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Delineating the early dissemination
mechanisms of acral melanoma by
integrating single-cell and spatial
transcriptomic analyses

Chuanyuan Wei 1,2,8, Wei Sun3,4,8, Kangjie Shen1,2,8, Jingqin Zhong3,4,
Wanlin Liu3,4, Zixu Gao1,2, Yu Xu3,4, Lu Wang1,2, Tu Hu3,4, Ming Ren1,2, Yinlam Li1,2,
Yu Zhu1,2, Shaoluan Zheng5, Ming Zhu1,2, Rongkui Luo 6, Yanwen Yang1,2,
Yingyong Hou 6, Fazhi Qi1,2, Yuhong Zhou7 , Yong Chen 3,4 &
Jianying Gu 1,2,5

Acral melanoma (AM) is a rare subtype of melanoma characterized by a high
incidence of lymph node (LN) metastasis, a critical factor in tumor dis-
semination and therapeutic decision-making. Here, we employ single-cell and
spatial transcriptomic analyses to investigate the dynamic evolution of early
AM dissemination. Our findings reveal substantial inter- and intra-tumor het-
erogeneity in AM, alongside a highly immunosuppressive tumor micro-
environment and complex intercellular communication networks, particularly
in patients with LN metastasis. Notably, we identify a strong association
between MYC+ Melanoma (MYC+MEL) and FGFBP2+NKT cells with LN metas-
tasis. Furthermore, we demonstrate that LN metastasis requires a metabolic
shift towards fatty acid oxidation (FAO) induced by MITF in MYC+MEL cells.
Etomoxir, a clinically approved FAO inhibitor, can effectively suppress MITF-
mediated LN metastasis. This comprehensive dataset enhances our under-
standing of LN metastasis in AM, and provides insights into the potential
therapeutic targeting for the management of early AM dissemination.

Acral melanoma (AM) is a rare subtype of melanoma that occurs
mainly in the sun-shielded skin of the palms, soles, and nail beds1.
Although only accounting for 2–3% of all melanoma cases, half of
Asian, African, and Hispanic patients have AM2. Unlike the extensive
somatic mutations associated with ultraviolet signatures in cuta-
neous melanoma (CM), AM displays a lower incidence of activated

mutations, such as those in BRAF and NRAS, while possesses a higher
frequency of mutations in KIT, NF1, and PTEN3. AM is also char-
acterized by high copy number variation (CNV), including CDK4 and
CCND1 amplification, TP53 inactivation, and TERT alteration4,5. A
recent study suggests6 that late-arising focal amplifications in cyto-
band 22q11.21, especially in LZTR1, are associated with lymph node
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(LN) involvement and distant metastasis of AM. Compared with
CM, AM is characterized by a severe immunosuppressive state,
fewer effector/cytotoxic CD8+T cells, natural killer (NK) cells and a
near-complete absence of γδ T cells, while is enriched with reg-
ulatory T cells (Tregs), and exhausted CD8+T cells7,8. From a clinical
perspective, AM often presents at a more advanced stage and has
a worse prognosis9. However, AM is treated in a manner similar to
CM currently. For targeted therapy, BRAF-mutant AM shows a
similar response rate to BRAF inhibitors as BRAF-mutant CM.
Unfortunately, only 19% of AM patients harbor BRAF mutation3. For
immune checkpoint blockade (ICB) therapy targeting anti-PD-1 and/
or anti-CTLA4, the response rates for AM, ranging from 15-20%, are
lower than those for CM10. Therefore, our understanding of AM
remains limited, underscoring the pressing demand for the for-
mulation of therapeutic regimens rooted in its distinctive biological
characteristics.

LN metastasis is a foothold for further tumor dissemination and
predicts cancer recurrence and poor prognosis11. LN metastases resist
T cell-induced cytotoxicity, induce the activation of antigen-specific
Tregs, and develop tumor-specific immune tolerance, subsequently
facilitating distant tumor colonization12. LN status is closely related to
the clinical stage of melanoma; patients without LN metastasis are
diagnosed with stage I/II disease, but once LN metastasis occurs, they
are diagnosed with stage III13. Accordingly, the five-year survival rate
for localized melanomas can reach 99%, whereas regional and meta-
static melanomas have poorer prognoses, with five-year survival rates
of 68% and 30%, respectively14. In addition, intraoperative completion
lymph node dissection and postoperative adjuvant treatment are
recommended for LN metastatic melanomas, especially AM, because
of the deeper Breslow thicknesses and higher positive rates of sentinel
LN (ranging from 28 to 30%)15. In summary, LN metastasis predicts
tumor progression and often guides therapeutic schedules for
melanoma.

To date, numerous studies have been devoted to investigate the
molecular mechanisms underlying LN metastasis in melanoma. A
comparative analysis of paired primary and LN-metastatic tumors
showed that LNmetastasis requires tumor cells to undergo ametabolic
shift toward fatty acid oxidation (FAO)16. The yes-associated protein
pathway is selectively activated in LNmetastatic tumors, leading to the
upregulation of genes in the FAOpathway.Macrophages located in the
sub-capsular sinus produce pro-tumoral IL-1α after recognition of
tumoral antigens andpromotemelanomametastasis to the sentinel LN
via the IL-1α/STAT3 axis17. A markedly immunotolerant tumor micro-
environment (TME) has been observed in melanoma-bearing LN, with
reduced and impaired NK cells and increased CD57+PD-1+CD8+T cells,
leading to compromised anti-melanoma immunity and a high relapse
rate18. However, these results are mainly obtained by comparing pri-
mary and LN metastatic lesions in the CM. The distinction between
primary melanoma lesions in LN metastatic patients and non-
metastatic patients is still unclear, especially in AM patients.

In this study, we perform single-cell RNA sequencing (scRNA-seq)
and spatial transcriptome sequencing (ST-seq) to systematically
investigate the heterogeneity and ecosystem of primary tumor tissues
in AMpatientswith LNmetastasis andwithoutmetastasis. The aim is to
identify the potential functions of various cellular components during
early tumor dissemination in AM. Our findings reveal substantial inter-
and intra-tumor heterogeneity in AM, alongside a highly immuno-
suppressive TME and complex intercellular communication networks,
particularly in patients with LN metastasis. The MYC+ Melanoma
(MYC+MEL) and FGFBP2+NKT subclusters are tightly correlated with LN
metastasis and poor prognosis. LNmetastasis requires that melanoma
cells to undergo ametabolic shift towards FAO induced byMITF, a key
transcription factor in MYC+MEL cells. Local administration of Eto-
moxir, a clinically approved FAO inhibitor, suppresses MITF-mediated
LNmetastasis.We also test these findings through in vivo experiments,

and multiplex immunohistochemistry (IHC) assays, and verify these
results using internal and external data from a large number of clinical
samples.

Results
Single-cell transcriptome atlas of AM
To comprehensively characterize the ecosystem of AM, we collected
theprimary tumor tissues from12patients for scRNA-seq, including six
had LN metastasis (LN+AM) and six did not (LN-AM) (Fig. 1a). The
clinicopathological characteristics of these patients are presented in
Supplementary Table 1, and representative tumor H&E images are
shown in Supplementary Fig. 1.

An aggregate gene expressionmatrix with 52,382 cells and 30,097
genes was generated. 38 distinctive cell clusters were obtained with a
resolution of 2.0, and visualized by the Uniform Manifold Approx-
imation and Projection (UMAP) plot (Fig. 1b and Supplementary
Fig. 2a). To identify the main cell types, each cluster was annotated
using the cluster-specific marker genes7,8,19 (Supplementary Fig. 2b, c).
Eleven clusters were annotated as tumor cells because they expressed
high levels of melanoma-associated marker genes (MLANA, MITF,
PRAME and SOX10). The remaining clusters were divided into 12 non-
tumor cell types. Supporting the supervised cell type-specific marker
analysis, an unsupervised global clustering similarity matrix was used
to classify these 38 clusters into their corresponding meta-clusters
(Fig. 1c). We confirmed that each cell type expressed its well-known
marker genes with high specificity (Fig. 1d, e). Meanwhile, the highest
level of CNV, which plays an important role in the pathogenesis and
poor prognosis of tumor patients20, was observed in melanoma cells
(Supplementary Figs. 2d and 3a–c).

These 13 cell types were detected in almost every patient; how-
ever, their proportions varied greatly (Fig. 1f and Supplementary
Fig. 4a–e). Melanomawas themost abundant cell typewith the highest
transcript and CNV levels, which was consistent with its highly malig-
nant characteristics (Fig. 1f). T cells were the most abundant type of
immune cells, and this is consistent with previous research results19,21.
Compared to that in LN-AM,plasmacytoid dendritic cells (pDC) andNK
cells were slightly decreased in LN+AM, whereas no difference was
observed in T cells between the two groups (Fig. 1f). The stromal
compartment, which encompasses endothelial cells, fibroblasts, and
epidermal cells, exhibited reduced prominence within the TME of
LN+AM, potentially at the expense of tumor cells (Fig. 1f). Collectively,
AM exhibits high heterogeneity, and the assessment of immune-cold
characteristics cannot be simplified by looking solely at the proportion
of total immune cells.

