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Revealing hidden patterns in deep neural
network feature space continuum via
manifold learning
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Daniel Kapp1, James Zou 2, Lu Tian2, Joseph C. Liao 3 & Lei Xing 1

Deep neural networks (DNNs) extract thousands to millions of task-specific
features during model training for inference and decision-making. While
visualizing these features is critical for comprehending the learning process
and improving the performance of the DNNs, existing visualization techniques
work only for classification tasks. For regressions, the feature points lie on a
high dimensional continuum having an inherently complex shape, making a
meaningful visualization of the features intractable. Given that the majority of
deep learning applications are regression-oriented, developing a conceptual
framework and computational method to reliably visualize the regression
features is of great significance. Here, we introduce a manifold discovery and
analysis (MDA) method for DNN feature visualization, which involves learning
the manifold topology associated with the output and target labels of a DNN.
MDA leverages the acquired topological information to preserve the local
geometry of the feature space manifold and provides insightful visualizations
of the DNN features, highlighting the appropriateness, generalizability, and
adversarial robustness of a DNN. The performance and advantages of theMDA
approach compared to the existing methods are demonstrated in different
deep learning applications.

Deep learning promises to revolutionize scientific discoveries and
various technological applications1–5. In general, deep learning tasks
can be divided into two major categories, classification, and regres-
sion. Different from classification tasks in which the outputs take dis-
crete values, deep regression models predict continuous outcomes
from the data. While most deep learning applications are regression-
oriented6–12, physically meaningful visualization of the feature space
representation of these models is quite challenging and has yet to be
achieved.

Algorithmically, a deep neural network (DNN) learns the rela-
tionship between themanifolds representing the input data and labels.
During training, the DNNs learn the function that transforms an input
manifold to an output manifold that is similar to the label/target

manifold, making deep learning a manifold mapping problem. For a
test sample (i.e., a point on the input manifold), a trained DNN model
estimates the location of the corresponding point in the output
manifold (Fig. 1(a)). Classification is a special case of the manifold
mapping where output manifold is of a single dimension. A series of
abstractions are carried out through the layered calculations of DNNs
to connect the input and output manifolds. In other words, features at
each layer attempt to form a latent representation of the input in high-
dimensional (HD) space. Unlike in classification tasks, where the fea-
tures are clustered13–15, the features in a regression problem form a
continuum in an HD space16. Visualizing the HD features in a low
dimension is essential to understand the manifold mapping process
and represents an important step toward interpretable AI. For
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meaningful feature embedding, the spatial distances among the points
on the manifold surface should be preserved when projecting them
down to a low dimension. Because of the inherent complexity of a
manifold surface of DNN features, geodesic distance should beused to
relate the HD data points instead of pairwise distance (e.g., Euclidean
distance and correlation). It is important to point out that conventional
dimensionality reduction and/or visualization techniques with or
without supervision17–24 are not applicable to visualize the feature
space data of regression DNNs as they are designed only for classifi-
cation problems, in which case the features are characterized by 1D
discrete labels and preserving the pairwise distance among the points
is all one needs for feature embedding (see Results for examples).

This work aims to develop an MDA framework for DNN feature
visualization in deep learning problems. ThemotivationbehindMDA is
that in multi-layered neural networks, the weights and biases of each
layer create a submanifold. As we delve deeper into the network, the
manifold space increasingly resembles the output manifold. When the
network is well-trained, the output manifold mimics the target mani-
fold. Consequently, visualizing the features of intermediate layers in
relation to the target and output manifolds reveals the quality of the
latent features of the network. In properly trained networks, the
visualization demonstrates a consistent arrangement of data points
with respect to the output and target manifolds. However, in poorly
trained networks, the visualization lacks information from the target

Fig. 1 | Visualization of DNN feature space viamanifold learning. a The cartoon
illustration of manifolds of input data, DNN features and outputs in a 1D deep
learning regression task from medical images. For segmentation, registration,
reconstruction, super-resolution, the output manifold is high dimensional,
whereas for 1D continuous prediction and classification, outputs are 1D continuous
and discrete values, respectively. There are one-to-one relationship among the
data points in inputdata/DNN featuremanifold and outputmanifold.Here, `Conv',
`ReLU', and `Max Pool' refer to the convolutional, rectified linear unit, and max
pooling layers, respectively, in a DNN.b Thepurpose of this work is to discover the

output manifold and use that information to visualize the manifold of extracted
DNN features in lower dimension. To this end, MDA first computes distances
between the DNN-estimated labels, enabling construction of the outline of the
manifold for the estimated labels in HD. This outline provides the basis for
grouping the labels based on their distances on the manifold surface. Next, a
Bayesian approach is used to embed HD feature points at a specific DNN layer,
constrained by the sorted label groups. Finally, a deep learning is employed to
transform the projected features to a lower dimension for visualization and ana-
lysis. This figure was created with BioRender.com.
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manifold, resulting in inconsistent positioning of the feature data
points. Computationally, our proposed approach explores the DNN
feature spaceunder the guidanceof theoutput and targetmanifoldsof
the DNN (Fig. 1b, Supplementary Fig. S1). We construct the manifold
outline from the estimated labels as follows: (i) Computing the dis-
tances among the network outputs (Supplementary Fig. S1-step 1). (ii)
Constructing a layout of the output manifold by finding one end point
of the manifold (Supplementary Fig. S1-step 2). (iii) Sorting the dis-
tances of the outputs from the end point into K bins using optimal
histogrambin count (Supplementary Fig. S1-step 2) (seeMethods). The
outline of the target manifold is also computed using the same pro-
cedure, which serves as the colormap for MDA visualization (see
Methods). A Bayesian approach is used for the projection of the fea-
ture data under the condition of the pseudo labels created in the
previous step via histogram sorting (Supplementary Fig. S1-step 3).
This projection preserves the geodesic distances among the data
points locally on the manifolds (see Supplementary Fig. S24 and
Methods). The final visualization of the HD features is achieved by
using a deep neural network optimized with cross-entropy loss
between theprobability of point locations of theBayesiancomponents
and a 2D embedding space (Supplementary Fig. S1-step 4). Below, we
demonstrate that MDA provides a reliable dimensionality reduction
technique for the visualization and exploration of DNN features in
various deep learning applications.

Results
The unique capability of MDA in visualizing the DNNs’ features is illu-
strated via a series of examples, includingmedical image segmentation,
gene expression prediction, gene-based survival prediction, medical
image superresolution, and classification of COVID-19 radiography
dataset. A summary of our experimental setup, datasets, and findings is
presented in Table 1. A simple regression problem with MNIST hand-
written digits is also studied to shed useful insights into the MDA
visualization of deep regression (Supplementary Figs. S9–S11).

MDA affords feature visualization in segmentation tasks
We first explore the feature space of the Dense-UNet segmentation
network trained on the BraTS 2018 dataset25. The inputs here are brain
MRI images and the outputs are binary images with tumor segmenta-
tion. The input andoutput images are located inHDmanifold spaces of
57,600 (number of image pixels) dimensions. The Dense-UNet net-
work connects these two manifold spaces and when trained, finds an
optimal function that can transform the input images into output
images. The features at each of the 218 intermediate layers form
manifolds of dimensions equal to the number of neurons in the layer.
Thus, these 218 intermediate feature manifolds collectively create a
mapping function between the input and output manifolds. The fea-
tures from several different convolutional layers at the beginning and
end of model training, including the 2nd of the 3rd dense block (B3-
L2), the 8th of the 4th dense block (B4-L8), the 2nd of the 6th dense
block (B6-L2), and the last before thefinaloutput (B7-L8), are displayed
in Figs. 2 and 3, and Supplementary Figs. S25, and S26 using
t-distributed stochastic neighbor embedding (t-SNE)18, uniform mani-
fold approximation and projection (UMAP)19, Isomap26, locally linear
embedding (LLE)27 and MDA. It is seen that, for both training and
testing datasets, traditional t-SNE and UMAP show clustered data
points and reveal no useful information about the features at the lay-
ers. Isomap and LLE also fail to show any meaningful visualizations
before and after the network is trained. It is not surprising that the
MDA shows similar behavior before training. After the DNN is trained
(Fig. 3), the manifolds at different layers approach that defined by the
labels, leading to a continuous change in color as seen in the MDA
visualizations. In this way, MDA reveals the quality of the DNN features
at different layers as well as at different stages of the training (theMDA
visualizations at intermediate training epochs are presented in Ta
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Fig. S22). Here, red and violet denote the starting point (0) and ending
point (1) in the manifold, respectively, and other colors denote the
normalized distance (from the starting point) in the target manifold
(see Methods). The quantitative evaluation of the low dimensional
representations from different techniques is also presented in (d) of
Figs. 2 and 3, which shows clearly the superiority of MDA over other
methods. It is worth pointing out that theMDA preserves the geodesic
distance better, as indicated by the Pearson correlation coefficients
computed between the geodesic distances of the HD features and low
dimensional representation from different techniques. Moreover,
MDA shows a significantly better Pearson coefficient value for the
trained features than the untrained ones. The Pearson correlation
values computed from t-SNE and UMAP representation did not show
any notable difference before and after the training of the DNN or at
different DNN layers.

