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ACIDES: on-line monitoring of forward
genetic screens for protein engineering

Takahiro Nemoto 1,2,3 , Tommaso Ocari1, Arthur Planul1, Muge Tekinsoy1,
Emilia A. Zin 1, Deniz Dalkara 1 & Ulisse Ferrari 1

Forward genetic screens ofmutated variants are a versatile strategy for protein
engineering and investigation, which has been successfully applied to various
studies like directed evolution (DE) and deep mutational scanning (DMS).
While next-generation sequencing can track millions of variants during the
screening rounds, the vast and noisy nature of the sequencing data impedes
the estimation of the performance of individual variants. Here, we propose
ACIDES that combines statistical inference and in-silico simulations to improve
performance estimation in the library selectionprocess by attributing accurate
statistical scores to individual variants. We tested ACIDES first on a random-
peptide-insertion experiment and then on multiple public datasets from DE
and DMS studies. ACIDES allows experimentalists to reliably estimate variant
performance on the fly and can aid protein engineering and research pipelines
in a range of applications, including gene therapy.

Directed evolution (DE)1–3 is a versatile protein engineering strategy to
conceive and optimize proteins like enzymes4–6, antibodies7,8 or viral
vectors for gene therapy9–15, culminating in the Nobel Prize in Chem-
istry 201816. DE starts from a massive library of random mutants,
screens it against a given task over multiple rounds and searches for
the variants with the highest performance. As the iteration continues,
the best performing variants get enriched and emerge from the bulk,
while ineffective ones are instead weeded out. Nowadays, we can rely
on next generation sequencing (NGS)17,18 to samplemillions of variants
within the library and monitor their concentrations over multiple
rounds or time-points. In this approach, the enrichment of the
screened variants is measured to rank the variants depending on their
performance. In a similar flavor, Deep mutational scanning (DMS)
experiments19–21 combine extensivemutagenesiswithNGS to study the
properties of proteins22–32, viruses33,34, promotors35,36, small nucleolar
RNA37, tRNA38,39 or of amino-acid chains. It uses similar techniques to
DE and requires similar analysis. Both methods are based on forward
genetic screens, and the approach presented in this article can be
applied to these fundamental techniques, focusing on their common
issues and needs.

The analysis of NGS data of multiple selection rounds and/or
multiple replicate experiments presents several difficulties. First, var-
iants need to be robustly scored based on their enrichment rates, so-
called selectivities40,41. This task is complicated by the large noise in the
NGS counts introduced by, for example, polymerase chain reaction
(PCR) amplification or bacterial cloning, during amplicon
preparations42–44. This noise needs to be taken into account in the
analysis. Second, in order to rank the variants and to identify the best
performing ones, the score should comewith a precise estimation of its
statistical error. As a consequence of the noise in the counts, some
irrelevant variants might appear to be highly enriched (winner’s curse).
This would be anticipated if properly estimated credibility scores are
available. Third, when running DE over multiple rounds, it is hard to
know when to end the experiment: performing too few rounds could
lead to selection of weak variants, not representative of their true
ranking. On the other hand, performing toomany rounds is costly, time-
consuming and even ethically questionable when working with in-vivo
selections14,45. Similarly, it would be useful to understand the best NGS
depth for a given experiment, as deepening theNGS by increasing reads
results in better data, but adds an extra expense to the experiment.
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In order to account for these issues and needs, we present ACIDES,
Accurate Confidence Intervals for Directed Evolution Scores, a com-
putational method to empower the analysis of DE and DMS experi-
ments. We focus on screening experiments on highly diverse libraries
where massive NGS data are collected over multiple rounds, multiple
time-points and/or multiple replicates (Fig. 1a). Our goal is to develop a
method to extract maximal information from noisy NGS data, and
allows for scoring and ranking variants with accurate statistical con-
fidence scores. Our approach can be applied to various types of
experiments. These include in-vivo DE13,14,46, DMS of phage-display24,40,47,
yeast two-hybrid assays24, small nucleolar RNA studies37, mRNA display23

as well as cell-based DMS experiments26,29,31,38,39,48, among others. It is

possible to apply ACIDES either a posteriori over data collected pre-
viously, or along the course of the experiment as soon as the NGS data
become available. The latter strategy allows formonitoring the selection
convergence on the fly, and to understand when the experiment can be
ended. In this way, ACIDES can be integrated into protein engineering
pipelines as well as studies of protein function using mutagenesis. The
tutorial for using ACIDES, along with an executable code in Python, can
be found in https://github.com/nemoto-lab/ACIDES/.

Results
The first step of ACIDES estimates the selectivity of each individual
variant present in the dataset (Fig. 1b) and its 95% confidence interval

Fig. 1 | ACIDES framework. a We consider directed evolution (DE) experiments,
where protein variants are screened over multiple rounds, and massive NGS
datasets are collected. b From the obtained count data, we estimate a score
(selectivity) for each variant. The higher the score, the more the variant is adapted
for the screening task. Each score is computed using a maximum likelihood esti-
mation (Methods). 95%-confidence interval (CI) is defined as two standard devia-
tions from the mean. c Sorting the scores of all variants in descending order, we
obtain a variant rank (naive rank). Due to statistical errors in the scores, the
obtained rank is biased in general. To correct for this, using in-silico simulations
based on the CIs of the scores, we re-estimate the rank with 95%-CI (corrected
rank). d From the obtained corrected rank, we compute Rank Robustness (RR). RR

represents the percentage of the top 50 variants identified in the naive rank that
also appear in the top 50 of the corrected rank. e, f Examples of rank graphs for two
synthetic datasetswith different depths ofNGS (per round) andnumbers of unique
variants (respectively, E: 107, 5 × 104; F: 106 and 106). Themedians (the green circles)
and the 95%-CI (error bars) of the corrected ranks are estimated from 3000
bootstrap samples (Methods), using the 2.5th, 50th, and 97.5th percentiles. The
true rank is shown as red crosses. In both cases, most red crosses are within the
95%-CI. g RR for the two synthetic datasets. Note that RRmultiplied by 50 (E:~45.3;
F:~24.6) roughly provides the number of the correct top-50 sequences, which are
46 and 23, respectively. (See Figs. S3 and S4 for more systematic compar-
ison). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43967-9