Spatial transcriptome suggests a “cold” TME
Spatial information is critical for understanding tumor biology;
unfortunately, it ismissing from scRNA-seq data22. Here, weperformed
ST-seq to acquire in situ gene expression profiles of three patients with
LN+AM and two with LN-AM, and the results of quality control are
presented in Supplementary Fig. 5a–c. The spots were divided into
tumor and non-tumor regions using the conditional autoregression-
based deconvolution (CARD) algorithm23 (Fig. 2a). In the tumor
regions, we obtained six clusters with significant differences in CNV
levels, and these clusters constituted spots for different patients. For
instance, patient 6was associatedwith cluster 2 and 4, whereas patient
11 was associated with cluster 1 with the highest CNV levels (Fig. 2b, c,
and Supplementary Fig. 6a, b). In the non-tumor regions, five clusters
were obtained, and cluster 4 was shared by patients 6, 11, 14 and 15
(Fig. 2d, e, and Supplementary Fig. 6c, d). These results indicate high
inter-tumor heterogeneity in tumor regions.

We further performed a deconvolution analysis to determine cell
proportions using the CARD23 and robust cell-type decomposition
(RCTD)24,25methods.Wepresented thematched scRNA-seq and ST-seq
data of patient 6 and 11 (Supplementary Fig. 7a, b), and showed that the
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percentages of most cell types in ST-data were consistent with that in
scRNA-seq. However, a minor difference might be attributed to the
different regions obtained for sequencing. Immune cells mainly gath-
ered in non-tumor areas but were obviously decreased in tumor areas
(Fig. 2f, and Supplementary Fig. 8a). Notably, fewer immune cells were
infiltrated in the tumor ecosystem of LN+AM than that of LN-AM

(Fig. 2g, and Supplementary Fig. 8b).Hence, AMpresents a “cold”TME,
especially in patients with LN metastases.

High heterogeneity of melanoma cells at a single-cell level
To decipher the landscape of tumor cells, 23,501 melanoma cells were
regrouped into five subclusters. These subclusters had unique gene
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expression patterns and biological functions, and their proportions
varied greatly among patients, indicating high intra- and inter-tumor
heterogeneity (Fig. 3a, b, and Supplementary Fig. 9a, b).MYC+MEL cells
were increased in LN+AM and expressed high levels of MYC, MITF,
SNAI2, and KIT, all of which play crucial roles in tumor progression. For
example, MYC regulates downstream target genes primarily involved
in proliferation, differentiation, metabolism, and angiogenesis and is
considered an attractive therapeutic target26. Accordingly, MYC+MEL
cells were functionally enriched in mesenchyme and stem cell devel-
opment (Fig. 3b). The CXCL10+MEL subcluster, with high levels of
CXCL10, CXCL8 and IRF1, was functionally enriched in regulation of
immune response, immune effector process, and leukocyte chemo-
taxis. The TMSB4X+MEL subcluster with high levels of TMSB4X, IGKC
and IGLC2, was functionally enriched in regulation of i-κB kinase/NF-κB
signaling, cytokine secretion, and cell chemotaxis (Fig. 3b). These
cancer immunity-related clusters were downregulated in LN+AM,
suggesting that tumor cells could promote LN dissemination by
shaping a “cold” TME (Fig. 3a). The CENPF+MEL subcluster, with high
levels of CENPF, CCNB1, PCNA, andMKI67, was functionally enriched in
DNA replication and cell cycle, whereas the NEAT1+MEL subcluster
with high expression of NEAT1, KLF6, JUN and FOS, was functionally
enriched in response to reactive oxygen species and oxidative
stress (Fig. 3b).

We then delineated the characteristics of the five melanoma
subclusters. The CNV levels of total melanoma cells, as well as
each subcluster, were significantly higher in LN+AM than that in
LN-AM (Fig. 3c and Supplementary Fig. 9c, d). We then applied
SCENIC analysis27 to these subclusters (Fig. 3d). Transcription factors
(TFs) associated with tumormetastasis and progression, such asMITF,
MYC, and CTNNB1, showed high transcription activity in the MYC+MEL
subcluster. Similarly, immune/inflammation-related TFs, such as
NFKB2, STAT1, and RELA, and FOXO3, showed high activity in
CXCL10+MEL and TMSB4X+MEL subclusters, which underlies the
immunomodulatory phenotype of tumor cells. For example, a tran-
scription rheostat orchestrated by RELA confers T cells with the innate
ability to produce IFN-I/III28. E2F1, POLE4 and TFDP1 are known TFs
associated with cell proliferation, and they were mainly enriched in
CENPF+MEL cells. FOSB, JUNB, and JUN were highly activated in the
NEAT1+MEL subcluster, and contained activator protein-1 (AP-1), which
is widely involved in various tumor events including differentiation,
proliferation, and apoptosis29.

We then depicted the pseudo-time trajectory of these melanoma
subclusters (Fig. 3e, f, and Supplementary Fig. 10a–c). The phase 0was
predominated by the CENPF+MEL subcluster (85.1%) and expressed
high levels of proliferation-associated genes, such as CCNB1 and
CENPF. Accordingly, RNA velocity confirmed that the melanoma cells
were originated from CENPF+MEL cells (Supplementary Fig. 10d).
Phase 1 primarily composed CXCL10+MEL and TMSB4X+MEL sub-
clusters (65.3%), and expressed high levels of immune-related mole-
cules, such as CCL2, C1R and STAT3 (Fig. 3g). Phase 2 primarily
composed MYC+MEL and NEAT1+MEL subclusters (70.5%), and
expressed high levels of metastasis-related molecules, such as MITF,
KIT, and VIM (Fig. 3g). These results highlight the multifaceted roles
played by tumor cells within the AM ecosystem.

Activated fatty acid metabolic pathway in MYC+MEL cells
Compared to LN-AM, the MYC+MEL cluster was significantly increased
in LN+AM, suggesting a crucial role in LN metastasis (Fig. 4a). We then
mapped the gene signatures of MYC+MEL subcluster using a public
dataset containing 26 primary AM samples6. TheMYC+MEL subcluster
was significantly increased in LN+AM, and high MYC+MEL score was
associated with poorer prognoses than that of low score (Supple-
mentary Fig. 11a, b). Notably, we found that multiple FAO-related
genes, including EPHX1, GAPDHS, and HSP90AA1, were elevated in the
MYC+MEL subcluster (Fig. 4b). Accordingly, gene sets associated with
fatty acid metabolism were enriched in the MYC+MEL subcluster
(Fig. 4c). Considering that LNmetastasis necessitates a metabolic shift
towards FAO16, we speculated that the hyperactivation of the FAO
pathwayobserved in theMYC+MEL cells could potentially contribute to
LN metastasis.

MITF promotes LN metastasis via the FAO pathway
To identify the key factors promoting FAO in theMYC+MEL subcluster,
we performed correlation analyses using the scRNA-seq data (Sup-
plementary Fig. 11c, d). Surprisingly, we found a positive correlation
betweenMITF and its regulon activity and the FAO score. Using the ST-
seq data, we observed a good spatial consistency between MITF
expression and the FAO score, and higher FAO scores were presented
in MITFHigh spots (Fig. 4d, e). These results indicate that MITF may
promote FAO activation in AM.

To explore the potential roleof theMITF-mediated FAOactivation
in LN metastasis, we conducted a mouse footpad model (Fig. 4f,
and Supplementary Fig. 11e). Mitf-overexpressing B16F0 (B16F0-Mitf)
and B16F0-Vector cells were subcutaneously implanted into
the footpad regions of C57BL/6 mice. We extended the timeline to
achieve a higher LN metastasis rate, especially considering the
lower LN metastasis rate after drug treatment. At the endpoint,
we observed that the size andmetastatic area of the popliteal LN were
significantly larger in the B16F0-Mitf group than in the B16F0-Vector
group (Fig. 4g, h, and Supplementary Fig. 11f, g). We further applied
Etomoxir, a clinically approved FAO inhibitor, topically on the ante-
rolateral side of the legs of mice30. Although Etomoxir treatment did
not influence the size of the primary tumor or the weight of the tumor-
bearing mice, it markedly inhibited LN metastasis (Fig. 4g, h, and
Supplementary Fig. 11g). All of these findings collectively support that
MITF contributes to increased FAO activity, thereby promoting LN
metastasis in AM.

