tuning current is swept, with the other tuning current
matching i0. About the zero-weight point, a linear approximation of
the transfer function is reasonably accurate, consistent with MRR
physical modeling (see Supplementary Notes). The transfer function

Fig. 3 | Measured weights of micro-ring resonators (MRRs) 1 (blue) and 2
(orange) as a functionof applied current. Linear fits to the region about the zero-
weight point are shown.

Fig. 2 | Experimental photonic blind interference cancellation setup. a Setup
diagram. b Scale schematic of the experimental micro-ring resonators (variation in
N-doping concentration not shown). c Packaged photonic chip and controller.
d ZCU216 FPGA development board. The experimental setup generates linearly
mixed signals in software and uses an arbitrary waveform generator (AWG) and

Mach-Zehndermodulators (MZMs) tomodulate them onto distinct wavelengths of
light. An FPGA performs statistic calculation and an integrated CPU runs the opti-
mization algorithm. EDFA: erbium-doped fiber amplifier, PC polarization con-
troller, PD photodetector, I/O input/output.
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may therefore be approximated as linear near i0:

w= f ðiÞ≈ Df
��
i0

� �
ði� i0Þ given ji� i0j<imax ð5Þ

whereDf
��
i0
2 RNr ×Nr represents thematrix of partial derivatives of f(i)

evaluated at i0 and imax represents the maximum deviation from i0
where the linear approximation holds. Note that off-diagonal terms of
Df

��
i0
represent first-order approximations of MRR cross-talk that are

incorporated within this model.
It follows that the recovered signal m(t) may be approximated as

such:

mðtÞ=wTMsðtÞ≈ ði� i0Þ|fflfflffl{zfflfflffl}
w0

T Df
��
i0

� �T
M|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

M
0

sðtÞ ð6Þ

Under this approximation, there is an effective weight vector w0,
determined from the applied currents without calibration, and an
effective mixing matrix M0, the product of Df

��
i0

and the true mixing
matrixM. AsM0 is unknown for PBIC, Df

��
i0
does not need to be known,

and only i0 must be identified.
We performexperimental cancellation weight identification using

this approximation with imax = 0.6 mA. Weight identification consists
of the four steps shown in Fig. 4. First, variance isminimized to find i0,
establishing the linear region as a circle of radius imax centered at i0.
PCA and ICA (steps 2 and 3) operate along the edge of this circle,
balancing weighting linearity with recovered signal SNR, which
increases with amplitude. PCA consists of finding an orthogonal basis
in which each successive basis vector points in the direction of highest
variance. ICA performs an analogous process, though it operates in an
adjusted basis derived from PCA and seeks to minimize kurtosis.
Though the process with two signals is shown, this approach gen-
eralizes to an arbitrary number of source signals. See Supplementary
Methods for a detailed discussion.

Estimates of the source signals after step 3 are subject to the
cascaded errors of the previous steps stemming from noise, sampling
randomness, and the linearity approximation. Furthermore, we seek to
increase the amplitude of the recovered signal to maximize its SNR,
but that requires pushing i out of the linear region. To address both
problems, we add a final step to the algorithm consisting of a kurtosis
minimizationover the entireweightfield, with each ICestimate serving

as the initial position. As noise raises the kurtosis, this step optimizes
both the ICs’ weights and SNRs without requiring the linearity
assumptionof Eq. (5). This constitutes step4. So long as steps 1–3place
the initial IC estimateswithin the correct convex regions, the optimizer
will find the correct kurtosisminima. Experimentally, we find that both
the stronger and weaker source signals can be consistently recovered
and accurately demodulated under M1 and M2.

Low-latency adaptation
Undermostwireless communication scenarios,M changes in response
to the movement of people and objects in the environment. However,
it is assumed to be static during cancellation weight identification. The
desired weights must therefore be identified before M meaningfully
changes, with the algorithm operating in real-time with low latency.
Following weight identification, continuous kurtosis minimization can
ensure the weight vectors remain accurate, so the latency of the initial
identification represents the limiting factor. Weight identification
requires a set of processing iterations, each of which consists of five
sequential operations shown in Table 1. Signal acquisition refers to the
collection of a set of samples ofm(t), the latency of which depends on
the sampling rate and sample count, discussed in the following sec-
tion. We demonstrate consistently successful weight identification for
M1 and M2 with a signal acquisition latency down to 8.3μs.