MDA offers an analysis of the DNN feature space in survival
prediction
We now study a DNN-based survival prediction model (see methods)
with the Cancer GenomeAtlas (TCGA)28 database. The dataset consists
of bulk RNA expression levels from 10,060 patients afflicted with 33
cancers. Each data point is a patient consisting of 20,531 genes of
varying expression. 80% of the data is used formodel training, and the
rest is for testing. A multi-layer perceptron (MLP- see methods) was
trained to predict the survival days. The features from several different
layers, including the 2nd layer of the 3rd fully connected block (B3-L2),
the 2nd layer of the 4th fully connected block (B4-L2), the 2nd layer of
the 5th fully connected block (B5-L2), and the 2nd layer of the 6th fully
connected block (B6-L2), are displayed in Figs. 4 and S17 for different
visualization techniques. The survival days are normalized from 0 to 1
for visualization purposes. It is seen that the MDA yields the most

Fig. 2 | Visualization andanalysis ofDense-UNet features for segmentationtask
before training the network. Here, B3-L2 denotes the 2nd layer of the 3rd dense
block, B4-L8 denotes the 8th layer of the 4th dense block, B6-L2 denotes the 2nd
layer of the 6th dense block, and B7-L8 denotes the last layer before the final

output. t-SNE,UMAPandMDAresults are shown in (a,b, c) respectively for training
and testing datasets at different network layers. The colorbar denotes the nor-
malized manifold distance. Source data are provided as a Source Data file.
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Fig. 3 | Visualization and analysis ofDense-UNet features for segmentation task
after training the network. Here, B3-L2 denotes the 2nd layer of the 3rd dense
block, B4-L8 denotes the 8th layer of the 4th dense block, B6-L2 denotes the 2nd
layer of the 6th dense block, and B7-L8 denotes the last layer before the final
output. t-SNE, UMAP and MDA results are shown in (a–c) respectively for training

and testing datasets at different network layers. The colorbar denotes the nor-
malized manifold distance. d Pearson correlations between the geodesic distances
among feature data points in HD and low dimensional representation from dif-
ferentmethods are shown for training and testing data. Source data are provided as
a Source Data file.
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descriptive representation of survival time. For both training and
testing datasets, UMAP shows clustered visualizations, which show
little correlation with the continuous ground truth. Although t-SNE
performs slightly better in this case, a lot of spurious clusters are seen
in its visualization. MDA achieves the highest Pearson correlation
values with the ground truth when the low dimensional representa-
tions from different techniques are compared quantitatively. Not
surprisingly, the Pearson coefficient value increases as the MDA is
applied to the deeper layers. Interestingly, the correlation value
decreases drastically in the case of the testing dataset (see the last row
of Fig. 4), suggesting poor generalizability of the trainedmodel toward
the testing dataset. Indeed, the survival prediction DNN performs
poorly in testing, with a resultant correlation value of only 0.3526
between predictions and testing labels. This is inferior to that of the
training case (0.9312). Similarly, the strong generalizability of DNN
toward unseen data will also be reflected in the MDA visualizations, as
shown in the next example.

MDA deciphers the DNN feature space in gene expression
prediction
Theutility ofMDA is further illustratedby examining a gene expression
prediction network. Briefly, a network is designed to predict the
change ingene expressionobserved inhumancell lines perturbedwith
small molecules from L1000 database29,30. To visualize the inter-
mediate layers of the DNN30 (see Methods), we select the features of
the first (L1), second (L2), third (L3), and fourth (L4) MLP layers. The
visualizations of these four latent features before/after training are
shown in Fig. 5 and Supplementary Fig. S18. Again, the MDA features
visualization shows no systematic pattern before training. After train-
ing, the features in MDA display show a continuous change in colors
for both training and testing datasets. In this case, t-SNE and UMAP fail
to show any useful information in both training and testing cases. The
quantitative evaluation of low dimensional representations from dif-
ferent techniques also shows the superiority of MDA in visualizing the
feature manifold (Fig. 5-d) compared to t-SNE and UMAP.

MDA affords feature space analysis in super resolution tasks
The fourth feature space explored is from a generative adversarial
network (SRGAN) applied for super resolution of dermoscopic images.
To visualize the intermediate layers of the SRGAN,we select features of
(a) output of the first residual block (RB1), (b) output of the third
residual block (RB3), (c) output of the fourth residual block (RB4), and
(d) output of the up-sampling block (UB) in the generator. The visua-
lizations of four latent features after training of DNN are shown in
Fig. 6. As shown in Fig. 6c, after the network training, the MDA visua-
lizations of the training and testing set features show continuous
change of colors, which demonstrates the effective learning of the
DNN for performing super resolution task. t-SNE and UMAP fail to
show any useful information about the feature quality or training sta-
tus of the network Fig. 6a, b.

MDA shows superior feature visualization in classification tasks
To demonstrate that MDA can also show insightful visualizations of
deep learning feature space in classification tasks, we now investigate
the feature space of ResNet5031 applied on a public COVID-19
dataset32,33 to classify the data into four categories. The ResNet50
network consists of 4 substructures (see Methods). To visualize the
intermediate layers of the ResNet50, we selected features of output of
the 4th residual block’s last convolutional layer in substructure 2 (S2-
B4-L3), the 2nd residual block’s last convolutional layer in substructure
3 (S3-B2-L3), the 6th residual block’s last convolutional layer in sub-
structure 3 (S3-B6-L3), and the 3rd residual block’s last convolutional
layer in substructure 4 (S4-B3-L3). The t-SNE, UMAP, and MDA visua-
lizations of these four latent features before/after training are shown in
Fig. 7 andSupplementaryFig. S19. Thenetwork achieves an accuracyof

over 90% after training. Before training, the data points are randomly
distributed in MDA visualizations. In contrast, after the training, the
feature space becomes well clustered inMDA visualizations, especially
in deeper layers. This is understandable as the deeper layers of the
DNN extract higher-level features for better classification of the data-
set. In this case, although UMAP and t-SNE show some clusters, the
quality of these clusters is very poor (see Fig. 7(d)). There are many
spurious clusters in the case of t-SNE visualization, making the inter-
pretation of the feature space very difficult. Note that the t-SNE and
UMAP in Fig. 7 are unsupervised. We also provide the visualizations of
the supervised versions of UMAP and LDA methods in Supplementary
Figs. S20 and S21. Again, thesemethods fail to provide any informative
results about the training status of the network. The quantitative
evaluations of the low dimensional representations from different
techniques (Fig. 7(d)) also show the superiority of MDA over other
techniques.

