
Article https://doi.org/10.1038/s41467-023-43978-6

Flow-induced periodic chiral structures in an
achiral nematic liquid crystal

Qing Zhang 1,4 , Weiqiang Wang 2,4, Shuang Zhou 3, Rui Zhang 2 &
Irmgard Bischofberger 1

Supramolecular chirality typically originates from either chiral molecular
building blocks or external chiral stimuli. Generating chirality in achiral sys-
tems in the absence of a chiral input, however, is non-trivial and necessitates
spontaneous mirror symmetry breaking. Achiral nematic lyotropic chromonic
liquid crystals have been reported to break mirror symmetry under strong
surface or geometric constraints. Here we describe a previously unrecognised
mechanism for creating chiral structures by subjecting the material to a
pressure-driven flow in a microfluidic cell. The chirality arises from a periodic
double-twist configuration of the liquid crystal and manifests as a striking
stripe pattern. We show that the mirror symmetry breaking is triggered at
regions offlow-inducedbiaxial-splay configurations of the directorfield,which
are unstable to small perturbations and evolve into lower energy structures.
The simplicity of this unique pathway to mirror symmetry breaking can shed
light on the requirements for forming macroscopic chiral structures.

Chirality, or the absence of mirror symmetry, is ubiquitous in living
systems, from DNA to the placement of organs in mammals1–3. Chiral
objects in chemistry and materials science have revolutionised che-
mical catalysis4,5, optical sensors6,7, and metamaterial design8–10. There
are two common ways how supramolecular chiral structures emerge.
They can either be induced by a chiral input which in turn generates a
chiral output, or they are composed of molecular building blocks that
are themselves chiral2,11. By contrast, the emergence of chirality in
centrosymmetric systems is much less common, and it requires
spontaneous mirror symmetry breaking12,13. Elucidating the routes to
induce mirror symmetry breaking in achiral molecular assemblies can
guide technological advances exploiting chirality14,15.

Liquid crystals (LCs) are materials composed of anisotropic
mesogens. Achiral LCs of specific molecular shape are an example of a
material that can form chiral structures13,16–18; themolecular bow shape
of bend-core liquid crystals in the smectic phase, for instance, intro-
duces chirality through an intralayer polar orientational ordering
combined with a collective tilt of the smectic planes19. Hydrodynamic
instabilities induced by oscillatory shear with a zero net flow can
trigger chiral Williams domains in nematic thermotropic liquid

crystals20,21. Mirror symmetry breaking has also been shown to emerge
in rod-shaped liquid crystals in the nematic phase when thematerial is
confined to a specific spatial confinement that can be imposed by
curved or inclined surfaces, or by hybrid surface anchoring
conditions13,22,23. The mirror symmetry breaking induced by spatial
confinement is particularly prevalent in nematic lyotropic chromonic
liquid crystals (LCLCs)24–29, aqueous dispersions of disk-shaped mole-
cules that self-assemble into cylindrical aggregates. Over a range of
temperatures and concentrations, LCLC solutions exhibit a nematic
phase30,31. Due to the large aspect ratio of the aggregates, nematic
LCLCs have a large elastic anisotropy: The twist Frank elastic constant,
K2, is an order of magnitude lower than the Frank elastic constants of
splay, K1, and bend, K3

30,32. If nematic LCLCs are forced to adapt to a
curved surface imposed by spatial confinement, instead of relieving
these deformations through splay and bend modes, they do so
through a twist deformation that minimises the elastic free energy.
Such a twist deformation is a pivotal element in forming chiral
helices24,26. In addition to the Frank elastic constants of splay, twist and
bend, the saddle-splay Frank elastic constant, K24, also plays an
essential role in triggering and stabilising chiral structures through
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lowering the elastic energy in cylindrical and toroidal geometries29,33,34.
Exploiting the ease with which twist deformations occur and the non-
negligible saddle-splay elasticity that stabilises chiral structures, pro-
grammed surface anchoring conditions have been developed to con-
trol chiral structures in achiral nematic LCLC solutions35–37. To date,
structural chirality in achiral nematic LCLCs induced by anisotropic
elasticities and confined boundary conditions has been reported
exclusively in the static state at rest, where an imposed curvature or a
pre-patterned surface is necessary for the emergence of chirality13.

In this study, we discuss our discovery of flow-induced mirror
symmetry breaking in nematic LCLC solutions in the absence of curved
or patterned surfaces. We reveal the emergence of a distinct macro-
scopic chiral structure when the material is flowing in a microfluidic
cell; a periodic double-twist configuration that leads to a mesmerising
stripe pattern perpendicular to the flow direction. We show that the
periodicity of the stripes is governed by the competition between the
viscous torque and the bend elastic torque acting on the director, and
canbe tunedby varying the gap thickness of themicrofluidic cell or the
flow velocity.