Statistic calculation describes the computation of the variance
and kurtosis of m(t) from the collected samples. In previous work, it
was performed by an oscilloscope, and it dominated iteration latency.
We use an alternative approach in which a Xilinx Zynq FPGA/CPU chip
performs low-latency sampling, statistic calculation, and optimizer
execution, as shown in Fig. 2. Our custompipelined FPGA logic design,

Fig. 4 | A typical experimental photonic weight identification with the M2

mixing matrix. Step 1 identifies the point of lowest variance, i0. Step 2 consists of
principal component analysis and step 3 of independent component analysis, each
optimizing directional vectors about the circle denoting the linear region. A 0

subscript and dashed lines denote initial positions, while solid lines denote final
positions. Step 4 optimizes the recovered source signals, freeing them from the
linear region to reach higher-amplitude final positions denoted 0. PCs principal
components, ICs independent components.

Table 1 | Contributions to Iteration Latency

Operation Symbol Previous Work27 This Work

Signal Acquisition ta <1ms 8.3μs (min.)

Statistic Calculation ts >1 s 49 ns

Optimizer Execution to <1μs <1 μs

DAC Communication tc 3ms (avg.) 3ms (avg.)

Photonic Weighting tp 500 μs 500 μs

Total >1 s <4ms
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diagrammed in Fig. 5, processes incoming 1.97 GS/s signal data in real-
time, adding a negligible 49 ns latency, a greater than seven order-of-
magnitude improvement.

Optimizer execution refers to the determination of the next set of
weighting currents to test during iterative optimization, and it adds
minimal latency. DAC communication describes the transmission of
the weighting currents to the digital-to-analog converter (DAC) board.
It requires an average of 3ms, making it the primary contribution to
iteration latency. Photonic weighting refers to the setting of the
desired photonic weights; our system waits a conservative 500μs to
allow the weights to stabilize. We, therefore, achieve a total iteration
latency below 4 ms in this work.

We implement the optimizations required for each step shown in
Fig. 4 using the Nelder-Mead algorithm with a fixed 40 iterations per
optimization30. With Ns = 2 experimentally, we perform five total
optimizations per weight identification requiring 200 processing
iterations. Total latency depends on the DAC communication and
signal acquisition latency,with consistentweight identification success
achievable in less than 1 s.

Sub-Nyquist sampling
We collect ns samples ofm(t) at sampling rate fs to generate estimates
of σ2 and κ, denoted S2 and K, respectively (see Methods). ns and fs
dictate the uncertainty of S2 and K. Errors in measurements of S2 and K
during cancellation weight identification can cause an error in the
estimate of an IC that leaves it outside the often small convex region
with the desired kurtosis minimum, leading to weight identification
failure. This motivates further analysis of the relationship between ns

and fs and the weight identification success rate. Of particular interest
is sub-Nyquist sampling, where fs is less than twice the signal band-
width. Sub-Nyquist sampling has been successfully demonstrated for
PBIC, but its influence on weight identification success rate has not be
investigated26,31. There is potential for alignment between frequency
components of the recovered signal and the sampling rate, generating
data artifacts that increase uncertainty.

Figure 6 a shows the weight identification success rate forM1 and
M2 as a function ofK uncertainty.We find thatK uncertainty is strongly
predictive of identification success rate, and that below a certain K
uncertainty threshold,which dependson themixingmatrix, successful
identification becomes nearly guaranteed. The difficulty of performing
weight identification for a givenmixingmatrixmaybe quantified by its
ill-condition number (see Supplementary Notes). M2, with an ill-
condition number of 7.5, represents a more challenging PBIC scenario
than M1, with an ill-condition number of 5, accounting for the lower
level of K uncertainty required to reliably recover sources from M2 as
compared to M1.