Functional impairment of the antitumor immunity in LN+AM
A total of 13,521 immune cells were extracted and regrouped into
18 subclusters (Fig. 5a–c). The proportions of these subclusters varied
greatly among patients and between the LN+AM and LN-AM groups
(Supplementary Fig. 12a–c). CD8+T cells were designated as GZMK+

(effector), ANXA1+ (memory), IFNG+ (cytotoxic), and CXCL13+ (exhaus-
ted) cells according to cluster-specific marker genes. Compared to
LN−AM, CXCL13+CD8+T cells were increased, whereas IFNG+CD8+T cells
were slightly decreased in LN+AM, indicating a compromised anti-
tumor TME (Fig. 5a). For CD4+T cells, CXCL13+ (exhausted) and FTH1+

(naive) cells were slightly increased in LN+AM, whereas no differences

Fig. 1 | Single-cell characterization of the AM ecosystem. a Schematic repre-
sentation of the study design. AM patients with and without LN metastasis were
enrolled, and their primary tumor lesions were collected for scRNA-seq and ST-seq
analysis. In vivo experiments, multiplex IHC images, and external datasets were
utilized for results validation. A part of the image has been adapted from Bior-
ender.com. b UMAP plot demonstrating the cell distribution from 12 primary AM
tissues, color-coded by the annotated cell types. c Heatmap depicting pairwise
correlations among 38 clusters derived from 12 tumor tissues. Clustering identified
five coherent expression programs across tumors. d Heatmap identifying the

expression of selected marker genes in the annotated cell types. Source data are
provided in the Source Data file. e Feature plots presenting classical marker genes
for the annotatedcell types. fBarplot indicating the fraction of annotated cell types
originating from patients with LN+AM and LN-AM, as well as from each individual
patient; histogram displaying the cell count of the annotated cell types; box plots
indicating the median (middle line), 25th and 75th percentiles (box), and outliers
(individual points) of transcripts and CNV levels in the annotated cell types. Source
data are provided in the Source Data file.
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were observed in the proportions of KLRB1+ (effector) and
FOS+ (memory) cells between LN+AM and LN-AM (Fig. 5a). NK/
NKT cells exhibit potent anti-tumor responses31. Here, XCL2+NK and
FGFBP2+NKT cells were decreased in LN+AM than in LN−AM (Fig. 5a).
These results suggest that the antitumor immunity of LN+AM patients
is obviously weakened.

To decipher these subclusters, we performed the GSVA analysis
and observed that multiple immunoregulatory pathways, including
interferon-α/γ response and IL2/STAT5 signaling, were enriched in
CD8+T subclusters (Fig. 5d). Interestingly, almost all the selected
pathways were activated in XCL2+NK and FGFBP2+NKT cells, indicating
that they had high proliferative and antitumor activities (Fig. 5d). Next,
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we presented the selected genes to describe their biological functions
(Fig. 5e). For example, CXCL13+CD8+T and CXCL13+CD4+T cells, desig-
nated as exhausted T cells, expressed high levels of immune check-
point molecules such as TIGIT, CTLA4, LAG3, and PDCD1. Importantly,
FGFBP2+NKT cells expressed the highest levels of antitumor cytokines,
indicating their potent antitumor effects. We also used SCENIC ana-
lysis and identified a set of TFs implicated in the biology of different
immune cell types (Supplementary Fig. 12d). In FGFBP2+NKT cells,
multiple TFs were highly activated, especially CEBPB, which is asso-
ciated with an active TME and favorable prognosis of metastatic
melanomas32. Additionally, we further performed RNA velocity analy-
sis to investigate the ongoing processes of these subclusters (Fig. 5f).
T cells mainly originated from naive cells, differentiated towards
memory, effector, and cytotoxic cells, and endedwith exhausted cells.
Exhausted CD8+T cells were primarily derived from effector
CD8+T cells, whereas cytotoxic CD8+T cells were derived from both
effector and memory CD8+T cells. Importantly, FGFBP2+NKT cells
mainly originated from effector CD8+T cells, rather than XCL2+NK and
CD4+T cells.

Decreased FGFBP2+NKT cells accelerate LN metastasis
Given their powerful tumor-killing abilities, CD8+T and NK cells were
extracted for further analysis. Using published signatures of cyto-
toxicity and exhaustion33,34, we observed that CXCL13+CD8+T and
FGFBP2+NKT cells had the highest exhaustion and cytotoxicity scores,
respectively (Fig. 5g). Accordingly, FGFBP2+NKT cells expressed the
highest levels of cytotoxic genes, such as GZMB, GZMH, PRF1, and
GNLY, indicating that FGFBP2+NKT cells had the strongest tumor-killing
effects (Fig. 5h). Additionally, we tested several immune checkpoint
molecules and found that PDCD1 and CTLA4 were expressed at low
levels, while LAG3 and TIGIT were highly expressed in CD8+T and NK
cells (Supplementary Fig. 12e). This suggests that ICB therapy targeting
LAG3 and TIGIT may potentially yield more potent antitumor
effects in AM.

Owing to thepotent anti-tumor ability, we further investigated the
relationship between FGFBP2+NKT cells and LN metastasis in AM.
FGFBP2+NKT cells were significantly decreased in LN+AM compared
with those in LN−AM (Fig. 5i). This result was validated by a public
dataset6, namely, the infiltrated score of FGFBP2+NKT cells was sig-
nificantly lower in LN+AM than that of LN−AM, and patients with low
FGFBP2+NKT scores had worse prognoses (Supplementary Fig. 12f, g).
These results indicated that decreased FGFBP2+NKT cells may partici-
pate in LN metastasis. Using multiplex IHC assays, we showed that
FGFBP2+NKT cells (positive for CD8, NCAM1, and FGFBP2, but not for
CD4)weremainly present in the para-tumor regions andwere sparsely
distributed in the tumor regions (Fig. 5j). Statistical analysis revealed
that FGFBP2+NKT cells were significantly decreased in the TME of
LN+AM compared to that of LN−AM, and patients with decreased
FGFBP2+NKT cells tended to have worse prognoses (Fig. 5k). These
results indicate thatdecreased FGFBP2+NKT cells are closely correlated
with LN metastasis in AM.

Macrophages exert anti-inflammatory effects in AM
For myeloid cells, a total of 5212 cells were collected and reallocated
into 13 subclusters, including macrophages, monocytes, neutrophils,

DC, and pDC (Fig. 6a–c). For example, SPP1+ Macrophages (SPP1+Mac)
expressed high levels of SPP1, andCCL2 andMMP9 levels were elevated
in this subcluster (Fig. 6c). Comparedwith LN-AM,moremacrophages,
especially CXCL10+Mac cells (26.62% versus 19.35%), and fewer
GZMB+pDC cells (3.78% versus 8.65%), were present in LN+AM (Fig. 6d
and Supplementary Fig. 13a–c). These tumor-associated macrophages
varied greatly in their signaling pathways andmetabolic characteristics
(Fig. 6e). SPP1+Mac and APOE+Mac cells showed increased levels of
reactive oxygen species (ROS), fatty acid metabolism, glycolysis, and
oxidative phosphorylation, whereas CXCL10+Mac and F13A1+Mac cells
were enriched in the complement and interferon-α response. Meta-
bolism associated pathways, such as bile acid metabolism and heme
metabolism, were activated in almost all macrophages. Formonocytes
and neutrophils, multiple immune/inflammatory pathways were enri-
ched, such as TNF-α signaling via NFKB, IL6/JAK/STAT3 signaling, and
INF-γ response, suggesting key roles in immune/inflammatory reg-
ulation. Using SCENIC analysis, we identified distinct transcriptional
activities in these subclusters. For instance, SOX4 and IRF7were highly
activated in GZMB+pDC (Supplementary Fig. 13d).

We performed RNA velocity analysis to investigate this process in
myeloid cells (Fig. 6f). Macrophages were mainly derived from
APOE+Mac and then differentiated towards two directions: SPP1+Mac,
and CXCL10+Mac and F13A1+Mac. Using Monocle2, we confirmed that
the pseudo-time trajectory was initiated with APOE+Mac, followed by
differentiation into SPP1+Mac and CXCL10+Mac, and ending with
F13A1+Mac (Fig. 6g). Accordingly, APOE+Mac showed low expression of
inflammatory/immune-related genes, and SPP1+Mac, CXCL10+Mac and
F13A1+Mac expressed high levels of inflammatory/immune-related
genes. However, the expression profiles were quite different, sug-
gesting that different biological functions were performed (Fig. 6h).
We also observed that these subclusters expressed high levels of
immune checkpointmolecules; for example, SPP1+Mac expressed high
levels of CD274 and HAVCR2, CXCL10+Mac expressed high levels of
CD274, PDCD1, and TIGIT, and F13A1+Mac expressed high levels ofmost
immune checkpointmolecules, whichwas consistentwith the terminal
differentiation status (Fig. 6h). By calculating the M1/M2 polarization
scores35, we found that most macrophages were skewed towards the
M2phenotype, except forAPOE+Maccells, which presented lowM1/M2
scores (Fig. 6i, j), indicating that most macrophages exerted anti-
inflammatory effects in the AM ecosystem.