We demonstrate that the mirror symmetry breaking results from
(i) the flow-tumbling character of nematic LCLC solutions and (ii) an
elastic instability of a specific flow-induced configuration of the
director field facilitated by the low energetic cost of twist deforma-
tions. A tumbling nematic experiences a non-zero viscous torque for
any orientation of the director (α2α3 < 0, where α2 and α3 are the Leslie
viscosity coefficients38), which destabilises the director field in shear
flow. This induces distinct director configurations, including a biaxial-
splay configuration characterised by opposite directions of the splay
deformation in two orthogonal planes. We show that this biaxial-splay
configuration, forwhich the stability solution is dictated by the saddle-
splay elasticity, is unstable and evolves towards a lower energy state of
the director field; the periodic double-twist configuration that is
selected due to the small twist Frank elastic constant of LCLC solu-
tions. This path to macroscopic chirality is unique and exceptionally
simple: all it requires is a pressure-driven flow. The structural chirality

is here triggered by a dynamic process when an achiral nematic
material is driven away from equilibrium and relaxes to a chiral lower
energy state.

Results and discussion
Flow-induced periodic double-twist structures in achiral
nematic liquid crystals
An aqueous solution of 13 wt% disodium cromoglycate (DSCG) is
placed in a rectangular microfluidic cell of length l = 55mm, width
w = 40 mm, and gap thickness b = 8–26μm at room temperature
T = 23.2 ± 0.5 °C. At this concentration and temperature, DSCG solu-
tions forma nematic phase30,31. We probe the director alignment of the
nematic DSCG solution using polarising optical microscopy. The sur-
face anchoring is planar and in the direction of the cell length, which
wedenote as x-direction. At rest, when imaged under crossedpolariser
(placed along the x-direction) and analyser, the material thus appears
black, as shown in Fig. 1a, b.

Remarkably, at a volumetric flow rate of q =0.25μl/min, a large-
scale stripe pattern spontaneously emerges perpendicular to the flow
direction, as shown in Fig. 1a (see also Supplementary Video 1). Using a
PolScope (OpenPolScope) to quantify the gap-averaged retardance
map,wefind that the retardance is low in certain regions of the stripes,
indicating a homeotropic alignment where the director is parallel to
the cell thickness direction, as shown in Fig. 1c. Between these regions,
the director rotates from being parallel to the z-direction with a polar
angle θ ≈0°, to beingmore parallel to the y-directionwith an azimuthal
angle φ ≈ 90° (Fig. 1c, d). The director thus undergoes a periodic twist
deformation in theflowdirection, as schematically shown in Fig. 1a.We
denote the low-retardance regions as regions I in Fig. 1c, and the
regions in between as regions II (Fig. S1).

To probe the alignment in the gap thickness direction, we use
fluorescence confocal polarising microscopy. A low fluorescence
intensity I indicates an alignment of the director in the y-direction, a
high fluorescence intensity indicates an alignment of the director in
either the flow direction (x-direction) or the gap thickness direction (z-

Fig. 1 | Mirror symmetry breaking in flowing nematic LCLC solutions. a Periodic
stripe patterns emerge from uniformly aligned nematic LCLC solutions upon the
onset of flow. b Schematics of the transition from a uniform planar alignment at
rest to a periodic double-twist structure under flow. c Retardance map (upper
panel), where the colour represents the optical retardance δ averaged across the
gap thickness, and the black rods denote the orientation of the director averaged
across the gap thickness and projected onto the xy-plane. Along the distance L
indicated as a red line, the retardance varies periodically (lower panel). The low-
retardance regions are denoted as regions I, the regions in between as regions II.
The gap thickness is b = 14μm. d Director orientation. φ is the azimuthal angle

and θ is the polar angle. e Fluorescence confocal polarising microscopy image of
the stripe pattern in the xy-plane imaged close to the bottom wall of the micro-
fluidic cell (upper panel). The white arrow represents the polarisation of the
probing beam. Along L, the normalised fluorescence intensity, I, measured close
to the top wall (black line) is out of phase with that measured close to the bottom
wall (blue line) (lower panel). f Schematic of the periodic double-twist config-
uration (upper panel) and the corresponding stripe pattern (lower panel). g Map
of the normalised light intensity under crossed polariser and analyser, In (lower
panel), determined from the simulated periodic double-twist director field
(upper panel).

Article https://doi.org/10.1038/s41467-023-43978-6

Nature Communications |            (2024) 15:7 2



direction)39. In region II, the stripes exhibit alternatively high and low
fluorescence intensity when measured at the bottom layer of the
microfluidic cell. As we scan across the gap thickness towards the top
layer of the microfluidic cell, the fluorescence intensity switches; dark
regions become bright, and bright regions become dark, indicating an
alternating twist deformation for adjacent stripes in the gap thickness
direction, as shown in Fig. 1a, e.