Figure 6b, c shows statistic uncertainty as a function of fs and ns,
respectively, with the other parameter held fixed. The uncertainties of
S2 andK remain largelyflat as fs varies forfixedns (with the exceptionof
degradation at higher sampling rates due to an experimental artifact
discussed in Supplementary Notes). Our results validate that reducing
fs to deeply sub-Nyquist values, an approach with significant power
consumptionbenefits discussed in the following section, has aminimal
impact on success rate. By contrast, statistic uncertainty drops sharply
as ns increases, consistent with statistical theory. Weight identification
success rate can be improved by raising ns, but there is a trade-off.

Fig. 5 | Diagram of the FPGA-implemented statistic calculator. Incoming samples at up to 1.97 GS/s are distributed among multiple parallel pipelined channels each
capable of processing 246 MS/s, ensuring real-time processing. The FPGA implements the key operations of Eq. (10) (see Methods).

Fig. 6 | Weight identification performance and statistic measurement uncer-
tainty. a Cancellation weight identification success rate as a function of K uncer-
tainty forM1 (blue) andM2 (orange). Dashed lines indicate the kurtosis uncertainty
thresholds below which weight identification become near-perfectly successful,
with the uncertainty values indicated. b Uncertainty of S2 and K as a function of fs.

c Uncertainty of S2 and K as a function of ns. Blue points indicate the mean mea-
surement of the respective statistics, with error bars indicating their uncertainty,
also plotted in orange (see Methods). Dashed lines show the true underlying sta-
tistic values.
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Sample acquisition latency ta, which sets the floor on system latency,
depends on fs and ns:

ta =
ns

f s
ð7Þ

As we seek to minimize latency, we must either lower ns, compromis-
ing weight identification success, or raise fs, increasing power con-
sumption. The specific sampling parameters chosen depend on the
desired application. One candidate set of sampling parameters, ns = 214

and fs = 122.9 MS/s, results in an acquisition latency of 133 μs and a K
uncertainty of 0.0054, below the uncertainty threshold for both mix-
ing matrices tested.

A photonic-RF mmWave MIMO receiver
Building on our experimental results, we propose a hybrid digital-
analog photonic beamforming receiver that performs blind inter-
ference cancellation with significantly less power consumption than
the conventional digital electronic alternative. As shown in Fig. 7, in a
hybrid digital-analog beamforming receiver, each physical antenna is
connected by a beamforming apparatus consisting of an array of
splitters, combiners, and phase shifters to a smaller number of logical
antenna ports. Each logical port has an angular sensitivity that may be
independently controlled via the phase-shifter array. As a result, each
port provides a linear mixture of all incident source signals, with
weights dependent on the beamformer tuning, the signals’ angles of
incidence, and the environment. These signals may bemodeled by Eq.
(1), allowing PBIC to be applied4–7,15.

In a digital electronic system, the Nr received signals are down-
converted and digitized by Nr RF chains (Fig. 7a). The analog-to-digital
converters (ADCs) in each chain must operate at the Nyquist rate with
bit precision sufficient to extract a weaker target signal from strong
interference. After digitization, linear signal combination for signal
recovery is implemented digitally. Digital ICA to determine the can-
cellation weights can be performed by drawing a subset of samples
from the digital output signal for statistic calculation. Our ICA algo-
rithm can be used, or alternatively the system can implement an
algorithm drawn from the literature such as FastICA32.

By contrast, in our proposed system shown in Fig. 7b, signal
recovery occurs prior to downconversion and digitization in the ana-
log photonic domain. On a single photonic chip, received signals are
modulated by broadband micro-ring modulators onto spaced wave-
lengths produced by a co-integrated laser frequency comb33,34. The
WDM signals are directed to Nt photonic-RF chains—one for each tar-
get source—which perform recovery, downconversion, and digitiza-
tion of the target source signals. The demodulation ADCs, operating at
the Nyquist rate, require only the bit precision dictated by the mod-
ulation format of the target signal. Precision as low as 1 bit has been
demonstrated as a way of reducing the power consumption of high-

bandwidth receivers4,7,10,16. Data from low-precision demodulation
ADCs produce less accurate signal statistics, requiring the use of a
separate, high-precision sub-Nyquist statistic ADC to drive cancella-
tion weight identification. The weight identification itself is performed
by two application-specific integrated circuits (ASICs) off the primary
signal path: the statistic calculator determines S2 and K and the opti-
mizer runs the weight identification algorithm.