Cancer-associated fibroblasts promote angiogenesis
A total of 10,148 stromal cells were redistributed into 13 subclusters
designated as cancer-associatedfibroblasts (CAFs),muscle cells (MCs),
epidermal cells, and endothelial cells (Fig. 7a, b). CAFs expressed high
levels ofMMP2,CFD, and FN1 andweredivided into twodifferent types.
MMP2+CAFs, CFD+CAFs and SOD2+CAFs subclusters expressed high
levels of cytokines and chemokines, similar to inflammatory CAFs
(iCAFs, PDGFRA+)36. THY1+CAFs, which expressed high levels of THY1,
ACTA2, and TAGLN, similar to MCs, was designated as myoCAFs. We
found that these iCAFs subclusters were upregulated, and myoCAFs
and MCs subclusters were decreased in LN+AM (Fig. 7c, d and Sup-
plementary Fig. 14a–d). Based on the expression of RGCC, ACKR1,
SEMA3G, and PROX1, the endothelial cells were divided into capillary,
venous, arterial, and lymphatic endothelial cells (Fig. 7a, b). Using

Fig. 2 | Spatial transcriptome suggests a “cold” TME in AM. a The first column
displays H&E-stained images showing the tumor tissues from five AMpatients, with
the dotted boxes indicating the selected regions for ST-seq. In the second column,
each spot contains an average of 1–10 cells, colored according to CNV levels using
Seurat. In the third to sixth columns, spots are colored by the annotated cell types
in scRNA-seq data, tumor or non-tumor regions, defined six clusters in tumor
regions, and defined five clusters in non-tumor regions using the CARD method.
Scale bar, 1000 μm. b Heatmap depicting cluster-specific genes in tumor regions.
Source data are provided in the Source Data file. c UMAP plot showing spots in

tumor regions, colored based on annotated clusters, CNV levels, and samples.
dHeatmap illustrating cluster-specific genes in non-tumor regions. Source data are
provided in the Source Data file. eUMAP plot showing spots in non-tumor regions,
colored based on annotated clusters, CNV levels, and samples. f Spatial feature
plots of annotated cell types from scRNA-seq data in five AM tissue sections with
similar results, and representative images were presented. Scale bar, 1000μm.
g Heatmap showing the infiltration levels of annotated cell types in LN-AM (upper
panel) and LN+AM (lower panel) patients from tumor to non-tumor regions. Source
data are provided in the Source Data file.
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SCIENIC analysis, we identified crucial TFs that may mediate the bio-
logical functions of these subclusters, for example, IRF8 was highly
activated in CCL21+ endothelial (CCL21+Endo) cells (Supplementary
Fig. 14e).

Functional enrichment analysis revealed that different pathways
were activated in stromal cells (Fig. 7e). Multiple pathways, such as

angiogenesis, epithelial-mesenchymal transition, and myogenesis,
were enriched in CAFs and MCs. These subclusters also have distinct
biological functions. For example, immune/inflammatory pathways,
such as cell chemotaxis to FGF andG-CSF production, were enriched in
iCAFs. Negative regulation ofmyoblast proliferation, and regulation of
cardiac muscle tissue development were enriched in MCs, while
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myoCAFs exerted partial roles of iCAFs and MCs (Supplementary
Fig. 14f). Compared with myoCAFs and MCs, iCAFs expressed higher
levels of MMP2, MMP14, FAP and PDGFRA (Supplementary Fig. 14g).
RNAvelocity analysis revealed that theseCAFs subclustersweremainly
derived from MMP2+CAFs and then differentiated towards myoCAFs
and MCs (Fig. 7f).

Notably, the angiogenesis pathway was enriched in all CAFs sub-
clusters (Fig. 7e). Using ST-seq data, we found that endothelial cells
and fibroblasts were significantly colocalized, presenting good spatial
consistency (Fig. 7g). Pearson’s correlation analysis showed a positive
correlation between the scores of endothelial cells and CAFs, and
importantly, a higher correlation coefficient was observed in the
LN+AM group (Fig. 7h). We further speculated that CAFs promoted
angiogenesis and formed fibrovascular niches, which play a positive
role in tumor progression37. To confirm this, we performed multiplex
IHC assays and found that CAFs often presented together with endo-
thelial cells and wrapped around them to form fibrovascular niches
(Fig. 7i). Compared with LN−AM, more fibrovascular niches were pre-
sent in LN+AM. These results show that CAFs promote angiogenesis
and form fibrovascular niches to promote the early dissemina-
tion of AM.

Complex intercellular communication in AM
The intercellular communication is extensive and complex in AM
ecosystems detected by the CellChat analysis (Fig. 8a and Supple-
mentary Fig. 15a, b). Melanoma and stromal cells mainly served as
senders, as they had high outgoing interaction strength, whereas
immune cells mainly served as receivers, as they had high incoming
interaction strength (Fig. 8b). Plasma B cells showed less commu-
nication as they had low incoming and outgoing interaction strength.
Notably, we found that the interaction number and strength were
slightly higher in the ecosystem of LN+AM than in that of LN-AM,
however, no statistical difference was noted (Supplementary
Fig. 15c, d).

The overall incoming and outgoing signaling patterns are pre-
sented (Supplementary Fig. 16a, b).We showed that the CD99 andMIF
signals were activated in almost all cell types, indicating that they
played extensive roles. The CCL and CXCL signals were mainly sent by
stromal cells and received by diverse cell types. The CCL signaling was
received by endothelial cells, indicating a role in angiogenesis, while
theCXCL signalingwas also receivedby immune cells andplayed a role
in remodeling the TME. The CLEC signaling was sent by multiple cell
types, and mainly received by NK cells, indicating that the activity and
cytotoxicity of NK cells was regulated via the CLEC pathway. Com-
pared to LN−AM, the immune/inflammatorypathways, such as theCCL,
CXCL, and CLEC signals, were decreased in LN+AM, which may be
related to a weaker TME. The ANGPTL, APP, COLLAGEN, LAMININ, and
MK signals were mainly sent by stromal cells, and received bymultiple
cell types, suggesting that stromal cells, especially CAFs, played
extensive roles in the ecosystem.

The MIF pathway was activated in both the LN+AM and LN−AM
groups (Supplementary Fig. 16c). MIF was highly expressed in almost
all cell types and participated in both the innate and adaptive immune
responses (Supplementary Fig. 16d). Mechanistically, MIF indepen-
dently interacts with CD74 in a hetero-complex with CD44, CXCR2,
CXCR4, and ACKR3 to initiate downstreamMAPK and PI3K pathways,
all of which influence tumor initiation, growth, and metastatic
dissemination38. In the MK pathway, midkine (MDK) encodes a small
family of secreted growth factors that promote cell growth, migration,
and angiogenesis during tumorigenesis39. Notably, compared with
LN−AM, the MK pathway was activated in LN+AM. MDK was primarily
secreted by melanoma cells and interacted with multiple cell types in
LN+AM, whereas it was secreted by fibroblasts and endothelial cells in
LN-AM (Supplementary Fig. 16e). Among these receptors, NCL and
ITGB1 were highly expressed in most cell types (Supplementary
Fig. 16f). Using the stlearn method, we confirmed the spatial interac-
tion of ligand-receptor (L-R) pairs in the MK pathway (Supplementary
Fig. 16g).

The CLEC network primarily comprised CLEC2C/CLEC2B/
CLEC2D-KLRB1 pairs and was specifically expressed in non-tumor cells
(Supplementary Fig. 17a). Compared to LN−AM, activation of the CLEC
pathway was significantly decreased in LN+AM (Fig. 8c). The genes of
the C-type lectin superfamily are highly expressed in NK cells andmay
be involved in the regulationof the activity ofNKcells40. Thedecreased
activity of the CLEC pathway in LN+AMmight result in a decrease in NK
and NKT cells. We also presented the GALECTIN signaling pathway
network,whichwas significantly activated in LN+AM (Fig. 8d).Galectins
play a central role in tumorigenic processes by delivering regulatory
signals that contribute to a variety of cellular events leading to tumor
cell proliferation, metastasis, angiogenesis and immune escape41,42.
LGALS9, the main ligand, mainly expressed in myeloid cells in LN−AM,
whereas it also expressed in endothelial cells in LN+AM. CD44, CD45,
and HAVCR2 acted as receptors, indicating an important role of
endothelial cell-derived LAGALS9 in the LN metastasis of tumor cells
(Fig. 8e, and Supplementary Fig. 17b, c). Importantly, we confirmed the
crosstalk between the L-R pairs of the GALECTIN pathway in our AM
cohort (Fig. 8f). In summary, our results reveal that specific inter-
cellular communication has the potential to shape the unique
TME of AM.