Discussion
Dimensionality reduction of HD feature datasets is challenging, espe-
cially for deep regression tasks because of the complex inner struc-
tures of the feature space data. In this work, an effective MDAmethod
is proposed for the visualization and analysis of the DNN feature space
data. MDA leverages the information on HD labels in the dimension-
ality reduction process by using the estimated manifold layout of the
DNN outputs. MDA allows us to visualize the extracted features and
assess the quality of the features. MDA finds the underlying manifold
of the features before data embedding, which is fundamentally dif-
ferent from commonly used data exploration methods such as PCA,
ICA34, FEM35, t-SNE, UMAP, andMDS36. All these conventional methods
attempt to compute a compressed representation of the data based on
someassumptions about the behaviorsof thedata inHDand LD,which
maynot be fully satisfied inmost of the practical scenarios.MDA learns
the manifold of the feature data and therefore can naturally adapt to
the data.

MDA has a number of unique features that make it ideal for
visualizing the latent space information of DNNs. In particular, MDA
provides an effective mechanism to take advantage of the training
label information during the dimensionality reduction and visualiza-
tion of the features at a particular layer of the deep network. However,
MDA can also be used for unsupervised visualization, where the
manifold outline is constructed from the input data (see Fig. 8 for an
example analysis of scRNA-seq data of zebrafish embryogenesis37–39 by
unsupervised MDA). This makes MDA suitable for multiple data
exploration tasks such as dimensionality reduction, data continuum
analysis, and visualization in the same framework. In addition, MDA
uses parallelizable computational steps to save run-time (see our
implementation codes), whichmakes it suitable for analyzing DNNs of
any depth, structure, and complexity.

Assessing the structure of a data manifold is complicated due to
its inherent complexities in both geometry and topology. Various
metrics, however, have emerged to help quantify manifold
structures40, including (1) intrinsic dimensionality, which gauges the
fewest number of parameters needed to adequately represent the
data; (2) curvature, a metric that explores manifold structure through
multiple lenses like Gaussian, mean, and sectional curvatures, high-
lighting ‘folds’ or ‘bends’; (3) geodesic Distance, the shortest path
between two points on a manifold, offering insights into data point
interconnectedness. In Supplementary Section 8, we evaluated all
these metrics for high-dimensional feature data and their low-
dimensional counterparts, for two datasets. The results indicated
that MDA offers better preservation of these metrics as compared to
the existing manifold-embedding techniques like LLE (see Tables S3
and S4). Additionally, we furnished thorough qualitative and quanti-
tative analyses—specifically utilizing Pearson correlation between
geodesic distances in high and low dimensions—comparing MDA with
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Fig. 4 | Visualization and analysis of MLP features for survival prediction task
after training the network. Here, B3-L2 denotes the 2nd layer of the 3rd fully
connected block, B4-L2 denotes the 2nd layer of the 4th fully connected block, B5-
L2 denotes the 2nd layer of the 5th fully connected block, and B6-L2 denotes the
2nd layer of the 6th fully connectedblock. t-SNE, UMAP andMDA results are shown

in (a–c) respectively for training and testing datasets at different network layers.
The colorbar denotes the normalized manifold distance. d Pearson correlations
between the geodesic distances among feature data points in HD and low dimen-
sional representation from different methods are shown for training and testing
data. Source data are provided as a Source Data file.
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Fig. 5 | Visualization and analysis of DNN features for gene expression predic-
tion task after training the network. L1-L4 denote the features of the first to
fourthMLP layers. t-SNE,UMAPandMDA results are shown in (a–c) respectively for
training and testing datasets at different network layers. The colorbar denotes the

normalized manifold distance. d Pearson correlations between the geodesic dis-
tances among feature data points in HD and low dimensional representation from
differentmethods are shown for training and testingdata. Sourcedata are provided
as a Source Data file.
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Fig. 6 | MDA Visualization of SRGAN features for super resolution task after
network training.Here, RB1 denotes the first residual block, RB3 denotes the third
residual block, RB4 denotes the fourth residual block, and UB denotes the up-
sampling block. t-SNE, UMAP and MDA results are shown in (a–c) respectively for
training and testing datasets at different network layers. The colorbar denotes the

normalized manifold distance. d Pearson correlations between the geodesic dis-
tances among feature data points in HD and low dimensional representation from
differentmethods are shown for training and testingdata. Sourcedata are provided
as a Source Data file.
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Fig. 7 | Investigation of the feature space of ResNet50 network applied on a
public COVID-19 dataset for classification into four categories. a–c t-SNE,
UMAP, andMDA visualizations of the feature spaces at four different layers before/
after training. Here, S2-B4-L3 denotes the 4th residual block’s last convolutional
layer in substructure 2, S3-B2-L3 denotes the 2nd residual block’s last convolutional
layer in substructure 3, S3-B6-L3 denotes the 6th residual block’s last convolutional
layer in substructure 3, and S4-B3-L3 denotes the 3rd residual block’s last

convolutional layer in substructure 4. Before training, the data points are randomly
distributed in MDA visualizations. However, after the training, the feature space
becomeswell clustered inMDAvisualizations, especially indeeper layers. t-SNE and
UMAP fail to show any information about the training status of the network.
d k-nearest neighbor classification accuracyof the lowdimensional representations
from different techniques. Source data are provided as a Source Data file.
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other established methods like t-SNE, UMAP, LLE, and Isomap across
five datasets (see Figs. 2–6, Supplementary Fig. S27).

The proposed MDA can be used for: (i) finding effect of a parti-
cular part of input data on DNN feature space, and (ii) testing the
robustness of DNNs. In the first case, the effect of a particular part of
input in the training process may provide important clues to find how
different input parts are used in the decision process of the deep
network. It is shown in Fig. 9 that if a portion of the input is masked or
changed, MDA is able to show the effect of the action in the feature
domain. This may help us in removing the suspicious input compo-
nents accordingly. Such a type of MDA-guided analysis may be valu-
able for a user to assess the roles of particular data in the overall

performance of the network. Testing the robustness of an AI model is
important before its employment in critical tasks such as disease
diagnosis or treatment planning. As noticed in several previous works,
deep convolutional networks can be easily ‘fooled’ to make mistakes
by adding perturbations (such as Gaussian noise) in the inputs41–43. As
demonstrated in Supplementary Fig. S42, MDA provides interactive
visualizations of the DNN features after some random Gaussian noises
are added to thedata duringmodel training and testing.Morecomplex
noise addition or input modification can be performed similarly to
model the adversarial attacks in reality to test the robustness of the
deep networks. From our analysis, it is found that although Dense-
UNet can show reasonable results at SNR of 0.3, its performance
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Fig. 8 | Unsupervised MDA visualization of continuous manifold in scRNA-seq
data of zebrafish embryogenesis. a t-SNE and UMAP visualization, (b) unsu-
pervised MDA visualization, and (c) DEMaP index computed from the
dimensionality-reduced data using different methods. From (a) t-SNE and UMAP
primarily cluster the data and do not effectively represent the cell transitions from
one stage to another. In contrast, MDA (b) clearly illustrates cell transitions from

lower hours postfertilization (hpfs) (red, yellow, green) to higher hpfs (magenta,
violet) through intermediate hpfs (cyan, blue). The unsupervised MDA’s ability to
better preserve the high-dimensional geodesic distance in low dimensions is also
evident in the DEMaP index values (c). Source data are provided as a Source
Data file.
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degrades substantially when the SNR reaches 0.1. Thus, MDA provides
a useful tool to evaluate the robustness of a DNN in specific applica-
tions where noise or adversarial attacks are of concern. Moreover,
from Supplementary Fig. S42, it is obvious that theMDA visualizations
of the robustDense-UNet features showbetter continuousdistribution
of colors in comparison to MDA visualizations of features from less
robust simple U-Net44 (Supplementary Fig. S43). For quantitative ana-
lysis, we have added the Pearson correlation between the distance of
data points inMDA visualization and distance among the data labels to
show high Pearson correlation value (arc shape) corresponding to
better robustness of the network towards noise (Supplementary
Fig. S44). For both networks, we used signal to noise ratios (SNR) of ∞
(no noise-original images), 0.1, 0.3 and 0.5. In both cases, MDA visua-
lizations become more arc-shaped and color distribution becomes
more ordered with improvements in SNR. These results suggest that
increased noise negatively affects the DNNs’ learning process, redu-
cing the quality of the intermediate layer features which is reflected on
MDA visualizations. However, at the same SNR level, the MDA visuali-
zation of Dense-UNet features is better arc-shaped and color dis-
tribution is more ordered than in MDA visualizations of the simple
U-Net features. This proves that Dense-UNet is more robust to noise
than simple U-Net which is also supported by the Dice scores of these
two DNNs (Supplementary Figs. S42 and S43). MDA also reveals the
robustness of DNNs to noise for classification tasks through feature
space visualization (see Supplementary Figs. S45 and S46).