We present a brief analysis of the power consumption of each
approach to interference cancellation to motivate the use of photo-
nics. We consider a mixing scenario with an equal number of source
and received signals and one target source (Ns =Nr and Nt = 1). The
sources are quadrature phase-shift keyed (QPSK) with a symbol rate fQ,
and the level of interference demands signal recovery with 6 bits
precision in order to extract the weaker target source. Signal statistics
for the purpose of PCA and ICA are calculated at a 100 MS/s rate for
both systems.

ADC power consumption can be estimated using the Schreier
figure of merit (FoMS), which usefully characterizes the relationship
between power P, bit precision b, and sampling rate fs of a given ADC
technology35:

P =
f s
2
10

1
10 SNDR�FoMSðf s Þð Þ ð8Þ

SNDR, the signal to noise plus distortion ratio, relates to b as follows:

SNDR=6:02dB � b+ 1:76dB ð9Þ

As fs increases beyond 10 MS/s, FoMS(fs) begins to fall, reflecting
reduced ADC efficiency35. Based on recent reports, FoMS is approxi-
mately 176dB/J at 100MS/s36,37, 164 dB/J at 2GS/s38,39, and 150dB/J at 10
GS/s40,41. With these numbers, we estimate ADC power consumption.

Digital processing in both systems can be quantified in terms
of multiply-accumulate (MAC) operations. For Nt = 1, digital signal
recovery, represented by Eq. (2), requires 1 MAC for each
incoming data sample. Statistic calculation requires 2 MACs per
sample, visible in Fig. 5, while optimization algorithm execution
requires negligible processing in comparison due to the simpli-
city of the Nelder-Mead algorithm. One MAC with 8-bit precision
incoming values requires approximately 1 pJ of energy42. The rate
of digital processing for digital signal recovery scales with fQ. The
processing for statistic calculation, however, does not, as for a
given desired acquisition latency the sample count and sampling
rate can remain fixed, independent of the signal symbol rate. We
have shown that there is no performance penalty associated with
deeply sub-Nyquist sampling.

The energy consumption of the photonic sub-system of the pro-
posed approach is dominated by the power of the optical carriers and
the micro-ring tuning current. 96 μW of optical power per GHz of

Fig. 7 | Diagramsofhybridbeamforming receivers capableofblind interference cancellation.Digital electronic (a) and analogphotonic (b) receivers shownwithNr = 6
and Nt = 1. I in-phase, Q quadrature, ICA independent component analysis, MRR micro-ring resonator, PD photodetector.
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bandwidth per wavelength is required to ensure 6-bits precision given
the dominant noise source at this power level, shot noise43. With all
MRRs trimmed post-fabrication to eliminate variability44, at most
120μW power is required to tune the photonic weights43.

Based on this analysis, the power consumption of each device is
reported in Table 2 (see Supplementary Notes for additional details).
We limit our analysis to the digitization and signal recovery elements
of each system, though we note that the photonic system requires no
more of any electronic RF component than the digital electronic sys-
tem and significantly fewer downconverters.

Table 3 reports the total estimated digitization and signal recov-
ery power consumption of each system under several combinations of
Nr and fQ. The photonic system offers 14 times lower power con-
sumption when performing interference cancellation on 2 GBaud sig-
nals and 74 times lower power consumption for 10 GBaud signals. This
results from the decrease in ADC efficiency as fs increases, which
affects the photonic system less due to the reduction in number of
ADCs, the low bit precision of the demodulation ADCs, and the low
sampling rate of the statistic ADC. We find that the photonic approach
to blind interference cancellation becomes increasingly power-
advantageous as fQ increases. Nr has little impact on the power con-
sumption improvement factor as all dominant power consumers in
both systems scale with Nr.

Discussion
In this work, we both advance PBIC technology by demonstrating
techniques to address the limitations of previous work and char-
acterize the performance of a PBIC system in order tomotivate the use
of photonics for interference cancellation. Our analysis indicates that
PBIC can reduce signal digitization and recovery power consumption
by greater than 74 times relative to the conventional digital electronic
alternative, but two limitations of previous MRR-photonic systems for
PBIC need to be addressed:

First, unlike digital systemsMRRphotonic systems are sensitive to
operating temperature and optical input power. During field opera-
tion, where environmental stability is not guaranteed, complex re-
calibration of the photonic system would be required prior to every
weight identification run based on previous techniques. Our MRR
control approach eliminates the need for calibration while still incor-
porating a first-order approximation of all cross-talk, allowing the
updated weight identification algorithm to run immediately without
concern for environmental change. Approaches like this that mitigate
the thermal sensitivity of MRRs are critical to allowing any MRR

photonic system tooperatewithout strict temperature control, andwe
anticipate our technique having broad application beyond RF inter-
ference cancellation.