The combination of the periodic twist deformation in the flow
direction and the alternating twist deformation in the gap thickness
direction results in a periodic double-twist structure, as schematically
shown in Fig. 1f. To further verify that the periodic double-twist
structure corresponds to the stripe pattern, we calculate the normal-
ised light intensity averaged over the gap thickness from a simulated
director field (see ‘Methods’); the retardance map is in good agree-
ment with the experimentally observed pattern (Fig. 1g). The periodic
double-twist structure is remarkable in two aspects: (i) It is a chiral
structure built by an achiral nematic liquid crystal, which involves a
mirror symmetry breaking, and (ii) the structure possesses a well-
defined characteristic period despite the absence of a pitch length in
the achiral building blocks.

Mechanism of mirror symmetry breaking
To reveal the mechanism of mirror symmetry breaking, we analyse the
dynamics of the director field associated with the different elastic
deformation modes induced by the flow. Looking at a larger section of

the cell through a crossed polariser, an analyser, and a full-wave-plate
optical compensator with its slow axis, λ

!
g, oriented at 45° to the

polariser, we observe uniform regions surrounding the stripe pattern
that appear alternatively blue and yellow. This observation, together
with a quantification of the director field using a PolScope, demon-
strates that the director rotates in opposite directions in the different
uniform domains, as shown in Fig. 2a, b. This rotated director field
results from the competition between the shear flow and the elastic
deformation induced by the flow as the director resists deviation from
the surface anchoring condition. At low shear rates, the tumbling DSCG
director aligns perpendicular to the flow direction along the y-direc-
tion, adopting a log-rolling state that avoids the energetically costly
splay and bend modes associated with a director deformation in the
shear plane38,40. The log-rolling state, however, is inconsistent with the
surface anchoring condition. This causes the director to rotate in the
xy-plane (Fig. S2) adopting average azimuthal angles of φ ≈65° and
φ ≈ 115°, as shown in Fig. 2c. Given that the cylindrical DSCG aggregates
are symmetric, left- and right-handed rotations are stochastically
equivalent. At the boundary of two domains with oppositely rotated
director fields, a splay deformation forms that is either open to the flow
direction, denoted as divergent splay deformation or closed to the flow
direction, denoted as convergent splay deformation. Remarkably, the
stripe patterns only form at the boundaries with convergent splay
deformation. By contrast, at the boundaries with divergent splay
deformation a splay wall forms that appears as a sharp line in Fig. 2a41.

Fig. 2 | Flow-induced double-splay and biaxial-splay configurations. a The
director field neighbouring the stripe pattern appears alternatively blue and yellow
when imaged using crossed polarisers and a full-wave-plate optical compensator.
The blue colour indicates that the director is almost perpendicular to the slow axis
of the optical compensator, ~λg, the yellow colour indicates that the director is
almost parallel to ~λg. b Map of the polar angle θ (colour bar) and the azimuthal
angle φ (black rods). The regions adjacent to the stripe pattern are denoted as (i)
and (ii); the regions adjacent to the splay wall are denoted as (iii) and (iv).
c Probability density function (PDF) of φ (upper panel) and of θ (lower panel) in
regions (i)–(iv). Inset: Schematic of the divergent splay deformation in the xz-plane

induced by the pressure-driven flow. The black arrows represent the velocity pro-
file, the blue arrows represent the shear rate profile. d Biaxial-splay configuration
(upper panel) and double-splay configuration (lower panel). e With increasing
rotation angle, β, the director field of the biaxial-splay configuration evolves from a
convergent splay deformation in the xy-plane to a divergent splay deformation in
the xz-plane (left). For the double-splay configuration, the director field adopts a
divergent splay deformation for all β (right). f Evolution of θ at the walls of the
microfluidic cell (z =0 and z = b) for double-splay (blue line) and biaxial-splay (red
line) configurations. The arrows indicate the direction inwhich the director evolves
upon a perturbation.
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Divergent and convergent splay deformations cost the same
amount of energy; why is the divergent splay deformation stable at a
splaywall but the convergent splay deformation unstable evolving into
stripe patterns? The answer lies in the three-dimensional director field
at the boundary of the domains. Indeed, in addition to the splay
deformation in the xy-plane, the shear torques induced by the
pressure-driven flow in the gap of the microfluidic cell induce a
divergent splay deformation across the gap thickness, as shown in the
inset of Fig. 2c. The deformation of the director field is reflected in the
value of the gap-averaged polar angle θ ≈ 45°, which deviates from the
initial planar alignment as a result of the tumbling property of nematic
LCLC solutions38,40,42,43, as shown in Fig. 2c. The combination of the
convergent splay deformation in the xy-plane and the divergent splay
deformation in the xz-plane induces a biaxial-splay configuration in
which the director field undergoes a twist deformation when rotating
about the symmetry line of the splay deformations with a rotation
angle, β, as schematically shown in Fig. 2d, e. By contrast, the divergent
splay deformations in both planes induce a double-splay
configuration44,45.