Nature Communications |         (2023) 14:8504 2

https://github.com/nemoto-lab/ACIDES/


(95%-CI). In this study the term selectivitymeans the rate at which each
variant increases its concentration with respect to the others. More
precisely, we assume an exponential growth as ρi

t +Δt ∼ρi
t expðaiΔtÞ,

where ρi
t is the concentration of variant i at time t, and ai is its selec-

tivity. Compared with previous methods19–22,24,25,35–37,40,41,49, our
approach combines a robust inference framework (maximum like-
lihood estimation) with a better quantification of the NGS sampling
noise42–44. For this scope, our approach benefits from a negative
binomial distribution that has been intensively used in differential
gene expression analysis50–52. In the negative binomial distribution, the
variance of the noise is overdispersed and grows as λ + λ2−α/β53 (Fig. S1).
Here λ is the expected mean count, and α, β are parameters to be
inferred (Methods). Using novel data from a plasmid library, we
observed that our negative binomial model realizes a 50- to 70-fold
improvement over the Poisson model in the predictive ability of the
NGS sampling noise (Fig. S1). The second step of ACIDES uses the
estimation of the selectivities and their statistical errors to rank the
variants. The rank obtained by sorting the selectivities in descending
order (naive rank) is biased due to statistical fluctuations of the
selectivities. We correct this bias using in-silico simulations (Fig. 1c).
The third and last step of ACIDES uses simulations to quantify a Rank
Robustness (RR), ameasure of thequality of the selection convergence
(Fig. 1d). Specifically, RR is the ratio at which the top-50 variants in the
naive rank are correctly identified (Methods). RR ranges from 0 to 1: a
low value points out that the variants have not been selected enough,
and therefore calls for the necessity to perform more rounds, deeper
NGS sampling or possibly more replicates. Conversely, a large value
confirms that the selection has properly converged, and suggests that
the experiment can be ended without performing additional experi-
mental steps.

Before focusing on experimental data, we apply ACIDES to two
synthetic datasets (Methods) describing two opposite scenarios (See
Figs. S3 and S4 for more systematic comparison): data-rich case (more
NGS reads with fewer unique variants) and data-poor case (less NGS
reads with more considered variants). These datasets are generated
using the negative binomial distribution, thus serving as an idealized
testing ground. In the data-rich case, we first verify that our method
reaches high performance in recovering the ground-truth values of the
selectivities (R2≃0.92, Fig. S3) in a teacher-student setting. In this first
case, selection convergence is reached and the different variants can
be robustly ranked (Fig. 1e). In the data-poor case, instead, CI-bars are
large and the ranking is uncertain (Fig. 1f). Consistently, the estimated
RRs are high and low for, respectively, the data-rich and -poor exam-
ples (Fig. 1g). Note that, oncemultiplied by 50, RR roughlyprovides the
number of the correct top-50 variants in both cases (caption of Fig. 1g).
Furthermore, we observe that most true rank values (red crosses) fall
within the 95%-CI in both examples. These observations show that our
approach can quantify statistical errors even in the data-poor regime
(See Fig. S4 for more systematic comparison).

Analysis of screening experiments with multiple time points
In order to showcase ACIDES, we apply it to several screening datasets
with multiple time points, where various proteins (and one RNA
molecule) are screened using different experimental techniques
(Table 1). Specifically, we consider three phage-display screening
experiments targeting different proteins, such as the breast cancer
type 1 susceptibility protein (BRCA1) for Data-A, human yes-associated
protein 65 (hYAP65) for Data-D and immunoglobulin heavy chain (IgH)
for Data-C, two in-vivo DEs of adeno-associated virus type 2 (AAV2)
vectors targeting canine eyes for Data-E andmurine lungs forData-G, a
multiplexed yeast two-hybrid assay targeting BRCA1 for Data-B and a
yeast competitive growth screen measuring the fitness of mutant U3
gene for Data-F. For each of these experiments, we rank variants (naive
rank) and compute the confidence interval of their ranks (corrected
rank in Fig. 2a–g). The degree of convergence of the selection is
quantified by RR (Fig. 2h). When technical replicates are available
(Data-A and Data-B), we compute RR over all of them and obtained
consistent results (shown by the small error-bars in Fig. 2h).