Second, previous PBIC demonstrations faced total system
latencies of several minutes, incompatible with the time-varying
RF environments of the real world. We address this limitation by
implementing coordinated, low-latency processing between an
MRR photonic system and an FPGA, enabling real-time applied
photonic weight adaptation. Our FPGA/CPU chip implements
signal sampling, statistic calculation, and optimizer execution,
reducing statistic calculation latency by more than seven orders
of magnitude and total iteration latency by more than 200 times
relative to previous work. As a result, we demonstrate sub-second
total cancellation weight identification latency, consistent with
real-time operation even as M shifts due to the movement of
people and objects. We anticipate further order-of-magnitude
reductions in weight identification latency with the use of low-
latency digital communication protocols (e.g., serial peripheral
interface) and optimization of MRR control28. Under this scenario,
reflective of practical PBIC application, signal acquisition latency
represents the primary latency contribution.

Our results show that PBIC performance has a strong dependence
on recovered signal sampling rate and sample count that has not
previously been characterized. These parameters determine signal
acquisition latency while also impacting success rate and power con-
sumption. We find that reducing statistic sampling rate to deeply sub-
Nyquist values does not degrade PBIC success rate and offers a sig-
nificant potential power consumption reduction, and we therefore
conclude that it represents a crucial technique for PBIC systems,
especially when operating on high-bandwidth signals. We further dis-
cover that PBIC success rate depends strongly on statistic uncertainty
and thereby statistic sample count, with increased sample counts
required to address more challenging signal mixing scenarios.

The power consumption benefits associated with the photo-
nic approach to blind interference cancellation scale with
received signal bandwidth. PBIC is therefore uniquely well suited
to operating on high-bandwidth signals in power-constrained
scenarios, though digital electronics can offer advantages in
latency and technology platform maturity. As the use of high-
bandwidth mmWave frequencies expands to meet increasing
societal demands for wireless throughput, PBIC will become
increasingly advantageous. Efficient interference cancellation can
reduce the cost of developing interference-tolerant mmWave
devices, enabling greater levels of multi-user spatial multiplexing
and facilitating network capacity improvements4,9.

The experimental extension of PBIC to mmWave signals will
represent a key direction of future development. We have previously
demonstrated PBIC up to 19.2 GHz carrier frequencies27, and recent
advancements in integrated silicon photonic components show pro-
mise toward fully extending integrated photonics to the mmWave
domain45–47. Nevertheless, mmWave PBIC has not been shown, and an
intermediate downconversion stage prior to electro-optic modulation
may be required in the proposed photonic system in order to achieve
low-distortion signal recovery.