The observation that periodic double-twist structures are trig-
gered at regions with biaxial-splay configuration, but not at regions
with double-splay configuration, suggests different dynamics of the
director field for these two configurations. Analysing the nematody-
namic equations describing the dynamics of the director near thewalls
of the microfluidic cell (at z = 0 and z = b), we find that the two con-
figurations have different stable solutions dictated by the saddle-
splay elasticity. In the Frank-Oseen elastic energy density
f = ð1=2Þ½K1 ∇ � nð Þ2 + K2 n � ∇×nð Þ2 + K3 n ×∇×nð Þ2 � K24∇ � nð∇ � nÞ+ð
n× ð∇×nÞÞ�, where n is the director field and K1, K2, K3 and K24 are the
splay, twist, bend and saddle-splay Frank elastic constants, the
saddle-splay term enters the free energy only through the boundary
conditions at the walls, given that it is a pure divergence term46. On a
flat surface and when the surface anchoring condition or the bulk
elastic energy are dominant, the saddle-splay term is typically
neglected29. The polar surface anchoring strength of DSCG solutions,
however, has been reported to be weak, on the order of 10−6 J/m2

(ref. 47) (see Supplementary Information). When the flow induces a
biaxial-splay or a double-splay configuration, the director near the
walls of the microfluidic cell can thus deviate from the anchored
state. This leads to spatial gradients of the director field in the
orthogonal directions near the walls. As a consequence, the saddle-
splay term plays here an important role. The director deformation at
the walls of themicrofluidic cell ultimately affects the director field in
the bulk. To probe the stability of the biaxial-splay and double-splay
configurations under perturbations, we consider the director field
n= sin θ cosφ, sinθ sinφ, cosθð Þ at the boundaries of the domains
forming the biaxial-splay and double-splay regions. In steady-state
flow, the polar angle θ and the azimuthal angle φ are constant in the
flow direction: dφ/dx = 0 and dθ/dx = 0. Further assuming that φ ≈0°
at the boundaries of domains with oppositely rotated director fields,
the nondimensionalised nematodynamic equation at the top wall of
the microfluidic cell reads (see Supplementary Information):

�k
dθ
dt*

� �
surf ace

= �w
b

∂θ
∂z*

� �
surf ace

+
1
2
K24
�K

cos2θ� sin2θ
� � ∂φ

∂y*
, ð1Þ

where t* = t/τ, y* = y/w, and z* = z/b, with τ the characteristic relaxation
timeof the director, andw the characteristic width of the double-splay
and biaxial-splay configurations.We define �k = kw

Kτ
, where k is related to

the rotational viscosity of the DSCG solution and �K = ðK1 +K3Þ=2 is an
average elastic constant. The surface gradient of θ in the z-direction,
ð∂θ=∂z*Þsurf ace = 0.836, is solved numerically from the bulk nemato-
dynamic equation (Figs. S3 and S4). For the director at the walls of the
microfluidic cell where the flow velocity is zero because of no-slip
boundary conditions, (dθ/dt)surface=0 and Eq. (1) yields a solution for

the polar angle at the top wall θs ≈ 57° for the biaxial-splay configura-
tion and θs ≈ 33° for the double-splay configuration. We now probe
whether these are stable angles for the two configurations. For the
double-splay configuration, the gradient ofφ in the y-direction, ∂φ/∂y*

is positive. When θ is perturbed to an angle smaller than θs, the right-
hand side of Eq. (1) becomes positive. The term dθ/dt* is then positive
and θ increases back to θs. Inversely, when θ is perturbed to an angle
larger than θs, dθ/dt* < 0 and θ decreases back to θs, as shown in Fig. 2f,
where the arrows indicate the direction towards which the director
relaxes after a perturbation. The director thus always returns to θs, and
the double-splay configuration is stabilised and forms a splay wall. In
contrast, for the biaxial-splay configuration, ∂φ/∂y <0 and the director
will not return to θs upon perturbation but evolve to either a
homeotropic alignment (θ = 0°) or a planar alignment (θ = 90°). We
show in the Supplementary Information (Figs. S3–S5) that due to the
weak surface anchoring, the director evolves to a homeotropic
alignment, which is unstable due to the mismatch with the surface
anchoring condition and the non-zero viscous torque acting on the
director field. There are two possible lower energy states out of the
biaxial-splay configuration: a double-twist and a double-splay config-
uration. By analysing the Frank-Oseen elastic energy density for each
configuration, we find that the double-twist configuration costs the
least elastic free energy (see Supplementary Information and Fig. S6)
and is therefore selected. We further rationalise the selection of the
double-twist configuration by examining the elastic powers of splay,
twist, and bend deformations in hybrid lattice-Boltzmann simulations.
The elastic power of twist is indeedmuch larger than the elastic powers
of splay and bend (see Supplementary Information and Fig. S7).