To gain deeper insight into RR, we introduce the following two
metrics: (i) Accuracy: thismeasures theaccuracyof variantperformance
measurements, computed based on the inverse of average errors pre-
dicted by the model for the estimated scores (Table 1), and (ii) Spread:
the extent to which the variants are intrinsically different in their per-
formance for the task, calculated based on the difference between the
estimated scores of the highest-scoring variant and the variant ranked
1000th (Table 1). The larger these quantities are, the easier it becomes
for us to distinguish the best-performing variants, thus resulting in a
higher RR. In Data-A and Data-B, Accuracy is the highest, while the
Spread is also relatively large. This is consistent with the high RR
(RR>0.8). InData-C andData-D, the valueofRR rangesbetween0.6 and
0.8. The experimental techniques used in these datasets are similar to
those in Data-A and Data-B, which could be related to similar Spreads
between them. But the average NGS counts (NGS depths relative to the
number of sequences, Table 1) and Accuracies are smaller in Data-C and
Data-D, resulting in lower RRs. In Data-E, Data-F, and Data-G, RR values
are low (~0.5), but the reasons for these low values are different. Data-E
and Data-G (in-vivo DE experiments using AAV) suffer from very low
Accuracies in their experiments, even though they have large Spreads.
On the other hand, Data-F has a relatively high Accuracy, but Spread is
the narrowest, meaning that their variants perform similarly in their
experiment. These two factors counterbalance each other, resulting in
similar RR values for these datasets.

In datasets with low RRs, some variants seem to bemore adapted
to the screening task than the others, but the difference between their
scores is marginal compared with their statistical errors. This means
that we cannot distinguish if the obtained variants are selected
becauseof their ability to perform the task (fitness) or just there due to
noise. In these cases, experimentalists have two possibilities: (i) based
on the noisy identified variants, perform further tests in addition to

Table 1 | Next generation sequencing datasets of directed evolution experiments

Label Experiment Target Time-points Reads/round # vars Avg. count Accuracy Spread Ref.

A Phage display BRCA1 T0→ T5 8.3 M 35 k 240 3.06 0.83 Starita 201524

B Yeast two-hybrid BRCA1 T0→ T3 13.5 M 27 k 490 1.83 0.74 Starita 201524

C Phage display Ab IgH T1→ T3 0.1 M 29 k 3.7 0.95 0.96 Boyer 201647

D Phage display hYAP65 WW T0→ T3 5 M 470 k 11 1.40 0.77 Araya 201240

E Dog eye DE AAV2-7mer T0→ T5 17 M 5 k 3360 0.44 1.88 Byrne 201846

F Yeast growth U3 snoRNA T0→ T4 8 M 24 k 352 1.22 0.54 Puchta 201637

G Murine lung DE AAV2-7mer T1→ T5 6.2 M 0.5 k 1000 0.34 2.00 Korbelin 201613

List and properties of experiments considered in this study. First column introduces dataset label and corresponds to the panels of Fig. 2. Reads/round corresponds to the average NGS counts per
time points. # vars is the number of unique variants that is detected in the NGS at least once duringwhole experiments.Avg. count is themeanNGS count over all variants and round.Accuracy is the
inverseof averageerrorspredicted by themodel for theestimated scores of the top 1000variants, normalizedby thehighest score anddivided by 10.Spread is thedifference between the estimated
scores of the highest and 1000th highest variants, normalized by the highest score.
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DE13,14, as for example, study infective ability of viral vectors using
single-cell RNA-seq54. Or (ii) increase the quality of the datasets, by
performing further selection rounds, increasing NGS depths, or repli-
cating the experiments under the same conditions. This second pos-
sibility is explored in the next section. Overall our rank-analysis of the
different experiments shows how our approach can provide an over-
view of the selection convergence, informing about the state of the
experiment and eventually pointing out the necessity of more
experimental efforts.

Integration into the experimental pipeline
Noise in experimental data can be reduced by performing additional
selection rounds involving experiments, but in general these are
expensive, time-consuming and, in case of experiments involving
animal use, ethically problematic45. For these reasons, it is important to
choose accurately the number of rounds and the NGS depth. For this
scope, ACIDES can be integrated into experimental pipelines to obtain
an overview on how RR depends on these factors. This is to help
experimentalists make informed decisions about additional experi-
mental efforts.

ACIDES can estimate RR after each selection round (or any time
new data become available). This allows us to examine the data’s
behavior and to quantify the degree of convergence in terms of the
selection rounds. Similarly, for each round, ACIDES can be run on
downsampled NGS data to compute RR with smaller NGS depth
(Methods). Using these two techniques, wemonitor the need formore
selection rounds or deeper NGS: a slow increase of RR (or no change in
RR) upon improving data-quality implies that convergence is reached
and suggests that the experiment can be ended. If, on the other hand,
RR increases rapidly when improving the rounds and/or NGS depth, it
is probably worth making further experimental efforts.

In order to showcase our approach, we study how RR depends on
the number of screening rounds and NGS depth in previous experi-
ments. We start by measuring RR in Data-A for different NGS depths.
95%-CI on corrected ranks gets larger as the NGS depth becomes
smaller (Fig. 3a). At 1% NGS depth, the variant ordering seems largely
unreliable: RR is smaller than 0.5 (Fig. 3b). Importantly, RR does not
decrease smoothly as the NGS depth decreases, but it remains roughly
constant at the beginning, and falls only at a very smallNGSdepth. This
result suggests that the actual NGS depth of this experiment largely

exceeds what was necessary (10% of the depth would have been suf-
ficient). Next, we quantify how RR depends on both the number of
performed rounds and NGS depth (Fig. 3c). RR grows from 0.28 (3
performed rounds with 1% NGS depth) to 0.88 (6 performed rounds
with 100% NGS depth). Saturation of RR seems to be observed for
RR >0.7, which corresponds to 5 performed rounds with the NGS
depth larger than 20%, or 4 performed rounds with the NGS depth
larger than 40%. This again indicates that the experiment could have
been stopped earlier (less rounds and/or lower sequence coverage)
without much affecting the outcome. Note that different datasets
show different behaviors. For Data-F more selection rounds with a
higher number of NGS reads is expected to improve RR,while forData-
B they seem to have just reached the saturation point (Fig. 3d).