Table 2 | Power consumption by device

Device Power (μW) Count

fQ = 2 GBaud fQ = 10 GBaud Digital
System

Photonic
System

Nyquist ADC, 1-bit 0.239 30.0 – 2

Nyquist ADC, 6-bit 244 30,700 2Nr –

Sub-Nyquist
ADC, 6-bit

0.771 0.771 – 1

Digital Signal
Recovery MAC

2000 10,000 2Nr –

Statistic Calcula-
tion MAC

100 100 2 2

Optical Carrier 192 960 – Nr

MRR 120 120 – Nr

Total Digital
System

4,488Nr + 200 81,400Nr + 200

Photonic
System

312Nr + 200 1, 080Nr + 260

Table 3 | Total digitization and signal recovery power

Nr fQ (GBaud) Total Power (mW) Improvement Factor

Digital System Photonic System

6 2 27.1 2.07 13.1x

20 2 90.0 6.44 14.0x

6 10 489 6.74 72.6x

20 10 1630 21.9 74.4x
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Methods
Experimental setup
The experimental source signals are two BPSK signals consisting of
distinct 1137-bit repeating random sequences. Each has a 200 MBaud
data rate and a carrier frequency offset from 1GHz by 176 kHz in
opposite directions to prevent artifacts generated from a perfect
alignment (the frequency offset is not used for signal discrimination).
The signals aremixed in software and generated by a Keysight N8196A
92 GS/s AWG, which modulates the signals using MZMs onto distinct
C-band laser frequencies generated by two Pure Photonics PPCL500
lasers. The light is polarization-controlled, amplified, and coupledonto
a photonic chip, which performs signal recovery. The output inten-
sities are received by a Discovery Semiconductor DSC-R405ER
balanced photodetector, and the resulting signal is split between a
Tektronix DPO73304SX 100 GS/s oscilloscope and an analog input to
the Xilinx ZCU216 FPGA development board. The FPGA board com-
municates over a serial protocol with a custom printed circuit board
(PCB) that includes DACs to apply the weighting currents (Fig. 2c). The
photonic chip is electrically connected to a chip carrier on the PCB
using wire-bonds.

Digital processing setup
All digital processing is performed by the ZCU216 board using a
Xilinx XCZU49DR chip with a cointegrated ADC, FPGA, and Arm
cortex. The ADC samples themeasured signal continuously at a fixed
rate, feeding data to the FPGA logic fabric on which the statistic
calculator shown in Fig. 5 is implemented. All FPGA logic is clocked
at 246 MHz, and samples, arriving at up to 1.97 GS/s, are therefore
distributed between 8 identical parallel paths. Lower sampling rates
are implemented by dropping samples as appropriate. Each pro-
cessing path calculates the second and fourth power of each sample,
their contributions to the variance and kurtosis, respectively,
assuming the signal mean is zero. These contributions are then
accumulated from among the paths and over the course of the cal-
culation. As the contributions from each sample are independent,
the processing can be efficiently pipelined, with calculation occur-
ring in parallel with signal sampling. Once all samples have been
processed, the accumulated sums are divided by the number of
samples using right-shifting, as the number of samples is required to
be a power of 2. The result is S2, the variance estimate, and K *, a
preliminary value used to determine the kurtosis estimate as fol-
lows: K = K */S4−3. This final operation is performed on a floating-
point basis by the Arm cortex. Xilinx High-Level Synthesis (HLS) was
used to create this logic design.

Total end-to-end processing by the FPGA requires 12 clock cycles,
corresponding to an additional latency (over the signal acquisition
latency) of 49 ns. TheNelder-Meadoptimization algorithm is executed
by the Arm cortex. The algorithm interfaces with the DAC control
board over a serial protocol to set weights.

Statistic calculation
ns samples of m(t), denoted m1,m2, . . . ,mns

, are used to generate
estimators S2 and K of the variance and kurtosis, respectively:

S2 =
1
ns

Xns

i = 1

m2
i K =

1

S4
1
ns

Xns

i = 1

m4
i � 3 ð10Þ

The quality of these estimators for the purpose of PBIC is quantified by
their uncertainty. The uncertainty of an estimator A is equal to its
standard deviation σ(A):

σðAÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E A�E½A�ð Þ2
h ir

ð11Þ

Data collection
For a givenmixingmatrix and set of sampling parameters, we estimate
the uncertainty of a statistic estimator by taking standard deviation of
32 consecutive estimator measurements taken at the high-variance
i = (0mA, 3mA) point.

Data shown in Fig. 6a were collected under a fixed set of sampling
rates fs and sample counts ns. fs varied from 960 kS/s to 1.97 GS/s by
power-of-2 scaling factors, and ns varied from 28 to 216 by powers of 2.
Cancellation weight identification success rate is defined as the per-
centage of weight identification attempts, out of 32, which enable the
successful demodulation of both source signals with no bit errors over
the full bit sequence. Tests on all combinations of allowed fs and ns
values are shown. S2 and K uncertainty data shown in Fig. 6b, c was
collected with the M1 mixing matrix.

Data availability
The PBIC data generated in this study have been deposited in the
Figshare database under accession code https://doi.org/10.6084/m9.
figshare.24556474.

Code availability
All code used in this study is available from the corresponding author
upon request.
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