MDA serves as a versatile tool for gaining insights into the DNN
feature space. First, MDA is employed to elucidate the impact of spe-
cific layers on feature behavior. In Supplementary Figs. S30 and S32,
the MDA visualizations of RELU, batch normalization, and dropout
layers are presented for two different datasets (MNIST and TCGA). It is

evident that RELU and batch normalization layers improve the mani-
fold continuity and correct the distance of the data points over the
manifold. In other words, these layers help the network learn the
relationship between the data and the label. The dropout layer is
known to have no impact on the feature space other than making the
features sparse. Similar MDA visualizations of the features before and
after dropout layers confirm this observation. Existing methods such
as t-SNE fail to show such insights (Supplementary Figs. S31 and S33).
Second, MDA facilitates the demonstration of network general-
izability, as depicted in Figs. 4 and 5. In these figures, it is evident that
the colormaps in feature visualization for a generalizable network are
consistent with the position on the manifold. Third, MDA allows for a
better understanding of the relationship between the feature space
and network performance. As examples, in Supplementary Figs. S34
and S36, we provide MDA visualizations for two networks trained with
partial labels on TCGA and MNIST datasets. In the former case, we
selected TCGA data with patients with survival days ranging from 0 to
7000days. We trained the network with this data and tested it on
patient data with survival days ranging from 0 to 10,000days. MDA
visualization reveals that the network projects the data of higher sur-
vival days (>7000days) mostly between 4000 and 7000days. The
network identifies similar patient data in this unknown day range from
the training data and projects the data to a similar position as the
training data point. Similar insights can be obtained from MDA visua-
lizations for the MNIST dataset, as seen in Supplementary Fig. S36.
Such insights are not visible in t-SNE visualizations (Supplementary
Figs. S35 and S37). In another experiment, we applied MDA to inves-
tigate the feature visualization differences at different epochs of the
training for segmentation and classification networks. For segmenta-
tion task, we chose the features of the testing datasets at epochs of 1, 3

Fig. 9 | MDA visualization of Dense-UNet training features for segmentation
task (see Fig. 3) with varying square mask sizes. (Row 1) Input images (of size
240 × 240 pixels) are masked by square shapes ranging from 10 × 10 to 20× 20
pixels. (Row 2) Input images are masked by square shapes ranging from 30× 30 to
50× 50 pixels. (Row 3) Input images are masked by square shapes ranging from
100× 100 to 120× 120 pixels. The ground truth segmentation labels and estimated
segmentation labels for a randomly selected input are shown in the rightmost

column for each mask size. MDA visualization for the segmentation model trained
with a small mask range results in a structured color distribution and compact
shapes. However, when increasing the mask size to 30-50 and 100-120, the visua-
lized feature shapes become less compact, and the color distribution becomes
noisier. These observations indicate that as the mask size increases, the Dense-
UNet’s ability to accurately segment images deteriorates. Source data are provided
as a Source Data file.
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and 10 and visualized themusingMDA inSupplementary Fig. S22a. Our
results indicate that the MDA visualization of features at epoch 10
displayed a more organized color arrangement than at epoch 3.
Similarly, theMDAvisualization at epoch3hadamore structured color
pattern compared to that of epoch 1. This observation indicates that
feature visualization by MDA is capable of reflecting the network’s
learning status with change in epoch. For classification task, the data
points belong to different classes gradually get separated in MDA’s
visualization with progress of epochs as seen in Supplementary
Fig. S22b.

MDA can help unveil distinctive phenomena within neural net-
works. A recent concept, neural collapse, initially applied to classifi-
cation tasks, signifies the convergence of final-layer features into
singular points when the network is further trained after achieving
perfect training accuracy45–49. While its manifestation in regression
scenarios remains unclear, our investigation in Supplementary Sec-
tion 9, utilizing MDA visualizations, confirms its existence. MDA
visualization reveals that the features align on a simplified curve as the
features go into neural collapse. This empirical validation cannot be
obtained through alternative techniques (as illustrated in Supple-
mentary Figs. S28 and S29). As a future step, we aspire to formalize this
collapse theoretically, contributing a cornerstone to the analysis of
regression networks.

MDA also offers novel insights into the feature space of classifi-
cation DNNs. As demonstrated in the case of the diabetic retinopathy
(DR) dataset, clinically similar patient groups are positioned close to
each other in MDA visualizations after DNN training (Supplementary
Figs. S40 and S41). Feature data of normal and mild DR patients are
positioned closely, as are the data of severe and proliferative patient
groups. Most notably, the gradual transition from normal to pro-
liferative through mild, moderate and severe stages is clearly visible.
Such preservation of clinical information is not evident in t-SNE and
UMAP visualizations (as shown in Supplementary Fig. S41).

MDA is designed to analyze features from the deep learning latent
space, elucidating information flow within a DNN and exploring its
properties such as appropriateness, generalizability, and adversarial
robustness. Many other high-dimensional (HD) data, such as gene
expressions, can also be analyzed by MDA in an unsupervised manner
(see Fig. 8). It is noteworthy that like many other data analysis tech-
niques such as PCA, FEM, GSE50, CCSF39, t-SNE, and UMAP, interactive
relationships of the components inside an HD feature point are not
considered explicitly during the MDA embedding process51. For some
special applications such as the assessment of image similarity in a low
dimensional embedding, DNN-basedmanifold learning techniques like
Deep Manifold Embedding Method (DMEM)52 and Deep Local-flatness
Manifold Embedding (DLME)53 couldbe used. In this process, however,
MDA is also useful as it offers an effective method for analyzing the
deep learning features and sheds insights into the embedding process.

We have proposed anMDA strategy for DNN feature visualization
that is applicable to all kinds of deep learning tasks irrespective of the
domains. The approach is applicable in a broad context and enables an
understanding of the quality of the DNN features in deep learning
tasks.We envision that theMDA strategy will be helpful in interpreting
and optimizing the training procedures of DNNs, improving the
accuracy and robustness of AI models, and identifying potential con-
founding factors and biases. Although this work is focused on ana-
lyzing DNN features, MDA can be applied to any application requiring
dimensionality reduction and visualization.

Methods
Motivation behind MDA
Riemannian manifold. A Riemannianmanifold ðM,gÞ is a real smooth
manifold M equipped with the a metric g. Specifically, the metric is
defined at each point p 2 M via the bi-linear map
gp : TpM×TpM ! R, whereTpM is the tangent space at point p. Let

X ðMÞ denotes the space of time invariant vector fields on themanifold
M. For any two vector fields X ,Y 2 X ðMÞ, the affine connection on
manifold M is a bi-linear map (X, Y)→∇XY such that for all differenti-
able functions f 2 C2ðMÞ, the following two conditions are satisfied

• ∇fXY = f∇XY,
• ∇X(fY) = df(X)Y + f∇XY,

where df(X) is the directional derivative of function f in the direction of
X. Define a coordinate chart ðU,φÞ as φ : U ! V, where U � M is an
open set and V � Rn. The affine connection on an n-dimensional
manifold is completely determined by n3 real valued smooth functions
on U, namely the Christoffel symbols of the second kind Γkij on local
coordinates (u1,⋯ , un). Let ∂k denotes the vector field on U . Then, in
local coordinates, the affine connection can be characterized in terms
of the covariant derivatives of basis vectors

∇∂i
∂j =

Xn
k = 1

Γkij∂k ,

where Γkij are the Christoffel symbols of the second kind. For the spe-
cific case of the Levi-Civita connection, the Christoffel symbols have
the following explicit form