Discussion
Compared with CM, AM typically has a higher rate of LN metastasis,
which is a foothold for further tumor dissemination and recurrence43.
Here, we performed scRNA-seq and ST-seq analyses to detect
the tumor/immune transcriptome landscape of primary AM tissues
with and without LN metastasis at the spatial and temporal levels.
Our study identified that AM exhibited strong inter- and intra-tumor
heterogeneity, a highly inhibitory TME, and complex cell-cell
communications, especially in LN+AM. MYC+MEL and FGFBP2+NKT
subclusters were closely associated with LN metastasis and

Fig. 3 | Functions and evolutionary trajectories of distinct AM subclusters.
aUMAPplot of all melanoma cells color-coded by annotated subclusters, and a bar
plot showing the proportion of these annotated subclusters originating from
LN+AM and LN-AM patients. Source data are provided in the Source Data file.
bHeatmap (left) displaying cluster-specific genes, and dot plot showing (right) the
corresponding enriched biological functions of these annotated melanoma sub-
clusters. Significance was determined using a two-sided Wilcoxon rank-sum test.
Source data are provided in the Source Data file. c Split violin plot illustrating the
CNV levels of annotated subclusters colored by LN-AM and LN+AM. ****P <0.0001;
two-sided Mann–Whitney U-test; MYC+MEL, LN-AM n = 1268, LN+AM n = 6635,
P = 2.9e-128; CENFP+MEL, LN−AM n = 501, LN+AM n = 2,211, P = 2.9e-9; NEAT1+MEL,
LN-AM n = 1429, LN+AM n = 2580, P = 9.7e-20; TMSB4X+MEL, LN−AM n = 2004,
LN+AMn = 2553,P = 2.7e-41;CXCL10+MEL, LN−AMn = 1432, LN+AM n = 2549, P = 1.3e-

35. The back circle indicates the median, and the bottom and top lines indicate the
first and third quartiles, respectively. Source data are provided in the Source Data
file. d Heatmap showing the expression of key transcription factors (estimated
using SCENIC) among the annotatedmelanoma subclusters. e Pseudotime-ordered
analysis (left) of these AM cells identified two distinct cell fates, colored by sub-
clusters. The arrow indicates the potential evolutionary direction in the trajectory.
Bar plot (right) showing the proportions of each subcluster in the different bran-
ches of the trajectory. Source data are provided in the Source Data file. f Heatmap
displaying the dynamic changes in gene expression along the pseudotime (lower
panel). Subclusters are labeled by colors (upper panel). g Two-dimensional plots
showing the dynamic expression of selected genes along the pseudo-time, colored
by subclusters.
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poor prognosis in AM patients. Mechanistically, LN metastasis
required tumor cells to undergo a metabolic shift towards fatty acid
metabolism induced by the key transcription factor MITF inMYC+MEL
cells. Etomoxir could suppress LN metastasis by targeting the FAO
pathway (Fig. 9).

We have expanded our discussion to acknowledge the high inter-
and intra-tumor heterogeneity observed in AM, as previously
demonstrated in various studies8. These studies classified melanoma
cells into distinct subgroups based on different criteria. For instance,

in the TCGA-SKCM cohort44, melanoma cells were categorized
into immune, keratin, or MITF-low subgroups. Another study
classified melanoma cells as immune, normal-like, pigmented, or
proliferative subtypes45. Belote et al. highlighted the loss of melano-
cyte differentiation markers during melanoma progression, and the
proportion of melanocytes that had readopted a neonatal-like sig-
nature was associated with worse prognosis46. Recently, melanoma
cells were divided into five orthogonal functional cell clusters
that were involved in TGF-β signaling, Type I interferon, WNT
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signaling, cell cycle, and cholesterol efflux signaling8. Here, our study
mainly focused on AM and investigated the differences in tumor cells
based on their LN metastatic status. AM cells were regrouped into five
subclusters with distinct biological functions. They were initialized
with the proliferative subcluster (CENPF+MEL) and then differentiated
towards two directions: tumormetastasis and stemness, and immune/

inflammatory regulation. Among them, the MYC+MEL subcluster
exhibited functional enrichment in mesenchymal-like malignant clus-
ters in CM, which are closely associated with tumor invasion and
metastasis. These results indicate that tumor cells can benefit from
early disseminationby altering theirmetastatic and immunoregulatory
abilities.
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MITF is a “lineage-specific survival” oncogene that is essential for
melanoma initiation, progression, and relapse47. MITF amplification
was found to be more prevalent in metastatic disease and correlated
with decreased overall survival rates in melanoma patients47. Low
levels of MITF generate G1-arrested, invasive, and senescent cells,
whereas cells expressing MITF either proliferate or differentiate48.
MITF promotes the transformation of saturated fatty acids into
monounsaturated fatty acids by regulating SCD1 expression, thereby
promoting tumor cell proliferation49. Recently, our group identified
compound TT-012, which dynamically binds to MITF and destroys the
dimer formation and DNA-binding ability of MITF, inhibits the growth
ofmelanoma cellswith highMITF expression alongwith tumor growth
and metastasis, indicating a crucial role of MITF in melanoma
progression50. Together, we posit that the involvement of MITF in
melanoma is both multifaceted and intricate, potentially assuming
distinct functions contingent on the temporal and spatial context
within the tumor environment. Here, we aimed to identify key sub-
groups that mediate early tumor metastasis, especially primary tumor
cells that are about to metastasize but have not yet metastasized. In
this intermediate state between primary and metastatic lesions, we
demonstrated that MITF is involved in regulating the energy metabo-
lism, and the overactivated FAO pathway promotes the metastatic
potential of AM cells. Previous study has reported a substantial upre-
gulation of the FAO pathway in LN metastasis lesions16. We further
showed that the activationof the FAOpathway is not confined solely to
LN metastasis tissues, but is already activated in primary tumor
tissues with LN metastasis. Together, we propose the crucial role of
the enhanced MITF-FAO axis in promoting LN metastasis, and
blocking this axis may be a potential target for inhibiting tumor
progression in AM.

Using scRNA-seq, Li and colleagues performed an in-depth ana-
lysis of the lymphocyte compartment of matched primary and meta-
static melanoma samples and found that LNmetastasis was associated
with remarkably fewer CD8+T cells, NK cells, monocytes, and macro-
phages and showed increased infiltration of two subsets of CD4+T cells
and B cells7. A markedly immunotolerant environment in melanoma-
bearing sentinel LN was observed, as indicated by reduced and
impairedNK cells and increased levels ofCD57+PD-1+CD8+T cells, which
are known to exhibit low tumor-killing capabilities18. Other changes
observed in melanoma-bearing sentinel LN include (i) reduced
CD69+CD8+T cell/Treg cell ratio, (ii) high PD-1 expression onCD4+T and
CD8+T cells, and (iii) high CTLA-4 expression on γδ T cells. Here, no
difference was observed in the proportion of total T lymphocytes
between the LN+AM and LN−AM groups. While in detail, exhausted
CD8+T and CD4+T cells were increased, and XCL2+NK and
FGFBP2+NKT cells were decreased in LN+AM compared to those in
LN−AM, indicating a compromised anti-tumor TME. In Zhang et al.’s
study8, NK cells (expressing high levels of FGFBP2 and KLRD1) are

divided into six clusters in the TME of melanoma. In contrast to Zhang
et al.’s study8, which primarily focused on T cells, our research delved
intoNK cells andNKT cells.We showed that therewere a group of cells
located between NK and T cells in the UMAP plot, expressed markers
of both NK and T cells, and had termed them FGFBP2+NKT cells due to
their high FGFBP2 expression. Notably, our in-depth analysis revealed
that these FGFBP2+NKT cells possessed the strongest tumor-killing
ability within the AM ecosystem. Crucially, we had observed a sig-
nificant decrease in the population of FGFBP2+NKT cells in tumorswith
LNmetastasis, underscoring their potential relevance to themetastatic
process. All of these suggest that the primary tumors mainly present a
“cold” TME during LN metastasis.

The intercellular communication is complex in primary AM
tumors. Overall, stromal and tumor cells mainly served as ligands that
send signals, whereas immune cells served as receptors that receive
signals. This phenomenon was more prominent in LN+AM, suggesting
that the complex cell-cell communication was participated in the early
dissemination of tumors. Chemerin, TGF-β, and IL-1 regulated the
interaction of FAP+CAFs and SPP1+Mac, resulting in the formation of
immune-excluded desmoplastic structure and limiting the T cell
infiltration51. CD36+CAF-derived MIF potentiated the capacity of
MDSCs to promote immunosuppressive TME and tumor stemness via
IL-6/STAT3 activation52. Here, we showed that all CAFs clusters pro-
moted angiogenesis in the TME and were always present as fibrovas-
cular niches. More fibrovascular niches were observed in the LN+AM
group, indicating that this structure played a positive role in early
tumor dissemination.