The biaxial-splay configuration that is the precursor for the peri-
odic double-twist configuration emerges because of the imposed
surface anchoring parallel to the flow direction. The stripe patterns do
not form if wemodify the surface anchoring condition so the director
is planar and aligned in the y-direction; under these conditions, we
observe a stable log-rolling state for a comparable range of flow
velocities.

We determine the handedness of the periodic double-twist con-
figuration using hybrid lattice-Boltzmann simulations. The twist
deformations in the x- and z-directions exhibit the same handedness
(see Fig. S8 andTable S1), which canbeunderstoodby considering that
opposite-handedness configurations would necessitate energetically
costly splay deformations in addition to the twist deformations. Across
21 independent simulations, we find an unbiased selection between
left- and right-handed configurations, as shown in Table S1. This is a
reflection of the DSCG aggregates’ inherent achirality and the absence
of external biases, underscoring the spontaneous nature of the mirror
symmetry breaking. The elastic instability of the flow-induced biaxial-
splay configuration of the director field provides a unique pathway to
mirror symmetry breaking, where flow both triggers and stabilises the
chiral periodic double-twist structure.

Period of double-twist structures
The second remarkable characteristics of the stripe patterns is their
periodicity. Periodic structures frequently appear in cholesteric liquid
crystals where they result from the intrinsic pitch length of the mate-
rial. In achiral nematic liquid crystals, however, they are rarely
observed22.

The period of the stripes that reflects the period of the double-
twist structure, p, decreases with a power law with exponent ≈ −0.5
with increasing velocity of the stripes, V, and increases with the gap
thickness b, as shown in Fig. 3a. To rationalise these observations, we
consider that the elastic deformation modes in the periodic double-
twist configuration are predominantly bend and twist deformations.
Given the small value of the twist Frank elastic constant, the bend
mode dominates over the twist mode and competes with the viscous
torque from the flow. We hypothesise that this competition sets the
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period of the structures. To probe this hypothesis, we consider the
director field in the region of bend deformation, n= sinθ,0, cosθð Þ.
With the assumption that θ ≈ 90° in this region, the nematodynamic
equation reads (see Supplementary Information)46:

α3 _γxz = � K3
∂2θ

∂x2 ,
ð2Þ

where α3 is a Leslie viscosity coefficient and _γxz is the shear rate in the
xz-plane. A scaling analysis yields ∂2θ=∂x2 / �1= pc=2

� �2 and _γxz /
V=b (see Supplementary Information), which provides a characteristic
period,

pc / 2

ffiffiffiffiffiffiffiffiffi
K3b
α3V

s
: ð3Þ

Normalising p with pc indeed rescales all the data onto a master
curve, as shown in Fig. 3b. We report p/pc versus the Ericksen number
Er = ηeffVb/K3, where ηeff ≈0.43 Pa s is the effective viscosity measured
using a stress-controlled rheometer (AR-G2, TA Instruments, Fig. S9),
and K3 ≈ 10 pN is the bend Frank elastic constant38,48. The stripes
emerge for Ericksen numbers of order one, corroborating that the
periodic double-twist structure emerges when the bend elastic torque
competes with the viscous torque from the shear flow.

It is interesting to note that the configuration of the periodic
double-twist structure is reminiscent of the periodic chiral structures
that result from the Helfrich-Hurault elastic instability in cholesteric
liquid crystals, where the period is set by the competition between the
bend deformation and the pitch length-induced twist deformations49.
For the achiral DSCG solutions that do not have an intrinsic pitch
length, it is instead the viscous torque that resists the bend elastic
deformation. Mirror symmetry breaking has further been observed in
Williams domains forming under oscillatory shear, where the twist
deformations are in the cell thickness direction20,21. In a related context,
transient stripe patterns have been observed in LCLC solutions during
the relaxation of the director field from a planar alignment to a
homeotropic alignment imposed by the surface anchoring conditions50.
Here, we show that steady flow can induce and stabilise chiral struc-
tures that extend periodically in the flow direction. The mirror sym-
metry breaking is facilitated by the tumbling character of the LCLC
solution that triggers the three-dimensional director field to form a
biaxial-splay configuration. This biaxial-splay configuration is unstable,
as dictated by the saddle-splay elasticity, and evolves to a lower energy
state, a chiral double-twist structure, as a consequence of the small twist

Frank elastic constant of LCLC solutions. A similar emergence of chir-
ality might occur in other nematic materials that share the character-
istics of tumbling and a small twist Frank elastic constant, for example
in liquid crystal polymers and three-dimensional active nematics30,51,52.
The ease with which the macroscopic chiral structures can be induced
could be exploited to create programmable scaffolds for transmitting
or detecting chirality at the molecular level53–56.