Γkij =
1
2
gkr ∂gir

∂xj
+
∂gjr

∂xi
� ∂gij

∂xr

 !
:

Geodesic curves. A geodesic on a smoothmanifoldM equipped with
an affine connection∇ is defined as a curve γ : ½0,1� ! M such that the
parallel transport along the curve preserves the tangent vector to the
curve. Specifically, ∇ _γðtÞ _γðtÞ=0, at each point along the curve, where
_γðtÞ is the derivative with respect to t∈ [0, 1]. Alternatively, the geo-
desics of the Levi-Civita connection can be defined as the locally
distance-minimizing paths. Specifically, in a Riemannian manifold M
with the metric tensor g, the length of a path γ : ½0,1� ! M is the
following functional,

L½γ�=
Z 1

0
ðgγðtÞð _γðtÞ, _γðtÞÞÞ

1
2dt,

Accordingly, the geodesic distance d(p, q) between two points p,q 2
M is defined as

dðp,qÞ= inffL½γ� : γ : ½0,1� ! M,γð0Þ=p,γð1Þ= q,γ is piecewise smooth g:

Using the Euler-Lagrange equations to minimize the functional L[γ]
yields the following set of differential equations for geodesics in local
coordinates,

€γiðtÞ+
Xn
j,k = 1

Γijk _γjðsÞ _γkðsÞ=0,

where i = 1, 2,⋯ , n.

Manifolds in neural networks. The aim of a given neural network is to
approximate a target function g such that y = g(x), where
x = ðx1, � � � ,xnÞ 2 Rn and y 2 M are the input data and target value
which is an element of a target manifold M such as the manifold of
continuous functions. We note that in practical scenarios, when the
target value is a vector y = (y1,…, yn), the manifoldM has a dimension
of n. Let by denotes the network’s output parametrized by the weights
w = (w1,⋯ ,wm) andbias bof the networkθ= ðw,bÞ 2 Θ � Rm ×R. The
network output by= f ðx;θÞ is an element of the output manifold S. In
particular, for a one layer neural network with the sigmoid non-
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linearity, we have m = n, and the manifold of outputs is defined as
follows

S = f ðx;θÞ= σ wTx+b
� �

;θ 2 Θ
� �

:

is m + 1 dimensional submanifold of M. Moreover, the tangent space
TbyS at the point by 2 S is defined as the span of the set of functions

TbyS = spanfbyðθÞð1� byðθÞÞ,byðθÞð1� byðθÞÞx1, � � � ,byðθÞð1� byðθÞÞxng,
since

∂
∂b

σðwTx +bÞ= σðwTx +bÞð1� σðwTx + bÞÞ, ð1Þ

∂
∂wi

σðwTx + bÞ= σðwTx +bÞð1� σðwTx +bÞÞxi, i= 1,2, � � � ,n: ð2Þ

Themanifold S is a submanifold ofM, and as such can be viewed as an
(m + 1)-dimensional hyper-surface inside the space of real-valued
continuous functionsM= Cð½0,1�Þ16. Training the network is equivalent
to finding an exact, or approximate value of θ*, for which the distance
from target function g to S is minimum, namely

θ� = argmin
θ2Θ

distðg,SÞ,

where dist ðg,SÞ denotes the distance of the target function from the
output manifold (p. 431 of ref. 16).

In neural networks with more than one layer, weights and bias of
each of the layers form a submanifold and as we go deeper into the
network, the manifold space becomes more and more like the output
manifold or the target manifold in the case of well-trained networks.
Thus, if we can visualize the features of the intermediate layers of the
networkwith respect to the targetmanifold, the resulting visualization
should show the quality of the training. For well-trained cases, the
visualization should reflect the continuous position of the data points
on the target manifold. For ill-trained cases, the visualization should
not have any information from the target manifold and thus it should
not able to show any continuity in the positions of the feature data
points.

Sorting of data labels via optimal histogram bin count
Consider a test (out-of-sample) dataset {x1,⋯ , xm}. Let by1, � � � ,bym
denote thepredicted values fromthe trained feed-forwardnetwork, i.e.,

byi = f ðxi;θ
*Þ,

where θ* is the parameters of the neural network after model training.
Wedefine thepairwise geodesicdistances among theoutputs as follows

dij =dðbyi,byjÞ, 1≤ i<j ≤m:

For simplicity, we order these pairwise distances based on the lexico-
graphic order of their 2-tuple indices, i.e., ði,jÞ< ði0,j0Þ if i< i0, or i= i0 and
j < j0. Subsequently, we assign the single index ℓ∈ {1, 2,⋯ , (m2 −m)/2}.
In particular, we let fd‘gðm

2�mÞ=2
‘= 1 denote the sequence of pairwise

distances, and define the empirical probability density function
associated with these distances as follows

bpmðdÞ=
2

m2 �m

Xðm2�mÞ=2

‘= 1

δd‘
ðdÞ,

where δd‘
ð�Þ is Dirac’s delta function concentrated at dℓ. By the strong

law of large numbers, the empirical estimator bpmðdÞ converges to a

limiting density function p(d) asm→∞ almost surely. In the sequel, we
describe an approach to cluster (partition) the test dataset {x1,⋯ , xm}
via an optimal histogram bin count approach that minimizes the
integrated mean square error between the histogram estimate value
and the limiting distribution p(d).

Pseudo labeling via histogram bin count. Consider a histogram with
equally spaced bins. In particular, let tmi 2 R+ denote the bin
boundaries, and let hm = tm(i+1) − tmi denote the bin widths which is
uniform across all bins and is thus independent of index i. Associated
with this histogram, let epmðdÞ denote the histogram estimation for the
distance d 2 R+ . The integratedmean squared error is then defined as
follows

IMSE=
Z 1

0
E½ð~pmðsÞ � pðsÞÞ2�ds,

where the expectation is taken with respect to the binomial distribu-
tion of the number of samples that fall into the same bin as the point s.
It is known that IMSE=Oððm2 �mÞ�2=3Þ. To achieve this rate of con-
vergence, we adopt Scott’s optimal binning strategy54. Let Im(d) be the
bin interval that contains the point d 2 R+ and let tm(d) denote the
left-hand endpoint of the bin Im(d). Integrating the density function
over bin Im(d) yields

pmðdÞ=
Z tmðdÞ+hm

tmðdÞ
pðyÞdy:

Using Taylor’s expansion for the integrand, pðyÞ=pðdÞ+p0ðdÞðy� dÞ+
O h2

m

� �
, yields the following approximation of the integral

pmðdÞ=
Z tmðdÞ+hm

tmðdÞ
pðdÞ+p0ðdÞðy� dÞ+O h2

m

� �n o
dy,

=hmpðdÞ+
1
2
p0ðdÞ h2

m � 2hm d � tmðdÞ
� �h i

+O h3
m

� �
:

We denote the count of empirical distance values falling in the bin
interval Im(d) by sm(d). Then, sm(d) has a binomial distribution
B ðm2 �mÞ=2,pmðdÞ
� �

54. The histogram estimate then is given by a
random variable defined as

epmðdÞ=2smðdÞ= ðm2 �mÞhm

� �
,

with expectation

EfepmðdÞg=pmðdÞ=hm, ð3Þ

=pðdÞ+ 1
2
hmp

0ðdÞ � p0ðdÞ d � tmðdÞ
� �

+O h2
m

� �
: ð4Þ

The bias can be expressed as

Bias=EfepmðdÞg � pðdÞ= 1
2
hmp

0ðdÞ � p0ðdÞ d � tmðdÞ
� �

+O h2
m

� �
:

The variance of the histogram estimate can be derived as follows

Varð~pmðdÞÞ=2pmðdÞ 1� pmðdÞ
� �

= ðm2 �mÞh2
m

� �
, ð5Þ

= 2hmpðdÞ+O h2
m

� �n o
1�O hm

� �� �
= ðm2 �mÞh2

m

� �
, ð6Þ

=2pðdÞ= ðm2 �mÞhm

� �
+Oð1=ðm2 �mÞÞ: ð7Þ
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The mean squared error between the histogram estimate and the true
density value is defined by