This study has several limitations. First, the high heterogeneity
amongpatients and limited sample size poses challenges in identifying
common characteristics. However, to overcome the problems of het-
erogeneity and the small sample size, we conducted a dual verification
of the results obtained using internal and external data. Second,
in vitro validation of the crucial role of the MITF-FAO pathway in
LN metastasis is lacking, owing to the lack of immortalized AM cell
lines. To overcome this problem, we verified the results via in vivo
animal experiments. Meanwhile, we are actively constructing AM cell
lines, which will be tested in subsequent experiments. Third, our
study lacks three-dimensional (3D) spatial analysis. The tumor grew in
a 3D environment, andwepresented only two-dimensional (2D) spatial
information on the interaction between tumors and their TME.
Currently, methods such as PASTE can be used to expand downstream
analyses and cellular interaction networks defined by 3D spatial
structures53,54. Last, our study did not include analysis of LN and
other distant metastases, and we lacked in-depth analysis of MITF
function in these metastatic lesions. In future work, we plan to com-
prehensively analyze the dynamic process of tumor dissemination
from the primary lesion to lymph nodes and other organs. None-
theless, our study has provided valuable insights into the intermediate

Fig. 5 | Decreased FGFBP2+NKT cells in LN+AM. a UMAP plot (left) illustrating
immune cells, color-coded by associated subclusters, and a bar plot (right) dis-
playing the proportion of each subcluster in the LN+AM and LN-AM groups. Source
data are provided in the Source Data file. b Volcano plot indicating DEGs in the
annotated subclusters of immune cells. Source data are provided in the Source
Data file. c Feature plots of classical marker genes used for subcluster annotation.
d GSVA analysis of selected hallmark pathways in these subclusters. e Heatmap
indicating the expression of selected gene sets (including naive, resident, inhibi-
tory, cytokines, co-stimulatory, transcription factors (TF), and cell type) in these
subclusters. f RNA velocity analysis demonstrating the evolutionary trajectory of
these subclusters. The CD8+T, NK and NKT subclusters are highlighted and
enlarged in the lower panel. g Violin plots displaying the cytotoxicity and exhaus-
tion scores in the selected subclusters. ****P-value < 0.0001; Kruskal–Wallis rank-
sum test was used. Source data are provided in the Source Data file. h Ridge plots
showing the expression levels ofGZMB,GZMH, PRF1, andGNLY in these subclusters.
i Histogram illustrating the proportion of FGFBP2+NKT cells in LN+AM (n = 6) and

LN−AM (n = 6) groups using our scRNA-seq data. Significancewas determined using
an unpaired two-sided student’s t-test, P-value = 0.002. Error bars represent
means ± SD. Source data are provided in the Source Data file. j Representative
image of FGFBP2+NKT cells (positive for CD8, NCAM1, and FGFBP2) in AM cohort
(n = 101) using the multiplex IHC assay. The white arrow indicates representative
FGFBP2+NKT cells. The scale bars on the left and right are 200 μm and 50 μm,
respectively. The experiment was repeated once with similar results. k Violin plot
(left) showing the number of FGFBP2+NKT cells in Para-tumor (n = 72), LN−AM
(n = 73), and LN+AM (n = 28) groups, with significance determined using a
Kruskal–Wallis rank-sum test. Box center lines, bounds of the box, and whiskers
indicate medians, first and third quartiles, and minimum and maximum values
within 1.5x IQR of the box limits, respectively. KM analysis (right) showing the
overall survival rate of 101AMpatientswith high and low levels of FGFBP2+NKTcells
using the two-sided log-rank test (P =0.046, hazard ratio (HR) = 0.52). Source data
are provided in the Source Data file.
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state of MITF function between primary and metastatic lesions, spe-
cifically how MITF can enhance metastatic potential by regulating
energy metabolism.

In conclusion, this study provides a better understanding of the
heterogeneity of tumor ecosystems between patients with LN+AM and

LN−AM in terms of immune and tumor phenotypes. Our results can be
a valuable resource, facilitating a deeper understanding of the
mechanismsassociatedwith LNmetastasis, and assisting indeveloping
more effective therapeutic targets and biomarkers for detecting LN
metastasis in patients with AM.
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Methods
Patient specimens
For the scRNA-seq analysis, we included 12 patients diagnosedwithAM
who underwent curative surgical resection. Eight of these patients
were randomly sourced from the Department of Plastic and Recon-
structive Surgery at Zhongshan Hospital, Fudan University (FDZSH),
and the Department of Musculoskeletal Oncology, Fudan University
Shanghai Cancer Center (FDSCC). The remaining four patient datasets
were obtained from the GEO database under accession number
GSE1898897. The detailed clinicopathological characteristics of these
patients are summarized in Supplementary Table 1. For ST-seq, five
patients with AM undergoing curative surgical resection were ran-
domly enrolled from the Department of Plastic & Reconstructive Sur-
gery of FDZSH and the Department of Musculoskeletal Oncology of
FDSCC. Detailed clinicopathologic characteristics of these patients
were summarized in the Supplementary Table 2. Tumor cells in both
primary and metastatic lesions were confirmed by pathologists via
cytological detection during surgery and examination of paraffin sec-
tions after surgery. For LN-AM patients, we confirmed the absence of
LN metastasis through multiple rigorous steps. First, we conducted
thorough physical and imaging examinations on these patients before
surgery. Second, during surgery, we obtained sentinel lymph nodes
and performed comprehensive pathological examinations. Third, we
maintained regular post-surgery follow-ups and reconfirmed the
absence of lymph node metastasis through repeated physical and
imaging examinations. All these meticulous procedures collectively
affirm the absence of lymph node metastasis in LN−AM patients. None
of these patients received targeted therapy, immunotherapy, or any
other anti-tumor therapy prior to surgery. This studywas conducted in
accordance with the ethical standards of the Institutional Review
Board of FDZSHand FDSCC.Written informed consentswere obtained
from all patients involved in this study for the use of their tissue
samples and clinical information.

Tissue microarray
A total of 138 paired melanoma and non-tumor tissues, along with an
additional 58 melanoma tissues, including 101 AM tissues, were col-
lected to construct the tissue microarray (TMA) as described in our
previous study55. The tissues were histologically reviewed by two
independent pathologists through H&E staining. and representative
areas were pre-marked in the paraffin blocks.

IHC
For IHC, tissue slices were deparaffinized and rehydrated using a gra-
dient concentration of xylene and ethanol. After incubation with 0.3%
hydrogen peroxide for 30min, antigen retrieval was performed with
citrate buffer at a sub-boiling temperature for 15min, and thenblocked
with 5% bovine serum albumin for 60min. The slices were incubated
with primary antibody (anti-MITF, 1:2000dilution, ab303530, ABCAM)
overnight at 4 °C and incubated with HRP-conjugated secondary
antibodies at 37 °C for 60min. Detailed information of antibodies was
provided in the Supplementary Table 3. Slices were then incubated
with a 3, 3’-diaminobenzidine tetrahydrochloride (DAB) kit (Gene
Tech, Shanghai, China) for color development and incubated with

hematoxylin for nuclear counterstaining. Images were obtained using
the CaseViewer software (3DHISTECH, Budapest, Hungary).

Multiplex IHC
For multiplex IHC, tissue slices were deparaffinized in xylene, rehy-
drated in a series of ethanol concentrations (100%, 90%, 70%), incu-
bated with 0.3% hydrogen peroxide, antigen retrieved with citrate
buffer, and blocked with 5% BSA. Then, the slices were incubated in a
humidified chamber at 37 °C for 60min with primary antibodies from
three panels. Panel 1: anti-CD8 (1:300dilution, BX50036, Biolynx), anti-
CD4 (1:300 dilution, BX50023, Biolynx), anti-NCAM1 (1:100 dilution,
3576 S, CST), anti-FGFBP2 (1:1000 dilution, HPA039180, SIGMA); Panel
2: anti-FAP (1:50 dilution, BM5121, Boster), anti-CD31 (1:1000 dilution,
3528 S, CST); Panel 3: anti-Galetcin-9 (1:300, NBP2-45619, NOVUS),
anti-TIM3 (1:200, 45208 S, CST), anti-CD45 (1:200, BX50068, Biolynx),
anti-CD44 (1:200, 3570 S, CST). Detailed information of antibodies was
provided in the Supplementary Table 3. Slices were then incubated
with the corresponding HRP-conjugated goat anti-mouse or goat anti-
rabbit second antibodies (1:100 dilution, Leica Biosystems) at 37 °C for
10min. Then the slide was again placed in citrate buffer to remove
redundant antibodies before the next step. Finally, the slices were
incubated with DAPI solution at 37 °C for 10min in the dark. Images
were captured using the CaseViewer software (3DHISTECH, Budapest,
Hungary).

Preparation of single-cell suspensions
Fresh primary lesions were isolated immediately following tumor
resection and transferred to a 50mL centrifuge tube filled with pre-
cooled RPMI 1640 medium containing 0.04% bovine serum albumin
(BSA, Gibco, Carlsbad, CA, USA). They were then quickly transported
on ice to the FDZSH laboratory tominimize the ischemic time. Samples
were cut into 1mm3 pieces, followed by enzymatic digestion using the
Miltenyi Tumor Dissociation Kit (Miltenyi, Bergisch Gladbach, Ger-
many). The samples were then centrifuged at 300 g for 30 s, and the
supernatant was discarded. Next, 1× PBS (calcium and magnesium
free) containing 0.04% BSA (400 µg/ml)was added, and centrifugation
was performed at 300× g for 5min. The cell pellet was resuspended in
1ml of red blood cell lysis buffer and incubated for 10min at 4 °C.
Subsequently, samples were resuspended in 1ml of PBS containing
0.04% BSA and filtered using Scienceware Flowmi 40-µm cell strainers
(VWR). Finally, 10 µl of suspension was examined under an inverted
microscope for counting using a hemocytometer. Trypan blue was
used to quantify the live cells.