Overall these results showhowour approach can be implemented
along experimental pipelines. By estimating RR while collecting new
data, we can understand if we should continue/stop adding more
rounds or increasing NGS depth. This could avoid unnecessary, costly
and time-consuming experimental efforts. Similar analyses can be
done on the number of replicate experiments (Fig. S6).

Comparison with previous work
We start by comparing the performance of ACIDES with Enrich2, the
state-of-the-art for estimating variant scores (selectivities) in multiple
time-points experiments41. Enrich2 is based on aweighted linear fitting
of the log-count change over the course of rounds, and the first step of
ACIDES should be seen as an upgrade for this fitting. Both algorithms
predict standard statistical errors associatedwith the estimated scores
(Methods) without using any replicate experimental data. In this
comparison, our focus is on the accuracy of these errors. To test the
accuracy, we leverage replicate datasets. We first investigate if the
scores associated with low predicted errors in each method are con-
sistent over replicates. For this, we plot the scores with low predicted
errors obtained from one replicate against those obtained from the
other (Fig. 4a, b). The correlationbetween replicates is estimated using
the coefficient of determination (R2). The correlation quantifies the
quality of the predicted errors, as higher (or lower) correlations imply
that the estimated scores are more (or less) robust, as attested by the
low predicted errors. The figure shows that ACIDES outperforms
Enrich2. Next, we test how the comparison depends on the data size.
To this goal, we systematically select a set of variants based on the
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with 95%-CI, estimated using 3000 bootstrap samples (Methods). h Rank

robustness (RR) for each experiment. For Data-A and -B, the mean and standard
deviation estimated from three technical replicates are shown. Source data are
provided as a Source Data file.
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Fig. 3 | How the rank robustness depends on the experimental protocol. a The
corrected ranks with 95%-CI for different NGS depths in Data-A (Table 1). 95%-CI is
estimated using 3000 bootstrap samples (Methods). Different NGS-depth data are
generated using downsampling (Methods). x% means the dataset where the num-
ber of NGS reads per round is reduced to x% (100% is the original dataset). b RR for
the rank graphs in the panel a. Note that RR is higher than 0.7 even with the 10%
NGS-depth. c The heat map showing RR for various NGS depths and performed
rounds in Data-A. RR is larger than 0.7 for the data with (i) the 4 performed rounds
with the NGS depth larger than or equal to 40% or with (ii) the 5 performed rounds

with the NGS depth larger than or equal to 20%. This indicates that the data quality
was already high with less experimental efforts. The four grey squares correspond
to the four rank graphs in panel a, respectively. d The same graphs as the panel
c, but for different datasets. Data-F is used in the left panel, where RR is low and
more NGS and/or screening rounds would be useful. Data-B is used in the right
panel, where RR takes high values and seems to saturate in NGS depths. Further
experimental efforts would probably not be necessary in this dataset. Source data
are provided as a Source Data file.

Fig. 4 | Comparison of ACIDES with the state of the art: multiple time-point
experiments. a, b Using technical replicates in Data-A, we compare ACIDES with a
weighted linear least squares method (Enrich2)41. For both methods (Enrich2 (a)
and ACIDES (b)), the inferred selectivities from one replicate are plotted against
the selectivities in the other replicate. The coefficient of determination (R2), which
quantifies the consistency between two replicates, is also shown. c We next
examine how the comparison in panels a and b depend on data size. We consider a
set of variants in which the predicted statistical errors (Methods) are smaller than a
given threshold. Varying this threshold, sets of variants are systematically selected,

where larger/smaller sets include variants with larger/smaller estimated statistical
errors. For each set, we estimate R2 between two replicates, andplot it as a function
of the set size. Thepanelsa andb correspond to the stars⋆ inC (data size 0.11).d In
order to test both methods more systematically, we perform the same analysis (as
those in panels a–c) for all possible 12 combinations of technical replicates in Data-
A and Data-B. We define the area under curve of R2 (in the panel c) and plot it for
these combinations (d). Our method systematically outperforms the weighted
linear fitting method. The replicate combination used for panels a–c) is indicated
by the arrow in panel d. Source data are provided as a Source Data file.
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magnitude of predicted errors. (Smaller/larger sets include variants
with lower/higher predicted statistical errors.) For each set, we mea-
sure the correlation between two replicates as in (Fig. 4a, b), and plot it
as a function of the set size (Fig. 4c). We observe ACIDES’s correlation
becomes more dominant as the set size decreases, consistently sug-
gesting the better quality of the predicted statistical errors. In order to
generalize these results, we perform the comparison for all possible 12
pairs of technical replicates in Data-A and Data-B (Table 1). In all cases
our approach outperforms the competitor (Fig. 4d). We also conduct
additional tests to quantify the consistency of the predicted statistical
errors (Fig. S7) and demonstrate the higher capacity of ACIDES to
recover the ground truth rank in several scenarios based on synthetic
data (Fig. S8).