MSEðdÞ=E ðepmðdÞ � pðdÞÞ2
h i

:

Using Eqs. (4) and (7), we can thus write

MSEðdÞ=2pðdÞ= ðm2 �mÞhm

� �
+
1
4
h2
mp

0ðdÞ2 +p0ðdÞ2 d � tnðdÞ
� �2

� hmp
0ðdÞ2 d � tmðdÞ

� �
+O 2=ðm2 �mÞ+h3

m

� �
:

ð8Þ

Integration of MSE(d) in eq. (8) results in

IMSE=
Z 1

0
MSEðsÞds = 2= ðm2 �mÞhm

� �
+

1
12

h2
m

Z 1

0
p0ðsÞ2ds +O 2=ðm2 �mÞ+h3

m

� �
:

ð9Þ

By optimizing the first two terms in eq. (9), the optimal choice of bin
bandwidth is obtained in54 as follows

h*
m = 6=

Z 1

0
p0ðsÞ2ds

� 	1=3

ððm2 �mÞ=2Þ�1=3
: ð10Þ

which, is the optimal choice for hm. We notice that this optimal choice
depends on the derivative of the density p(d) which is unknown. This
density itself depends on the underlying validationdata-set {x1,⋯ , xm}
as well as the parameters θ* of the trained feed-forward network
f( ⋅ ; θ*). Consider a folded Gaussian distribution with zero mean,

pðdÞ=
ffiffiffi
2

pffiffiffiffi
π

p
σ
expð�d2

=2σ2Þ, d ≥0: ð11Þ

Above, σ >0 is the variance. Plugging the folded Gaussian density
function in Eq. (11) into Eq. (10) yields

h�
m = 121=3π1=6σððm2 �mÞ=2Þ�1=3

: ð12Þ

In the sequel, we use the bin width estimate in Eq. (12). As shown in
Supplementary Fig. S8, whenm→∞, the ratio of the estimate h*

m to the
optimal value is near one for many heavy tail and bimodal
distributions.

Bayesian dimensionality reduction
The feature data should be projected in such a way that the Euclidean
distance of the data points in each of the small parts of the manifold
(eachof the bins in the last step) is preserved. In turn, it wouldpreserve
the manifold curvature or geodesic distance among the data points
(locally on the manifold, the geodesic distance can be well approxi-
mated with the Euclidean distance16 —see Supplementary Fig. S24). To
achieve this, we use a supervised Bayesian projection, with the pseudo
labels created in theprevious step. TheBayesianprojection inMDAhas
two sets of parameters: (1) the lowdimensional representation that has
Gaussian-distributed data values and (2) the prior information matrix
from the labels created in the last step. All prior variables in the model
are denoted by Ξ = {λ,Φ,Ψ}, where the remaining variables are
denoted by Θ = {b,Q,T,W,Z} and the hyperparameters (scale vari-
ables of Gamma distribution) are denoted by ζ = fαλ,βλ,αϕ,βϕ,αψ,βψg.
See Supplementary Fig. S2 and Supplementary Tables S1 and S2 for list
of the notations and probability distribution functions for each of the
variables. The rationale behind choosing the distribution models and
parameters are discussed in Supplementary Sections 2 and S12 (Sup-
plementary Figs. S3–S8, S38 and S39).

The Bayesian dimensionality reduction is based on the following
joint data distribution

pðey,Θ,ΞjXÞ=pðΦÞpðQjΦÞpðZ jQ,XÞpðλÞpðbjλÞpðΨÞpðW jΨÞpðT jb,W ,ZÞpðeyjT Þ,
ð13Þ

where X (of size m × n) denotes the input data (DNN features at a
specific layer in MDA), and ey is the pseudo label generated via the
histogram bin count method of by= f ðx;θ*Þ. The variational approx-
imation of the posterior distribution is as follows

pðΘ,ΞjX ,eyÞ≈qðΘ,ΞÞ=qðΦÞqðQÞqðZÞqðλÞqðΨÞqðb,W ÞqðT Þ, ð14Þ

where the factored posterior can be modeled as a product of gamma
distributions

qðΦÞ=
Ym
f = 1

YR
s = 1

G ϕf
s ;αϕ +

1
2
,

1
βϕ

+
qf
s

� �2
2

0B@
1CA

�1
0BB@

1CCA, ð15Þ

wherem and R denote the dimensionality of the original and reduced
data space andGð�;α,βÞ denotes the gammadistributionwith the shape
parameter α and the scale parameter β. The approximate posterior
distribution of the projection matrix is a product of multivariate
Gaussian distributions and can be written as

qðQÞ=
YR
s = 1

N qs;Σ qs

� �
Xezs, diag eϕs

� �
+XX>

� ��1
� �

: ð16Þ

Here, the small letters are the s-th vector of the corresponding matrix
of capital letters (e.g., qs denotes the s-th column vector of Q and zs
denotes the s-th row vector of the mean matrix of Z). Here, N ð�;μ,ΣÞ
denotes the normal distribution with the mean vector μ and the cov-
ariancematrix Σ. The tilde notation denotes the posterior expectation,gfðτÞ= EqðτÞ½f ðτÞ�. The scale parameters are computed using the pos-
terior sufficient statistics of the projectionmatrixQ (of sizem × R). The
approximate posterior distribution of the projected data samples is
computed as a product of multivariate Gaussian distributions

qðZÞ=
Yn
i = 1

N zi;Σ zi
� � eQ>

xi + eWeti � eWb
� �

, I+ gWW
>� ��1

� �
: ð17Þ

Here, the score variables ti is the i-th vector of score matrix T (of size
n ×K) and W (of size R ×K) is a matrix of weight parameters. In this
supervised learning, we need to learn the bias vector (of size K × 1) and
the weight matrix that has Gaussian distributed data, and the priors
whichhaveGammadistribution. The equation for the priors of the bias
vector can be written as

qðλÞ=
YK
e= 1

G λe;αλ +
1
2
,

1
βλ

+
f
b2
e

2

0@ 1A�1
0B@

1CA, ð18Þ

where K is the number of unique values in ci (discrete labels vector
created in theprevious step) and λdenotes theK × 1 vector of precision
priors over bias parameters. The equation for the priors of the weight
matrix can be written as

qðΨÞ=
YR
s = 1

YK
e= 1

G ψs
e;αψ +

1
2
,

1
βψ

+
ws

e

� �2
2

 !�1
0@ 1A, ð19Þ

where Ψ denotes the R ×K matrix of precision priors over weight
parameters. The approximate posterior distribution of the supervised
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learning parameters is a product of multivariate normal distributions

qðb,WÞ=
YK
e= 1

N
be

we


 �
;Σ be,we

� � 1>eteeZe

" # 
eλe +N 1>eZ>

eZ1 diag eψe

� �
+fZZ>

24 35�1
1CA:

ð20Þ

The approximate posterior distribution of the score variables is a
product of truncated multivariate normal distributions

qðTÞ=
Yn
i = 1

T N ti; eW>ezi + eb,I,Y
e≠ ci

I tcii > tei
� � !

, ð21Þ

where Ið�Þ is the indicator function, and the untruncated mean
values depend on the posterior expectations of the projected
instances and the supervised learning parameters. T N ð�;μ,Σ,ρð�ÞÞ
denotes the truncated normal distribution with the mean vector μ,
the covariance matrix Σ, and the truncation rule ρ( ⋅ ) such that
T N ð�;μ,Σ,ρð�ÞÞ / N ð�;μ,ΣÞ if ρ( ⋅ ) is true and T N ð�;μ,Σ,ρð�ÞÞ =0 if
otherwise. We need to compute the posterior expectations of the
score variables in order to update the approximate posterior dis-
tributions of the projected data values and the supervised learning
parameters. We can approximate these expectations using a naive
sampling approach55.