Droplet-based single-cell RNA sequencing
Cell suspension was subjected to Chromium Next GEM Single Cell 3’
Reagent Kit (version 3.1) for library preparation according to
the manufacturer’s protocol (10× Genomics, Pleasanton, CA). Single-
cell libraries were sequenced on an Illumina Nova-Seq 6000
PE150 System (Illumina, San Diego, CA, USA) by paired-end sequen-
cing. cDNAs were obtained after the GEM (Gel Bead-in-emulsion)
generation and barcoding, followed by GEM reverse transcription (RT)
reaction. Next, cDNA was amplified using polymerase chain reaction
(PCR) for the appropriate cycles, depending on the number of

Fig. 6 | Decoding the function of myeloid cells in AM. a UMAP plot showing the
landscape of myeloid cells of all tumor samples, color-coded by the annotated
subclusters and split by LN+AM and LN−AM. b Feature plots illustrating classical
marker genes used for the annotation of these subclusters. c Volcano plot dis-
playing the DEGs in these annotated subclusters. Source data are provided in the
SourceData file.d Pie plots showing the proportion of these subclusters ofmyeloid
cells in the LN+AM and LN−AM groups. e GSVA analysis of selected hallmark path-
ways in these subclusters. Source data are provided in the Source Data file. f RNA
velocity analysis demonstrating the evolutionary trajectory of these subclusters.
g Pseudotime-ordered analysis of macrophages, colored by their subclusters. The

arrow indicates the potential evolutionary direction in the trajectory. h Heatmap
displaying the expression levels of selected immunity/inflammatory genes in
macrophage subclusters. i Feature plots showing the scores of M1/M2 polarization
signatures in macrophage subclusters. j Box plots illustrating the scores of M1/M2
polarization signatures in macrophage subclusters. For M1/M2 score, the cell
numbers for the APOE+Mac, SPP1+Mac, CXCL10+Mac and F13A1+Mac were 525, 263,
1028, 427, respectively. Significance was determined using a Kruskal-Wallis rank-
sum test. The box center lines, bounds of the box, and whiskers indicate medians,
first and third quartiles, and minimum and maximum values within 1.5× IQR of the
box limits, respectively. Source data are provided in the Source Data file.
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recovered cells. Subsequently, the amplified cDNA was fragmented,
end-repaired, A-tailed, ligated to an index adaptor, and further
amplified.

scRNA-seq data processing
The Cell Ranger software pipeline (version 5.0.0) was used for
demultiplexing, barcode processing, alignment, and initial clustering
of the raw scRNA-seq profiles. Raw sequencing reads were
mapped, annotated, and quantified using the GRCh38 reference
annotation file (ENSEMBL, https://cf.10xgenomics.com/supp/cell-exp/

refdata-gex-GRCh38-2020-A.tar.gz). The unique molecular identifier
(UMI) count matrix was processed using the R package Seurat56 (ver-
sion 3.1.1), and a unified standard was applied to filter cells with
UMI/gene numbers out of the limit of the mean value +/− 2 folds of
the median absolute deviation, assuming a Gaussian distribution
of UMI/gene numbers of each cell. Following a visual inspection of
the cell distribution, we further discarded low-quality cells, where
more than a quarter of the counts belonged to mitochondrial genes.
Additionally, the DoubletFinder package (version 2.0.2) was used
to identify potential doublets57. To handle batch effects, we integrated
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the scRNA-seq data with the Canonical Correlation Analysis
(CCA) algorithm58. After applying these quality control criteria, 52,382
high-quality single cells were used for downstream analysis. Normal-
ized expression profiles of all samples were merged using the
Merge() function in R (version 3.6.1). Subsequently, library size nor-
malization was performed using the NormalizeData() function in
Seurat to obtain a normalized count, and the results were log-
transformed. The top 2000 highly variable genes were identified using
the FindVariableFratures() function, according to a previously descri-
bed method.

Top principal components (PCs) were computed based on the
expression profiles of the top 2000 highly variable genes. The Find-
Neighbors() and FindClusters() functions in Seurat were used for cell
clustering. RunUMAP() functions were used for visualization when
appropriate. Cells were visualized using a 2D Uniform Manifold
Approximation and Projection (UMAP) algorithmwith the RunUMAP()
and DimPlot() functions. Marker genes in each cluster were identified
using the FindAllMarker() function in Seurat. For a given cluster, the
FindAllMarkers() function identified positive markers compared with
all remaining clusters.

Single-cell copy-number variation evaluation
CNV of each cell on the chromosome was evaluated using the R
package inferCNV (version 1.0.4)59. The CNV levels of these main cell
types were calculated based on the amount of gene expression from
the scRNA-seqdata for each cell with a cut-off of0.1. Geneswere sorted
based on their chromosomal locations, and the moving average of
gene expression was calculated using a window size of 101 genes. The
expression was centered at zero by subtracting the mean value. Mel-
anoma cells were selected as the malignant cells, leaving all remaining
cells as normal cells. The parameters of inferCNV analysis included
“denoise,” default hiddenMarkovmodel settings, and a value of 0.1 for
“cutoff.”.

Trajectory and RNA velocity analysis
Developmental pseudo-time analysis was performed using the Mono-
cle2 package (version 2.9.0)60 to infer the developmental trajectory of
the indicated cells. The raw count was first converted from the Seurat
object to the CellDataSet object using the ImportCDS() function in
Monocle. The DifferentialGeneTest() function was used to select
orderedgenes (q-value < 0.01) thatwere likely to be informative for the
ordering of cells along the pseudotime trajectory. Dimensional
reduction clustering analysis was performed using the reduceDimen-
sion() function, followed by trajectory inference with the orderCells()
function using default parameters. Gene expression was plotted using
the plot_genes_in_pseudotime() function to track the changes
over time.

To recover the cellular dynamics of the indicated cells, we per-
formed RNA velocity analysis using the Python script velocyto.py61.
Spliced and un-spliced reads were counted using the Cell Ranger
output folder. The calculation of RNA velocity values for each gene in

each cell and the embedding of the RNA velocity vector in low-
dimensional space were performed using the R package velocyto.R
(version 0.6). The velocity fields were projected onto the UMAP
embedding obtained using Seurat.

Simultaneous gene regulatory network analysis
SCENIC analysis was performed using the motif databases for
RcisTarget and GRNBoost (SCENIC, version 1.1.2) with default
parameters62. We identified transcription factor-binding motifs
that were overrepresented on a gene list using the RcisTarget package.
The activity of each regulon group for each cell type was scored
using the AUCell package. To evaluate the cell type specificity of each
predicted regulon, we calculated the regulon specificity score
(RSS), which is based on the Jensen-Shannon divergence (JSD), a
measure of the similarity between two probability distributions. Spe-
cifically, we calculated the JSD (Jensen-Shannon divergence) between
each vector of binary regulon activity overlappingwith the assignment
of cells to a specific cell type. The connection specificity index (CSI) for
all regulons was calculated using the scFunctions package.

Cell-cell communication analysis with CellChat
Potential intercellular communication was assessed using the CellChat
R package (version 1.1.3)63. The normalized expression matrix was
imported to create a CellChat object using theCellChat() function. The
data were then preprocessed with the identifyOverExpressedGenes(),
identifyOverExpressedInteraction(), and ProjectData() functions using
default parameters. The computeCommunProb(), filterCommunica-
tion(), and computeCommunProbPathway() functions were then used
to determine any potential ligand-receptor interactions. Finally, the
cell communication network was aggregated using the aggregateNet()
function.

Correlation to public dataset
The bulk RNA-seq data of 26 primary AM samples were retrieved from
GSE162682 (www.ncbi.nlm.nih.gov/geo)6. For MYC+MEL and
FGFBP2+NKT subgroups, genes with avg_log2FC >0.5 and adj. P-
value < 0.01 were considered asmarker genes. Mean TPM levels of the
marker genes were log2-transformed and used as gene signatures.
Subsequently, relative cell abundance was divided into the top 50%
and bottom 50%, corresponding to high and low abundance. Kaplan-
Meier (KM) analysis was performed to evaluate the prognostic value of
the cell clusters and determine the role of these cell clusters in mela-
noma progression. KM survival curves and P-values were obtained
using the R package survival (version 3.5-5).