Next, we tested the performance of ACIDES on 12
datasets23,26,29,31,38,39 (taken from a test performed in ref. 48) that have
only two time-points, but multiple replicates. We compare ACIDES
with several different algorithms, including Enrich241 and DiMSum48,
which is another state-of-the-art algorithmspecilized to two time-point
datasets with multiple replicates. In this comparison, we employ the
cross-validation techniques used in48 to calculate a z-scores of
enrichment estimations for each variant (seeMethod formoredetails).
Better the algorithm is, the closer the distribution of z-scores are to a
standard normal distribution. In order to compare the different algo-
rithms, we calculate: (i) the inverse of the standard deviation of the
z-scores (as in ref. 48) and (ii) the R2 scores, a measure of the shape
difference between the z-score distribution function and the standard
normal distribution function, reflecting higher-order statistics beyond
the inverse standarddeviation (i). This score is derived fromaquantile-
quantile plot and its comparison to the y = x line (see Method). In both
cases, values closer to 1 indicates good performance of the algorithm.
In the first test using (i) (the red box plots in Fig. 5), ACIDES and
DiMSumshowsimilarperformance and they bothoverperfomEnrich2.
In the second test using (ii) (the blue box plots in Fig. 5), ACIDES
slightly outperforms DiMSum and behaves better than the other
algorithms.

Discussion
In this work, we have presented ACIDES, a method to quantify DE and
DMS selectivities (fitness), rank variants with accurate credibility
scores and measure the degree of experimental convergence. ACIDES
can be used on the fly to offer an overview of the progress of selection
experiments, which would help experimentalists with making
informed decisions on whether new experimental efforts are needed.
In this way, ACIDES can save significant experimental time and
resources. We have applied ACIDES to several DE and DMS datasets
where a number of different target proteins and RNA molecules have
been screened using different experimental protocols. The hetero-
geneity of these datasets shows that ACIDES is a method of general
use, applicable to many different experiments.

The first step of ACIDES estimates the score (selectivity) of each
observed variant. This is a necessary step, and several alternative
methods have been proposed in the past. In many applications with
multiple time-points, such scores are computed as the variant
enrichment that is defined as the logarithmic ratio between the variant
frequencies in the last and second to last round13 or between the last
and first round14,19,20,22,35,49. These approaches thus make use of data
from only two rounds and disregard all the others. For this reason, this
strategy is suboptimal andmay lead to noisy score estimations. Amore
sophisticated approach that uses all the data consists in inferring the
slope of a linear line fitted to the log-frequencies of variants over all the
screening rounds/time points24,25,36,40. This method gives the same
importance to log-frequencies in all the rounds. Yet as variant counts
in the first rounds are typically small and noisy, assuming the same
weight on them could result in an overfitting. To fix this effect,
Enrich241 uses the variance of the count data - estimated via a Poisson

distribution assumption - as theweights in a linear least squares fitting.
ACIDES’ first step comes with a three-fold improvement over this last
approach. First, instead of relying on the linear least squares fitting, we
estimate the score by log-likelihood maximization. A major improve-
ment happens for variants whose log-frequencies do not grow linearly
with the rounds, and a simple linear weighted fit may struggle in
identifying the correct slope. This is particularly visible in the bulk
variants with intermediate scores (Fig. 4 a, b). Secondly, instead of a
simple exponential growth of the counts, we included a softmax non-
linear function (Methods), where the denominator is inferred from
data55. This change improves the score estimation when the wildtype
(if any) and/or few variants have a large fraction of the total counts and
bend the exponential growth of the log-frequencies. Lastly, ACIDES
uses a negative binomial distribution to model the count
variability50–53. This distribution accounts for the large dispersion of
next-generation sequencing data42–44 far better than the Poisson dis-
tribution (Fig. S1). Additionally, the negative binomial loss in the like-
lihood maximization allows us to better estimate statistical errors for
the inferred scores. Thanks to all these improvements, our approach
realizes a more robust and accurate estimation of the variant scores
and outperforms the previous method (Fig. 4).

In Fig. 5, we compared ACIDES with DiMSum48 a recently devel-
oped algorithm for analyzing DMS experiments. DiMSum is tailored
specifically for experiments involving two time-points with multiple
replicates,while ACIDES ismore general as it canbe applied tomultiple
time-points cases, even without replicate data. DiMSum directly
models the errors of each variant enrichment, by adjusting Poisson-
based errors to account for overdispersion. On the other hand, ACIDES
models thefluctuationsof the counts themselves, using an exponential
model (1) and a negative binomial log-likelihood (2). Consequently, it
can be used to compute the statistics of any quantity as a function of
counts (see Method). This difference also appears in the statistics of
z-score beyond the standard deviation (as shown in the blue box plot

ACIDES

DiMSum

Enrich2

Count-based

Bayes-reg

S.d.- based

GRB2 GPD [30]

FOS [26]

tRNA 30C DMSO [35]

TDP-43 (332-373) [29]

GRB2 CYC [30]

tRNA 23C [29]

GB1 [23]

tRNA 37C [29]

tRNA 30C [29]

TDP-43 (290-331) [29]

FOS-JUN [26]

tRNA 37C, NaCl 34]

0 0.2 0.4 0.6 0.8 1

R2 score of Q-Q plot1/ std of z-score

Fig. 5 | Comparison of ACIDES with the state of the art: two time-point
experiments.We test the accuracy of error predictions from 6 different models
using 12 sets of two-time point experimental data, eachwith replicates. The z-score,
defined as the variant-score difference between replicates divided by the predicted
errors, should ideally follow the standard normal distribution if the model’s pre-
dictions are accurate. To evaluate how closely the z-score distributionmatches the
standard normal distribution, we first compute the inverse of the standard devia-
tionof the z-scoredistributions48 (see themain text andMethods). These results are
shown in red box plots, where values closer to 1 indicate better fits. We next
compute a metric that encompasses broader statistical aspects than just the stan-
dard deviation to assess the similarity between the z-score distribution and the
standard normal distribution (details can be found in the main text and Methods).
These results are displayed in blue box plots, and as before, values closer to 1
indicate better model fits. The box extends from the first quartile to the third
quartile of the data, with a line at themedian. The whiskers extend from the box by
1.5x the inter-quartile range. Source data are provided as a Source Data file.
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in Fig. 5). Since R2 score reflects the extent of similarity to the normal
distribution, going beyond just comparing standard deviations, it
indicates that, for these higher-order statistics, ACIDES slightly out-
performs DiMSum and remains better than the other previous
methods.