The term XX⊤ which is included in the variance of Q ensures that
the variance of the original data and that of the projected matrix
remain similar. This is similar to PCA, which also attempts to preserve
the maximum variance of data in principal directions. Note that
computationally, PCA optimizes the preservation of Euclidean dis-
tance among data points in HD space and low dimensional repre-
sentation. Similarly, Eq. (21) includes the term eψe

� �
+fZZ>

which
preserves the variance of data points corresponding to different dis-
crete labels representing small parts of the manifold.

The Bayesian projection algorithm in MDA is based on a varia-
tional lower bound, and can be written as (Supplementary Fig. S2)
1. Initialize q(Q),q(Z), q(b,W), and q(T) randomly

repeat
2. Update q(Φ) and q(Q) using Eqs. (15) and (16)
3. Update q(Z) using Eq. (17)
4. Update q(λ), q(Ψ), and q(b,W) using eqs. (18),(19) and (20)
5. Update q(T) using equation

(21) until convergence
6. return q(Q)

The projected data is computed by U =XTμ, where μ=EqðQÞ½Q�.

Manifold embedding
In the last step of MDA, a deep neural network trained with uniform
manifold approximation and projection (UMAP)19,56 loss function is
used to embed the projected matrix U= ðu1, � � � ,unÞT 2 Rn×R into
V= ðv1, � � � ,vnÞT 2 Rn × L. A cross entropy loss functiondefinedbetween
distribution of data in the target and embedded spaces57 is optimized
during the training. In particular, the technique computes local, one-
directional probabilities ðpijjÞ1 ≤ i,j ≤n between a point and its k-nearest
neighbors to determine the probability with which an edge (or sim-
plex) exists. This is based on the assumption that data are uniformly
distributed across a manifold in a warped data space. Under this
assumption, a local notion of distance is set by the distance to the k th
nearest neighbor, and the local probability is scaled by that local
notion of distance, which is defined as:

pjji = exp � d ui,uj

� �
� ρi

� �
=σi

� �
: ð22Þ

Here, dðui,ujÞ represents the distance between the row vectors ui and
uj (e.g., Euclidean distance), σi is the standard deviation for the Gaus-
sian distribution, based on the perplexity parameter, such that one
standard deviation of the Gaussian kernel fits a set number of nearest
neighbors in U. The local connectivity parameter ρi is set to the dis-
tance from xi to its nearest neighbor, and σi is set to match the local
distance around ui upon its k nearest neighbors (where k is a hyper-
parameter). After computing the one-directional edgeprobabilities for
each data point, a global probability is computed as the probability of
either of the two local, one-directional probabilities occurring,which is
defined as:

pij = pjji +pijj
� �

� pjjipijj : ð23Þ

The computation of the pairwise probability qij between points in the
embedding space V= ðv1, � � � ,vnÞT 2 Rn× L uses the following function:

qij = 1 +a vi � vj
��� ���2b� ��1

, ð24Þ

where a and b are hyperparameters that are set based on a desired
minimumdistancebetweenpoints in the embedding space. Tofind the
embedded vectors v1,⋯ , vn, a cross entropy loss function is opti-
mized. In particular, the following loss function is defined

HðP,QÞ=
X
i≠j

pij log
pij

qij

 !
+ 1� pij

� �
log

1� pij

1� qij

 !
, ð25Þ

where P = ðpijÞ1≤ i,j≠n, and Q= ðqijÞ1≤ i,j ≤n.
MDA is an optimal blend of global structure-preserving techni-

ques like PCA and multi dimensional scaling (MDS)36, and local
structure-preserving methods like t-SNE, UMAP and LLE. Please see
Supplementary Section 3 for detailed proof of howMDA preserves the
local and global manifold structure.

Experiments
Segmentation. We used Dense-UNet, a deep learning model, to seg-
ment brain tumors in magnetic resonance (MR) images. The BraTS
2018 dataset25, which contains multimodality 3D MRI images with
tumor segmentation labels annotated by physicians, was used to train
and evaluate the model. The dataset includes 484 cases in total, which
can be divided into 210 high-grade gliomas (HGG) and 75 low-grade
gliomas (LGG) cases. Dense-UNet is a modified version of the U-Net
architecture that uses dense connections to increase feature reuse and
improve performance. The network consists of seven dense blocks
(four in the encoder and three in the decoder), each of which stacks
eight convolutional layers. Every two convolutional layers are linked
together in a feed-forward mode to maximize feature reuse. In our
experiments,we randomly split the dataset into 400 training cases and
84 testing cases. We only used the T1 MRI images as inputs, and we
chose the 51st to 100th frame of each 3D volume. This preprocessing
resulted in a training set with 20,000MRI images and a testing set with
4,200 MRI images. We trained the model using the binary cross
entropy loss function and the Adamoptimizer.We set the batch size to
16 and used the early stop strategy58 with patience parameter of 20 to
monitor the validation loss. After training, theDice coefficient between
the network’s output and the ground truth of the training and testing
sets were 0.7850 and 0.7354, respectively. Examples of the outputs of
the trained network are shown in Supplementary Fig. S13.

Survival prediction. We established a multi-layer perceptron (MLP)
model to predict the survival days of cancer patients from genomics
data. We used the Cancer Genome Atlas (TCGA)28 dataset, which
contains gene expression (normalized RNA-seq) and patient survival
data for 10,956 tumors from 33 cancer types. The survival prediction
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network had six fully connected blocks in total. Each block contained
two fully connected layers with the same dimension and one batch
normalization layer. The number of dimensions was reduced from
2048 to 1024, then 512, 256, 128, and 64. After that, a dropout layer
with dropout rate of 0.25 and a fully connected layer with 4 channel
were adopted. Finally, the 1-dimensional output gave the prediction of
the patients’ survival days. Before training, we conducted data pre-
processing. We first selected the cases where the information “days to
death”was available. Then, we standardized the survival days to 0-1 by
dividing by the maximum value. Finally, we saved the corresponding
gene expression value of each case and processed the data by z-score
normalization. After preprocessing, the applicable data included 2,892
cases, each containing the normalized expression value of 20,531
genes and corresponding standardized survival days. All cases were
split into train-test subsets with a 4/5:1/5 ratio. During the training
process, we selected the mean squared error (MSE) loss function and
Adam optimizer. We set the batch size as 32. Additionally, we adopted
the early stop strategy to monitor the validation loss with patience
parameter of 50. After training, theMSE between the network’s output
and the ground truth of the training and testing sets were 0.001227
and 0.007845, respectively.

Gene expression prediction. We established a gene expression pre-
diction network that can effectively estimate the gene expression
profiles for different chemical perturbations. The network is from a
recent drug discovery researchpaper30, whichfirst encodes the textual
string of amolecule into one-hot vectorsbyusing the SMILES grammar
toparse the string into aparse tree. Thenetwork thenuses a variational
autoencoder (VAE) to embed the one-hot vectors into a continuous
latent representation. Finally, the network uses a multilayer percep-
tron (MLP) to predict the expression profiles of 978 landmark genes.

Defined the dataset asX, we can sample a value of z from q(z∣X) to
compute the empirical lower bound (ELBO). The first part of the var-
iational autoencoder loss seeks to minimize the ELBO, which is cal-
culated as:

Lðϕ,θ;XÞ=EqðzjXÞ½logpθðX,zÞ � logqϕðzjXÞ�: ð26Þ

Here q(z∣X) is a Gaussian distribution whose mean and variance para-
meters are the output of the encoder network, with an isotropic
Gaussian prior pðzÞ=N ð0,IÞ. ϕ and θ denote the parameters of the
encoder and decoder, respectively. The second part of the variational
autoencoder loss is binary cross-entropy, which is used to force the
VAE to generate the same output as the input. The VAE part of the
networkwas implemented using the released version of grammar VAE,
which is pretrained with around 2.2M compounds on the ChEMBL
dataset. The MLP part of the network contains four fully connected
layers in total.