Methods
Experimental methods
Nematic disodium cromoglycate (DSCG) (TCI America, purity > 98.0
%) solutions are prepared by dissolving DSCG in deionized water at
13.0wt%30. The sample is heated to T ≈ 90 °Cwhere it is in the isotropic
phase, which allows the DSCG to fully dissolve in water. The solution is
then cooled to room temperature (T = 23.2 ± 0.5 °C) where it adopts
the nematic phase30,31.

The microfluidic cell consists of two glass plates separated by
8–26μm spacers (Specac, MY SPR RECT, OMNI). The width of the
microfluidic cell is 40mm, and the length is 50mm. To avoid potential
pulsatile effects inherent to syringe pump-controlled flows and to
ascertain a uniform velocity profile at the inlet, we connect a reservoir
of 25mm in height, 40mm in width, and 2–3mm in interior thickness
to one end of the microfluidic cell. Both cell surfaces are treated to
introduce a uniform planar anchoring condition along the flow direc-
tion by following a protocol of surface rubbing, where the glass plates
are rubbed along the cell length direction using a diamond particle
paste with a particle diameter of ≈ 50nm (TechDiamondTools)57.

To obtain the stripe patterns, the nematic DSCG solution is
injected into the microfluidic cell through a 1 mmdiameter hole at the
top of the reservoir at controlled volumetric flow rates ranging
between q =0.25–0.45μl/min. The volumetric flow rate is set by a
syringe pump (Harvard PHD 2000). We ensure the robustness of our
findings by conducting tests utilising different microfluidic cells and
syringe pumps, including cells without a reservoir. The stripe patterns
consistently form for the same range of flow velocities, demonstrating
that the stepping action of the syringe pump does not affect the
results.

The flow field is observed through crossed polarisers and a static
full-wave-plate optical compensator (560 nm) with the slow axis
oriented at 45° to the polarisers, using an optical microscope (OMAX
M837T) with objectives of magnification M = 4× and numerical aper-
ture NA =0.1, and M = 10× and NA=0.25. This setup allows to us
identify the director field averaged in the gap thickness direction. We
further quantify the director field averaged in the gap thickness
direction using a PolScope withM = 5× and NA=0.15 (OpenPolScope).

Fig. 3 | Period of double-twist structures. a Period of the double-twist structures,
p, versus the velocity of the stripes, V, for gap thicknesses b = 8μm (blue circles),
b = 15μm (black diamonds), and b = 26μm (red triangles). Inset: Definition of p
(upper panel). A region dominated by bend deformations is highlighted by the

orange line (lower panel). b p normalised with pc, the critical period denoting the
competition between the bend elastic torque and the viscous torque from the flow,
versus Ericksen number.
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We employ fluorescence confocal polarising microscopy (Leica
SP5) with a water immersion objective of magnification M = 25× and
numerical aperture NA = 0.95 to determine the director field of the
stripe patterns in the gap thickness direction. We add fluorescent
molecules (Acridine Orange, Biotium) at a concentration of 100 ppm
to the DSCG solutions. In nematic DSCG solutions, the fluorescent
molecules align with the orientation of the disk-like DSCG molecules
that are perpendicular to the orientation of the director. The polar-
ised probing beam excites the fluorescent molecules and induces
fluorescence. The efficiency of excitation depends on the angle
between the transition dipole of the fluorescent molecules and the
polarisation of the probing beam39. A high fluorescence intensity
indicates that the polarisation of the probing beam is parallel to the
fluorescent molecules and thus perpendicular to the director of the
DSCG aggregates. A low fluorescence intensity indicates that the
polarisation of the probing beam is perpendicular to the fluorescent
molecules and thus parallel to the director of the DSCG aggregates.
In our experiments, the polarisation of the probing beam is per-
pendicular to the flow direction. When capturing the director field in
the gap thickness direction, we scan eight layers from the top wall to
the bottom wall of the microfluidic cell. During the scan, the stripe
pattern moves with the flow. We therefore analyse the images in a
Lagrangian framework in the frame of reference of the stripes. While
taking the fluorescence images, we simultaneously capture images
through crossed polariser and analyser. This allows us to trace the
displacement of the stripes during the scanning process, and to
correspondingly shift the region of interest for each layer to account
for the motion of the stripes.