In the case of noisy data, the estimated scores of variants come
with statistical errors. This means that the rank obtained from the
scores (naive rank in our figures) is in general biased: top-ranked var-
iants are overvalued, and vice-versa. This simple statistical effect was
not taken into account in previous analyses related to DE and DMS
experiments. The second step of ACIDES uses a bootstrap method to
account for the bias and recover both the corrected rank and its 95%-
CI. The deviation between this 95%-CI and the naive rank shows us how
much we can trust the naive rank. To quantify it, as a third step of
ACIDES, we introduce RR that describes how many of the top-50 var-
iants in the naive rank are correct. RRmeasures how stable and robust
are the ranks of the variant selectivities. As such, it quantifies the
degree of convergence of the experimental selection, providing an
insightful overview of the state of the experiment.

Although ACIDES demonstrates advantages over the other
methods, it has several limitations thatmay be addressed in the future.
First of all, ACIDES does not account for changes in the selection
pressure over rounds. This can potentially be included, but has not
been done here, as the selection pressure is constant in most datasets
we analyzed in this article. Second, ACIDES uses a negative binomial
model to describe the dispersion of count data by assuming that the
count variancedepends only on the frequency of the variant. Although
this assumption proves useful to describe NGS count errors (Fig. S1)
and is used elsewhere53, it is possible that dispersions induced by a
sequence-dependent procedure, such as error-prone PCR14,46,56 (see
later). Third, statistical errors due to the replicates that do not share
the same initial library cannot be described by ACIDES, provided that
the model is only trained on a single series of screening rounds. To
account for this, we would need a framework that generalizes ACIDES
for different sources of variability. Finally, the combination of Fluor-
escence Activated Cell Sorting (FACS)57,58 with deep mutational scan-
ning has recently been gathering attention33,59,60, for example, in the
study of the SARS-CoV-2 receptor binding domain33. Although the
background model of ACIDES (1) needs slight modifications, these
couldenableus touse the samenegative-binomialnoisemodel and the
log-likelihood maximization method. We defer this interesting line of
research to future developments.

In its current version, ACIDES can not account for additional
rounds of mutagenesis performed between the selection rounds.
When this happens, ACIDESwill treat the newly generated variants as if
they had zero counts at the beginning and the scores for these new
variants may be slightly underestimated. Note that, as error rates of
mutagenesis are in general less thana fewpercent per position, inmost
cases, this has little practical impact on variants that already existed.
Overall, we need to be cautious about any interesting variants that
begin to emerge after the mutagenesis round. In our data, Data-E
includes an error-prone PCR after the third round of selections.
However, we have confirmed that all the top-50 variants observed in
Data-E were already present from the start of the experiment.

Finally, using machine learning techniques, several studies have
aimed at estimating selectivities from the amino-acid sequences of
variants. Most of these methods rely on supervised algorithms, which
are trained to predict the selectivity (output) from the sequence of a
variant (input)56,61–68. Because the performance of these methods
depends on how the selectivity is estimated from data, ACIDES can
potentially be incorporated in their pipelines to improve the overall
performance. We leave such analysis for future developments. Other
methods use instead unsupervised approaches to predict selectivities
from the sequences of variants55,69–72. Even if thesemethods do not use

any sequence scores for their training, they often use it to validate and/
or test the model. Our approach would therefore be useful also in
these cases.

Methods
Library preparation for Fig. S1
To demonstrate that our negative binomial likelihood approach out-
performs the Poisson counterpart, we conducted the following
experiment: We inserted random 21 nucleotide oligomers into a Rep-
Cap plasmid containing adenoassociated virus 2 (AAV2) cap gene
using previously describedmethods73. For this, the library was created
from the pAV2 plasmid from the ATCC plasmid bank (American Type
Culture Collection). The primers used below were synthesized by
Invitrogen or Eurofins Genomics. We first inserted the following
nucleotide sequence between amino acids 587 and 588 of the cap2
gene in thepAV2plasmid: GCGGCCGCCTAGGCG. Inorder to insert the
21 nucleotides into the cap2gene, an amplificationof the sequencewas
then carried out using overlapping primers on the pAV2+AscI vector
CGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCAGAC
and CTTGTGTGTTGACA TCTGCGGT AGCTGCTTGGCGCGCCNBNN
BNNBNNBNNBNNBNNBNGCCGCGTTGCCTCTCTGGAGGTTGGTAGAT
AC. We used the PrimeStar Mix®kit (Takara) and the following PCR
program: 5min at 98 °C, then, 30 cycles (10 sec at 98 °C; 5s at 55 °C;
15 sec at 72 °C) followed by 5min at 62 °C. The insert was then recov-
eredon a0.8%agarose gel using theNucleoSpin®Gel andPCRClean-up
kit (Macherey-Nagel). The plasmid library obtained was deep
sequenced using Illumina NextSeq 500 following the generation of
amplicons corresponding to the 7mer insertion region. Since the 21
nucleotides are randomly and independently generated, we can use a
position-weight matrix model to predict the frequency of each variant
in the sample. Based on this property, the performance of the two
models are examined as shown in Fig. S1.