The dataset used to train the network was from the LINCS L1000
project29, which contains gene expression profiles for thousands of
perturbagens at a variety of time points, doses, and cell lines. We
selected Level 3 of the L1000 project, which includes quantile-
normalized gene expression profiles of 978 landmark genes, to build
our training and testing sets. The training process was conducted in
two stages. In the first stage, we froze the encoder of the grammar VAE
and only trained the MLP part. In the second stage, we fine-tuned the
entire network. The network was trained with mean square error loss
function and adadelta optimizer. After training, the Pearson correla-
tion between the predicted gene expression values and the ground
truth for the training and testing sets were 0.9755 and 0.9635,
respectively. The Pearson correlation coefficient plots for training and
testing datasets are shown in Supplementary Fig. S12.

Super resolution. In the superresolution task, we used SRGAN to
enhance the resolution of dermoscopic images (ISIC-2019)59 from

32 × 32 pixels to 64 × 64 pixels. SRGAN60 is a well-established deep
learning model for superresolution. It consists of two parts: a gen-
erator and a discriminator. The generator is responsible for upsam-
pling the low-resolution images tohigh-resolution images. It contains 4
residual blocks with shortcut connections, batch normalization, and
PReLU activation functions. It also contains 1 upsampling block. The
discriminator contains 7 convolutional layers with leaky ReLU activa-
tion functions. The loss function of the generator composes of the
content loss lcon and the adversarial loss ladv, which are defined as:

lcon =
1
N

XN
n= 1

IHR
n � GθGðILRÞ

��� ���, ð27Þ

ladv =
XN
n = 1

� logDθD
ðGθG

ðILRÞÞ: ð28Þ

Here N denotes the number of images, ILR and IHR denote the low-
resolution input images and real high-resolution images, respectively.
G and D represent the generator and discriminator. θG and θD are
trainable parameters of the generator and discriminator. The
discriminator is trained to distinguish the real HR images and the
outputs of the generator. The loss function of the discriminator is
defined as:

minGmaxDV ðG,DÞ= EIHR ∼ptrainðIHRÞ + EILR ∼pG
logð1� DðGðILRÞÞÞ, ð29Þ

where ptrain and pG are the data distributions of the low-resolution
samples and generated images. E( ⋅ ) represents the expectation
calculation.

The ISIC-2019 dataset59 consists of 25,331 dermoscopic images,
including 4,522 melanomas, 12,875 melanocytic nevi, 3,323 basal cell
carcinomas, 867 actinic keratoses, 2,624 benign keratoses, 239 der-
matofibromas, 253 vascular lesions, and 628 squamous cell carcino-
mas. We trained the SRGAN model using the Adam optimizer with an
initial learning rate of 10−5, a batch size of 4, and a total of 300 epochs.
After training, the mean squared error (MSE) between the generated
images and the high-resolution ground truth images was 1.44 × 10−4 on
the training set and 1.58 × 10−4 on the testing set. Examples of the
outputs of the DNN are shown in Supplementary Fig. S15.

Classification. We used the ResNet50 model31 to classify lung X-ray
images. The COVID-19 radiography dataset32,33 contains 21,165 X-ray
images in total, including 3616 COVID-19 positive cases, 10,192 normal
cases, 6012 lung opacity cases, and 1345 viral pneumonia cases. The
ResNet50 model consists of 4 substructures, each of which has 3, 4, 6,
and 3 residual blocks, containing 3 convolutional layers each. Shortcut
connections are also equipped in all residual blocks to solve the
degradation problem. Before training, we split the images into train-
ing, testing, and validation subsets with a 2/3:1/6:1/6 ratio. We resized
the images to 256 × 256 pixels, normalized them to a scale of0 to 1, and
augmented them by randomly shifting, rotating, shearing, zooming,
and flipping. During training, we used the categorical cross-entropy
loss function, the Adam optimizer, and set the initial learning rate to
10−5 and the weight decay to 10−5. We also set the batch size to 32 and
used the early stop strategy to monitor the validation accuracy with
patience parameter of 20.We saved the bestmodel during the training
stage. After training, the accuracy of the model for the training and
testing set was 0.9270 and 0.9131, respectively. Confusion matrices of
the predicted labels by the DNN are shown in Supplementary Fig. S14.

Unsupervised MDA analysis of scRNA-seq data of zebrafish
embryogenesis. To demonstrate the superiority of unsupervised
MDA in analyzing the manifold in scRNA-seq data, we use here a
large dataset obtained through profiling 38,731 cells from 694
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embryos across 12 closely separated stages of early zebrafish
development37 using a massively parallel scRNA-seq technology
named Drop-seq61. Data were acquired from high blastula stage
(3.3 h postfertilization (hpf), moment after transcription starts from
zygotic genome) to six-somite stage (12 h after postfertilization, just
after the gastrulation). Most cells are pluripotent at high blastula
stage, where as many cells have differentiated into specific cell
types at six-somite stage.

Implementation and parameter settings
Both Python and Matlab 2020a (MathWorks Inc., Natick, MA, USA)
versions of MDA implementation are available. The deep learning
models for different tasks were implemented and trained in Python
(See Supplementary Fig. S16 for training and validation curves for
two tasks). PCA and t-SNE implemented by Matlab have been used
to produce the results of these method with default parameters. All
the scale parameters (αλ, βλ, αϕ, βϕ, αψ, and βψ) in Bayesian projec-
tion were initialized as 1. The projection dimension was set to R = 16
and the number of maximum iterations to 200. For deep learning
embedding, tensorflow package was used for training a network
with a single embedding layer. The adam optimizer with a learning
rate of 0.001 was used for optimization. The values of a and b were
set to 1. The number of nearest neighbor was set to 30. In unsu-
pervised MDA, the manifold outline was created from the input
data. To this end, the distances among the input data points were
computed and one end point of the manifold was found. The dis-
tances of all the data points from the end point was then computed
and used for Bayesian projection and deep learning embedding to
create the MDA visualizations.

Creation of colors for visualization in MDA
To compute the discrete distance over the target manifold, we follow
these steps: (1) Compute the Euclidean distances between all pairs of
data labels. (2) Find the endpoint of the target manifold. (3) Discretize
the distance vector using the same automatic binning algorithm used
in MDA. Use the labels of the bins to color the data labels in MDA
visualizations. The colors in the MDA visualizations represent the dis-
tance of the data labels from the endpoint of the target manifold.

Ablation study
In ablation experiments, we replaced the deep learning-based
embedding of MDA with LDA and t-SNE methods. We visualize the
features of the DNNs before and after training for five different tasks in
Supplementary Fig. S23. The MDA-LDA method can display a rainbow
shape similar to the proposed MDA, and the quality of the features
before and after training can be reflected by the color distribution.
However, MDA-LDA fails to generate reasonable results in many cases
suchas feature visualization for segmentation taskbefore training. The
MDA-tSNE method cannot obtain a continuous manifold embedding.
The embedded 2D points are very scattered. This is because t-SNE
preserves only the local informationandhas poor ability to capture the
global information of the data.

Quantitative evaluations
Computation of Pearson correlation: For the regression tasks, first, the
geodesic distance26 among the data points is computed from the HD
data and low dimensional representations. The Pearson correlation
coefficient between the two geodesic distances is then computed.
DEMaP index was computed following ref. 23.

k-nearest neighbor classification accuracy: For the classification
tasks, following common practice inmachine learning community, we
chose 70% of the data from low dimensional representations for
training a k-NN classifier and 30% for testing. The mean performance
for 5-fold cross validation is reported.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. There was no blinding. The analyses performed do not involve
evaluation of any subjective matters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current
study are in the manuscript and supplementary. The web links for the
datasets used in the paper are LINCS L1000, BraTS2018 (https://www.
kaggle.com/datasets/sanglequang/brats2018), TCGA (https://www.
cancer.gov/ccg/access-data#tcga-amp-continuing-analyses-genomic-
data-resources), ISIC-2019 (https://challenge.isic-archive.com/data/#
2019), and COVID-19 radiography dataset (https://www.kaggle.com/
datasets/tawsifurrahman/covid19-radiography-database). All other
relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files or from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
MDA implementation is available as a CodeOcean capsule (https://doi.
org/10.24433/CO.0076930.v1). Its source codes can be found at
https://github.com/xinglab-ai/mda(https://doi.org/10.5281/zenodo.
10140440)62.
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