Numerical methods
The numerical simulations employ the Leslie-Ericksen theory to
account for the dynamics of the director in the regions where the
director adopts specific splay configurations in a pressure-driven
flow in a microfluidic cell of gap thickness b. The velocity field u
and the unit-vector director field n are used to describe the
nematodynamics of the nematic liquid crystal solution. The polar
angle θ and the azimuthal angle φ describe the director field
n = sinθ cosφ, sin θ sinφ, cosθð Þ. The director field n in a steady-
state flow is governed by the nematodynamic equation46:

1
γ1

δ?
ij hj +Wiknk + λδ

?
ij Ajknk =0, ð4Þ

where γ1 is the rotational viscosity, δ?
ij is the transverse Kronecker

delta, Wik =
1
2

∂ui
∂xk

� ∂uk
∂xi

� �
and Ajk =

1
2

∂uj

∂xk
+ ∂uk

∂xj

� �
are the antisymmetric

and symmetric parts of the velocity gradients, and λ= α2 +α3
α2�α3

withα2 and

α3 the Leslie viscosity coefficients. hi = � ∂f
∂ni

+ ∂
∂xj

∂f
∂ð∂ni=∂xj Þ

� �
, where

f = 1=2½K1 ∇ � nð Þ2 + K2 n � ∇×nð Þ2 + K3 n×∇×nð Þ2 � K24∇ � nð∇ � nÞ +ð
n× ð∇×nÞÞ� is the Oseen-Frank elastic energy density. K1, K2, K3 and K24

are the splay, twist, bend and saddle-splay Frank elastic constants.
Here, we focus on the configuration of the director field at the domain
walls created by the flow-induced divergent or convergent splay
configurations in the xz-plane, which allows us to simplify the
nematodynamic equation into one-dimensional governing equations.

We further note that φ ≈0° and ∂φ
∂z ≈0 at the domain walls. We

approximate K1≈K3≈�K≈ðK1 +K3Þ=2, as K1 and K3 are of the same order
of magnitude30. Eq. (4) then simplifies to

�K
∂2θ
∂z2

= α2cos
2θ� α3sin

2θ
� �

_γxz , ð5Þ

where _γxz =
∂ux
∂z is the shear rate and ux is the velocity in the x-direction.

To describe the velocity field u in the x-direction, we employ a
linear momentum equation46:

ηef f
∂2ux

∂z2
= � G, ð6Þ

where G is the pressure gradient in the x-direction. ηeff is the effective
viscosity, which is a function of the director field n and can be
expressed as46

ηef f =α1sin
2θcos2θcos2φ+ηbsin2θcos2φ+ ηccos2θ+

1
2
α4sin

2θsin2φ,

ð7Þ

where α1 and α4 are the Leslie viscosity coefficients and ηb and ηc are
the Miesowicz viscosities46,58.

Wenondimensionalise Eqs. (5), (6) and (7) using z = bz*, ux =
Gb2

α2
u*
x ,

η*
ef f =

ηef f

α2
and _γ*xz =

∂u*
x

∂z* :

∂2θ

∂z*2
=
Gb3

�K
_γ*xz cos2θ� α3

α2
sin2θ

� �
, ð8Þ

η*
ef f

∂2u*
x

∂z*2
= � 1, ð9Þ

η*
ef f =

α1

α2
sin2θcos2θ+

ηb

α2
sin2θ+

ηc

α2
cos2θ, ð10Þ

where the Leslie viscosity coefficients are chosen to satisfy the tum-
bling character of flowing nematic lyotropic chromonic liquid crystal
(LCLC) solutions; α1 = −0.0181 Pa s, α2 = −0.1104 Pa s, α3 = 0.0011 Pa s,
ηb =0.0251 Pa s and ηc =0.1355 Pa s30.We numerically solve Eqs. (8) and
(9) using the finite difference method, applying no-slip boundary
conditions59. To account for the weak surface anchoring strength of
LCLC solutions on our surface-treated glass plates60, where the
director can deviate from the initial surface anchoring condition in
shear flow, we mimic finite surface anchoring conditions in our
simulations that intrinsicallyhave infinite surface anchoring conditions
by assigning polar angles on the top and bottom walls of the
microfluidic cell, θb,top and θb,bottom, where θb,bottom = 180° − θb,top. We
then test various θb,top and θb,bottom within the range of 45° to 90° to
find the polar angles that correctly reflect the weak surface anchoring
strength61.

In Eq. (8), values are assigned to Gb3
=�K based on experimental

conditions and measurable variables. By scaling G with �α2
�V=b2, we

express Gb3
=�K = � α2

�Vb=�K � Erav, where �V =q=A is the average flow
velocity, q is the volumetric flow rate and A is the cross-sectional area
of the microfluidic cell. This yields Ericksen numbers Erav in the range
of 25–50 (corresponding to Er = ηeffVb/K3 = 0.65–1.25 using the defini-
tion employed in the main manuscript).