Model
We propose ACIDES for analyzing selection data in DE and DMS. The
mathematical model is described in detail below. For a given series of
samples over screening rounds, we performNGS and denote by ni

t the
obtained count of the i-th variant (i = 1, 2,...,M) at round (time-point)
t∈ T. We denote by Nt the total count Nt =

P
in

i
t at t. For each sample,

we define ρi
t as the expected value of frequency of the i-th variant at t.

(Note that “expected”means thatρi
t itself does not fluctuate due to the

noise in the experiment.) For each variant, an initial frequency ρi
0 and a

growth rate ai are assigned, by which the expected frequency is com-
puted as

ρi
t +Δt =Ctρ

i
t expðaiΔtÞ, ð1Þ

where Δt is the round- (or time-) difference between two consecutive
NGSs.Ct is a normalizationconstant, defined asCt = 1=

P
i½ρi

t expðaiΔtÞ�.
We call this model (1) an exponential model.

We use a negative binomial distribution NBðni
t jλ,rÞ with two

parameters λ and r tomodel the noise distribution of counts ni
t . Here λ

is the expected value of count ni
t given asNtρ

i
t , while r is the dispersion

parameter that describes the deviation of the negative binomial dis-
tribution from the Poisson distribution. (The negative binomial dis-
tribution is a generalization of the Poisson distribution with a variance
equal to λ(1 + λ/r): the Poisson distribution is recovered in the large r
limit.) Here, based on Fig. S1 and ref. 53, we assume r is a power-law
function of λ: r(λ) = βλα (with α, β >0), where α and β are parameters
that are common for all the variants in the experiment. (The variance is
thus λ + λ2−α/β). Model parameters α, β as well as ρi

0,a
i (i = 1, 2,...,M) are

inferred from the count data ni
t (i = 1,2,...,M, t∈ T) by maximizing the
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following likelihood function:

L α,β,ðρi
0Þ

M
i = 1,ðaiÞMi= 1

� �
=
Y
i,t

NB ni
t jρi

tNt ,β ρi
tNt

� �α� �
: ð2Þ

The 95%-CIs of the estimated parameters are computed from the
curvature of the log-likelihood function at the maximum. When
replicated data is available, we multiply the likelihood function across
the replicates. The replicates share the same parameters α,β,ρi

0,a
i.

Furthermore, when there are only two time points, ACIDES has an
option to set α and β as a function of time. This option was used to
generate the results of Fig. 5.

Synthetic data
Synthetic count data ni

t (i = 1,2,...,M, t∈ T) are generated from the
model (2) for a given parameter set α,β,ρi

0,a
i (i = 1,2,...,M). For Fig. 1, we

use α, β =0.69,0.8 with ðai, logρi
0Þ generated from the normal dis-

tribution with the expected values (−1,1) and the standard deviations
(0.25,1). (M,Nt) are (5 × 104,107) for the data-rich case (Fig. 1e) and
(106, 106) for the data-poor one (Fig. 1f).

Model inference
Tomaximize the likelihood function, we develop a two-step algorithm.
The first step infers ðρi

0,a
iÞ, while the second (α, β) and then we iterate

the two steps until convergence is reached. All inferences are done
with a gradient descent algorithm, and to reach convergence 10-30
iterations are usually sufficient. The first step is itself iterative, and
loops between the inference of ðρi

0,a
iÞ and Ct by treating Ct as a para-

meter. Here we also introduce a gauge choice because of the redun-
dancy between ρi

0, a
i and Ct (the caption of Fig. S2 for more details). In

the second step, the inference of (α, β) with a straightforward gradient
method produces a bias (Fig. S2E). In order to correct this, at each
iteration the algorithm adopts a teacher-student framework, runs a
simulation of the count data with the current parameters to obtain an
estimation of the bias, which is then used to correct the real inference
and update the parameters.

In order to reduce computational time and to increase the stabi-
lity of the algorithm,we first run the inference algorithmon a subset of
variants to estimate α, β. We then compute ðρi

0,a
iÞ of the excluded

variants using the estimated α, β. For this subset, we use the variants
that satisfy the following two criterions: (i) their counts are larger than
0 more than twice in the selection rounds and (ii) whose total NGS
count (as summedover all the rounds) is above a threshold.We set this
threshold to 100 for all the datasets except for Data-E -G, where 10000
is used. This is because the noise in theseexperiments is larger than the
others. Results are stable by changing the threshold value (Fig. S2F).

Simulated rank and rank robustness (RR)
Using the standard deviations δai (i = 1,...,M) of estimated scores ai, we
discard the variants with higher estimated errors. We keep 5000 var-
iants for further analysis and denote by A their indices. We then rear-
range the variant index in A in descending order of ai to define a naive
rank (the x-axis of Fig 2a–g). To obtain a corrected rank (the y-axis of
Fig 2a–g), we first generate synthetic scores using the normal dis-
tribution with the expected value ðaiÞi2A and the standard deviation
ðδaiÞi2A. Based on the generated scores, we rearrange the variant index
in descending order and define a synthetic naive rank. Repeating this
estimation 3000 times,we then compute themedian and95%-CI of the
obtained synthetic naive ranks. This 95%-CI is defined as the
corrected rank.

To estimate RR, we compare the top-50 variants in the naive rank
and each synthetic naive rank. We count the number of overlaps
between them and average it over the 3000 estimations. RR is com-
puted by dividing the obtained overlap by 50.