Differential expression and pathway analysis
Differentially expressed genes (DEGs) were identified using the Find-
Markers() function (test.use = presto) in the Seurat package56. To
assign pathway activity estimates to individual cells, we applied GSVA
using standard settings as implemented in the GSVA package (version
1.30.0)64. The GSEABase package (version 1.44.0) was used to load the

Fig. 7 | Fibrovascular niches within the stromal compartment of AM. a UMAP
plot illustrating the landscape of all stromal cells color-coded by their associated
subclusters. b Feature plots displaying classical marker genes used for the anno-
tation of these subclusters. c UMAP plot showing the separation of stromal cells
based on LN+AM and LN-AM, accompanied by a bar plot indicating the proportion
of these subclusters in LN+AM and LN-AM. Source data are provided in the Source
Data file. d Heatmap presenting the cluster-specific genes of these subclusters.
Source data are provided in the Source Data file. e GSVA analysis of selected hall-
mark pathways in these subclusters. f RNA velocity analysis demonstrating the
evolutionary trajectory of these subclusters. g Spatial feature plot showing the
scores of endothelial cells and fibroblasts in tissue sections using ST-seq data. Scale
bar, 1000μm. h Scatter plot showing the correlation between endothelial (x-axis)

and fibroblast (y-axis) cells, stratified by LN+AM and LN−AM. The correlation is
evaluated using the two-sided Spearman correlation coefficient. The gray band
represents the 95% confidence interval of the regression line. Source data are
provided in the Source Data file. i Representative image of fibrovascular niches
detected by anti-FAP and anti-CD31 in AM sections using the multiplex IHC assay,
and violin plot showing the number of fibrovascular niches in LN−AM (n = 73) and
LN+AM (n = 28). The box center lines, bounds of the box, and whiskers indicate
medians, first and third quartiles, and minimum and maximum values within 1.5×
IQR of the box limits, respectively. Significance was determined using a two-sided
Mann–WhitneyU-test (*P-value < 0.05; P =0.03). Scale bar, 150μm.The experiment
was repeated once with similar results. Source data are provided in the Source
Data file.
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gene set file, which was downloaded from the Kyoto Encyclopedia of
Genes and Genomes database (https://www.kegg.jp/) and processed.
Differences in the pathway activities scored per cell were calculated
using the LIMMA package (version 3.38.3).

Data analysis of ST-seq
Tissue slice was printed with two identical capture areas from primary
lesions of five patients with AM, including 3 LN+ and 2 LN− patients.
Tissue slices were permeabilized for 20min, as defined by the tissue
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Fig. 8 | Intercellular communication networks in AM. a Comparison of the dif-
ferential interaction number and strength of the 13 annotated cell types between
LN+AM and LN−AM. The red line represents the increased interaction number or
strength, and the bule line represents decreased interaction number or strength.
Source data are provided in the Source Data file. b Scatter plots illustrating the
incoming and outcoming interaction strength of the 13 annotated cell types in
LN−AM and LN+AM. Source data are provided in the Source Data file. c, d Chord
plots displaying the selected signaling pathway networks of CLEC (c) and

GALECTIN (d) in LN+AM and LN-AM. Source data are provided in the Source Data
file. e Spatial feature plots demonstrating the interaction activity of selected L-R
pairs in tissue sections of patient 6 and patient 11 using ST-seq data. Scale bar,
1000μm. f Representative images of L-R pairs (Galectin-9_CD44, Galectin-9_TIM-3
and Galectin-9_CD45) in AM cohort (n = 101) captured by the multiplex IHC assay.
Galectin-9 is shown in green, CD44 in red, TIM-3 in purple, andCD45 in orange. The
white arrow indicates a representative interaction of the selected L-R pairs. The
experiment was repeated once with similar results. Scale bar, 100μm.
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optimization flowperformed in advance. Gene expression information
for ST slices was captured using the Visium Spatial platform (10×
Genomics) with spatially barcoded mRNA-binding oligonucleotides
using the default protocol. Raw sequencing reads were checked for
quality and mapped using Spaceranger (version 1.2.0). Normalization
across spotswasperformedusing the LogVMR() function. After quality
control using SpaceRanger software, the number of high-quality spots
ranged from 4323 to 4992. At each spot, the average UMI number,
gene number, and mitochondrial gene proportion ranged from 6354
to 19581, 1950 to 5642, and 2.43% to 6.96%, respectively. Dimension-
ality reduction and clustering were performed using independent
component analysis (PCA) at a resolution of 1.1 with the first 30 PCs.
Signature scoring derived from scRNA-seq or ST-seq signatures was
performed using the AddModuleScore() function with the default
parameters in Seurat. Spatial feature expression plots were generated
using the spatial feature plot function in Seurat.

Animal models
Male C57BL/6 mice aged 5 ~ 6 weeks (n = 27) were purchased from the
SLAC laboratory animal company (Shanghai, China) and housed in a
pathogen-free environment strictly following the 3 Rs guidelines
(replacement, reduction, and refinement). Mice were housed in a
controlled environment with a 12-h dark/light cycle and a temperature
of 22 °C. They had ad libitum access to food and water, which were
autoclaved. Cages were changed weekly. The humidity was monitored
andmaintained between 30% and 70%. All micewere randomized, and
the investigators were blinded to the group assignment. All experi-
mental procedures were approved by the Animal Experimentation
Ethics Committee of FDZSH.

For the footpad implantation model, 5 × 105 B16F0-Vector or
B16F0-Mitf cells were subcutaneously implanted into the footpad
region of the hind limbs of C57BL/6 mice. The volume of foot pads
(containing tumor lesions) was monitored and calculated using the
formula: 0.5× (larger diameter) × (smaller diameter)2. For FAO inhibi-
tion, Etomoxir (40mg/kg, Sigma-Aldrich) in PBS (50μl) was daily
injected subcutaneously into the anterolateral side of the mouse leg,
right above the hind limb foot where B16F0 cells were implanted.
Treatment was initiated in the second week after tumor implantation.
To increase the LN metastasis rate, particularly considering the lower
LN metastasis rate after Etomoxir treatment, we made the decision to
extend the study timeline to ensure an adequate LN positive rate for
robust statistical analysis. Importantly, we still need to ensure that the
maximum diameter of the tumor does not exceed 2 cm, and this has
been approved by the Animal Experimentation Ethics Committee of
FDZSH. On day 25, the mice were anesthetized with pentobarbital
sodium (40mg/kg), and the ipsilateral popliteal LNs and primary
tumor tissues were obtained. Tissues were fixed in formalin and
embedded in paraffin. Consecutive sections were prepared from each
tumor tissue block and used for H&E and IHC experiments.

Western blot analysis
For total protein extraction, cells were lysed in RIPA buffer supple-
mented with a protease inhibitor cocktail (Beyotime, P1005, 1:100).
Total protein (10 µg) was loaded onto a Bis-Tris SDS/PAGE gel and
transferred onto polyvinylidene difluoride (PVDF) membranes. The
membranes were then blocked with 5% BSA for 1 h and incubated
overnight at 4 °C with primary antibodies against MITF (ABCAM,
ab303530, 1:1000) and Histone-H3 (Proteintech, 17168-1-AP, 1:8000).
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Fig. 9 | Graphical abstract illustrating the distinct characteristics of the tumor
ecosystem of AM with or without LN metastasis. The primary tumor lesion of
LN+AM exhibits a more suppressed TME, with decreased FGFBP2+NKT, CD4+T and
CD8+T cells, and increased CXCL13+CD8+T and CXCL13+CD4+T cells, macrophages,

and fibrovascular niches compared to that of LN−AM. MYC+MEL cells are sig-
nificantly increased in the primary tumor of LN+AM, and MITF-mediated FAO
activation drives tumor LN metastasis. A part of the image has been adapted from
Biorender.com.
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Detailed informationof antibodies wasprovided in the Supplementary
Table 3. Themembraneswere then exposed to the secondary antibody
(Beyotime, P0208, 1:1000) for 1 h. The bands were visualized using a
DAB kit and analyzed with an imaging system.

Statistical analysis
Statistical analyses were performed using R (version 4.1.1) and
GraphPad Prism (version 9.0; San Diego, CA, USA). Unpaired student’s
t-test, Wilcoxon rank-sum test, Mann–WhitneyU-test, one-way ANOVA
test, Kruskal–Wallis rank-sum test, and Spearman correlation analysis
were utilized for data analysis in this study. Cumulative survival time
was estimated using the Kaplan-Meier estimator, and significance was
assessed using the log-rank test. A two-sided test was used unless
otherwise specified. A P-value of <0.05 was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequence data reported in this paper has been deposited in
the Genome Sequence Archive (Genomics, Proteomics & Bioinfor-
matics 2021) in National Genomics Data Center (Nucleic Acids Res
2022), China National Center for Bioinformation / Beijing Institute of
Genomics, Chinese Academy of Sciences under the accession number
HRA004456, which is publicly accessible. The raw sequencing data is
available for non-commercial purposes under controlled access
because of data privacy laws, and access can be obtained by request to
the corresponding authors. For public datasets analysis, Li et al.’s
dataset (including 4 AM samples) were retrieved fromGSE189889. The
bulk RNA-seq data of 26 primary AM samples were retrieved from
GSE162682. Raw sequencing reads were mapped, annotated, and
quantified using the GRCh38 reference annotation file [https://cf.
10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz].
The remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided with
this paper.
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