To access the azimuthal angles at thedomainwalls,weemploy the
hybrid lattice-Boltzmann method where the director field of the
nematic solution is described by the tensorial order parameter Q and
the hydrodynamics by the velocity vector u. For a uniaxial nematic
liquid crystal,Q = S(nn − I/3), where S is the scalar order parameter and
I is the identity tensor. By defining the strain rate D = (∇u + (∇u)T)/2
and the vorticity Ω = (∇u − (∇u)T)/2, we introduce an advection term
S= ðξD+ΩÞ � ðQ + I

3Þ+ ðQ + I
3Þ � ðξD�ΩÞ � 2ξðQ + I

3ÞðQ : ∇uÞ, where ξ is
a constant that depends on the molecular details of the liquid crystal.
We use ξ =0.6 for our tumbling nematic LCLC solutions61.

Article https://doi.org/10.1038/s41467-023-43978-6

Nature Communications |            (2024) 15:7 6



The governing equation of the Q-tensor, i.e., the Beris-Edwards
equation, is62

∂Q
∂t

+u � ∇Q � S= ΓH, ð11Þ

where Γ is related to the rotational viscosity via γ1 = 2S
2
0=Γ with S0 the

equilibrium scalar order parameter63. H is the molecular field defined
asH= � ðδFδQ � I

3 TrðδFδQÞÞ that drives the system towards thermodynamic
equilibrium with a free energy functional F = ∫bulk fLdGdV + ∫bulk
felasticdV + ∫surface fsurface dS. The first term is the short-range Landau-de
Gennes free energy density f LdG =

A0
2 ð1� U

3ÞTrðQ2Þ � A0U
3 TrðQ3Þ +

A0U
4 ðTrðQ2ÞÞ2, where A0 and U are material constants41. The second
term is the long-range elastic energy density f elastic =

1
2 L1Qij,kQij,k +

1
2 L2Qjk,kQjl,l +

1
2 L3QijQkl,iQkl,j +

1
2 L4Qjk,lQjl,k , where Qij,k denotes ∂kQij

using the Einstein summation convention64. The elastic constants L1 to
L4 can be mapped onto the Frank elastic constants via65:

L1 =
1

2S20
K2 +

1
3
ðK3 � K1Þ

	 

,

L2 =
1

S20
ðK1 � K24Þ,

L3 =
1

2S30
ðK3 � K1Þ,

L4 =
1

S20
K4:

ð12Þ

The bulk elastic free energy density, fbulk is the sum of felastic and fLdG.
The surface elastic free energy density f surf ace =

1
2W ðQ �Qsurf aceÞ2

imposes a surface anchoring boundary condition to the Q-tensor by
quadratically penalising any deviation ofQ on a surface from the order
parameter Qsurface ≡ S0(nsurfacensurface− I/3) imposed by the surface
anchoring condition59. The parameter W is the surface anchoring
strength.We consider polar surface anchoring,nsurface = x, with x a unit
director along the x-direction. The polar surface anchoring is weak
with W = 0.02 (in simulation units).

The local fluid density ρ and the velocity u are governed by the
Navier-Stokes equation66,67

ρ
∂
∂t

+u � ∇
� �

u =∇ � Π +Gx: ð13Þ

The viscoelastic properties of the nematic LC solution are lumped in
the passive stressΠ that is the sumof the viscous and elastic terms59,63:

Π =2ηD� P0I+2ξ Q +
I
3

� �
ðQ : HÞ � ξH � Q +

I
3

� �

�ξ Q +
I
3

� �
�H� ∇Q :

δF
δ∇Q

+Q �H�H �Q,
ð14Þ

where η is the isotropic viscosity and P0 is the isotropic bulk pressure.
We consider a pressure-driven flow along the x-direction.

We employ the hybrid lattice-Boltzmann method to solve the
coupled governing partial differential Eq. (11) and Eq. (13)59,66,67. The
simulation box size is [Lx, Ly, Lz] = [5, 51, 5], and we have periodic
boundary conditions in the x- and y-directions. We choose the fol-
lowing parameters: η = 1/3, Γ =0.1, ξ = 0.6 and U = 3.5, which results in
S0≃0.62. We further use A0 = 0.1, L1 = 0.1, L2 = 0, L3 = 0.3247, and
L4 = 0.133, corresponding to K1 = 3K2 =

1
3K3 =K24 in Eq. (12) for flow-

tumbling nematic LCLC solutions68. No-slip boundary conditions are
imposed at the two walls of the microfluidic cell.

Simulated director field of the stripe pattern
To reconstruct the three-dimensional director field of the stripe pat-
tern, we use continuum simulations to generate a nematic director
field that satisfies the experimentally observed director field, starting
the simulation with an ansatz that is consistent with the twisted
structure observed in the experiments. The structure is then stabilised
by minimising the free energy of the system64. The equilibrated
director field is processed to generate a crossed-polarised image69,
which agrees well with the experimental image supporting the validity
of the reconstructed director field.

Data availability
The authors declare that the data supporting the findings of this study
are available within the text, including in the Methods section and
Source Data files. Source data are provided in this paper.

Code availability
The code used in this study is available on Zenodo under the accession
code: https://doi.org/10.5281/zenodo.10155871.
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