NGS-Downsampling for Fig. 3
To obtain downsampled count data ~ni

t (i = 1,2,...,M, t∈ T) by a factor ϵ,
we sample synthetic data from the likelihood function (2) with a
reduced number of the total counts ϵNt (t∈ T) and with the estimated
parameters ρi

0, a
i, α, β (i = 1,2,...,M). To obtain a downsampled RR in

Fig. 3, we first re-estimate ai (i = 1,2,..,M) from ~ni
t (i = 1, 2,...,M, t∈ T)

using the values of (α, β) that are already known, and then perform the
estimation of RR described above. Using the synthetic data, we show
that this downsampling method captures well the RR of actual NGS-
read-reduced data (Fig. S5). Practically for Fig. 3, we rescale the
downsampled RR using the RR obtained in a similar manner, but with
ϵ = 1. This is to remove aminor bias due to re-sampling and to focus on
the trend in NGS reads.

Cross validation test for Fig. 5
For Fig. 5, we perform a leave one out cross-validation test48. Below we
assume that there are only two time points in the data, which is
denoted by t =0 (input) and t = 1 (output). We first separate the repli-
cated data into one test data and the remaining training data. To the
training data, we apply ACIDES and infer the model parameters
α,β,ρi

0,a
i
0. Based on these parameters, using the likelihood function

(2), we re-sample the count data ni
t and compute the mean and stan-

dard deviation of an enrichment fi for every i. Here the enrichment fi is
defined as

f i = log
ni
1

ni
0

×
n0
wt

n1
wt

 !
, ð3Þ

where ni
wt is the count data for the wild type variant. Similarly, for the

test data, we apply ACIDES with α,β obtained in the training data and
estimate ρi

0,a
i
0. These parameters are then used to re-sample the count

datani
t and compute themean and standarddeviationof an enrichment

fi for every i. For the other algorithms, such as DiMSum48, Enrich241, the
count-based model, the Bayesian regularization model74, and standard-
deviation basedmodel, we follow48 to compute the enrichments. While
ACIDES uses resampling of count data based on the negative-binomial
error model to estimate the enrichment statistics, the others rely on
either a Poisson-based approximation (count-based model), empirical
variance of fitness (Bayesian regularization model, standard-deviation
based model), or both (DiMSum, Enrich2).

The z-score is then defined as

zi =
�f itraining � �f

i
testffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσi
trainingÞ

2
+ ðσi

testÞ
2

q , ð4Þ

where �f
i
training,

�f
i
test are the mean enrichments obtained from the

training data and test data, while σi
training,σ

i
test are the standard devia-

tion of enrichment obtained from the training data and test data.
The statistics of zi over all the variants i is investigated using the

following two quantities; (i) the inverse of the standard deviation of zi

from 1, as indicated by the red box plots of Fig. 5 (more precisely,
1 minus the deviation of this quantity from 1), and (ii) the coefficient of
determination R2 obtained from quantile-quantile plot, as indicated by
the blue box plots of Fig. 5. For (ii), we first plot a quantile-quantile plot
(c.f., Fig. 3a of ref. 48) where x-axis is the quantiles obtained from the
standard normal distribution and y-axis is the estimated quantiles. The
closeness of the line to y = x is then measured using the coefficient of
determination R2 between y = x line and this plot.

Pre-processing of Data-E and Data-G
In their original datasets, Data-E and Data-G contain a large number of
variants whose total counts are very low (but not zero). In order to
speed up the analysis and make the analysis more robust we removed
the variants whose total counts are smaller than 1000 (Data-E) and
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than 100 (Data-G). The NGS depth and the number of unique variants
shown in Table 1 are after this preprocessing.

Statistics & Reproducibility
In this study, we use maximum likelihood estimations to compute the
scores of each variant for each of publicly available dataset. The sta-
tistical errors of the scores are estimated based on the curvature of the
log likelihood function at themaximum.When estimating the corrected
rank and its 95%-CI, we use 3000 bootstrap samples. By varying this
value, we confirmed that the sample sizes do not affect the outcome.

Input datafile
The input for ACIDES is a count dataset matrix. Each row corresponds
to an index (e.g., barcode) for each variant, while each column indi-
cates the experimental round of DE or DMS. The entries of the matrix
represent the count data observed in NGS for each variant in each
round. This can be generated from the FASTQ file, following pre-
processing depending on the experimental details. In general, several
steps may be required, such as trimming constant regions, removing
erroneous sequences that do not contain these regions, and con-
ducting quality control based on theQ-score. Theseprocedures canbe
done using tools such as Cutadapt. In the case of paired-end reads, it is
also necessary to merge these reads beforehand, which can be
achieved with tools like PEAR. Overall, the DiMSum pipe line offers all
these procedures in one package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data listed in Table 1 are publicly available. We have also pro-
vided the corresponding count data matrices for Data-A through
Data-G in our Github repository [https://github.com/nemoto-lab/
ACIDES/tree/main/data], which can be used directly as input files for
ACIDES. The random-peptide inserted library used for Fig. S1 can be
downloaded from SRR26390523 [https://www.ncbi.nlm.nih.gov/sra/
SRR26390523]. Source data are provided with this paper.

Code availability
ACIDES is available on Github: https://github.com/nemoto-lab/
ACIDES/ under the GNU GPLv3.0 license. It comes with a tutorial that
outlines how to use ACIDES along with a working Python code. The
default parameters of ACIDES are used for the analysis in this article,
unless otherwise specified. The version of ACIDES used in this article,
ACIDES-v0, is archived on Zenodo75.
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