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Quantum transport of high-dimensional
spatial informationwith a nonlinear detector

Bereneice Sephton1, Adam Vallés 1,2,3 , Isaac Nape 1, Mitchell A. Cox 4,
Fabian Steinlechner 5,6, Thomas Konrad 7,8, Juan P. Torres 3,9,
Filippus S. Roux10 & Andrew Forbes 1

Information exchange between two distant parties, where information is
shared without physically transporting it, is a crucial resource in future
quantum networks. Doing so with high-dimensional states offers the promise
of higher information capacity and improved resilience to noise, but progress
to date has been limited. Here we demonstrate how a nonlinear parametric
process allows for arbitrary high-dimensional state projections in the spatial
degree of freedom, where a strong coherent field enhances the probability of
the process. This allows us to experimentally realise quantum transport of
high-dimensional spatial information facilitated by a quantum channel with a
single entangled pair and a nonlinear spatial mode detector. Using sum fre-
quency generation we upconvert one of the photons from an entangled pair
resulting in high-dimensional spatial information transported to the other. We
realise a d = 15 quantumchannel for arbitrary photonic spatialmodeswhichwe
demonstrate by faithfully transferring information encoded into orbital
angular momentum, Hermite-Gaussian and arbitrary spatial mode super-
positions, without requiring knowledge of the state to be sent. Our demon-
strationmerges the nascent fields of nonlinear control of structured light with
quantum processes, offering a new approach to harnessing high-dimensional
quantum states, and may be extended to other degrees of freedom too.

Information exchange is the backbone of modern society, with our
world connected by global networks of fibre and terrestrial links.
Quantum technologies allow this exchange to be fundamentally
secure, fuelling the nascent quantum global network1. For example,
quantum key distribution exchanges a key from peer to peer (usually
Alice and Bob) to decode the information transmitted between com-
municating parties2, quantum secret sharing splits such a key amongst
many nodes3 and quantum secure direct communication sends it

without a key, but rather encoded in a transmitted quantum state4. In
all these schemes, like its classical counterpart, the information is sent
across a physical link between the sender and receiver. Remote state
preparation5,6 allows information exchange between parties without
transmitting the information physically across the link, but the sender
(Alice) must know the information to be sent. Teleportation7–10 allows
protected information exchange between distant parties without the
need for a physical link11, facilitated by the sharing of entangled
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photons and a classical communication channel, where the informa-
tion sent must not be known by Alice.

All the aforementioned schemes would benefit from using high
dimensional quantum states, offering higher channel capacity12,
security13, or resilience to noise14. In the context of spatial modes of
light as a basis, orbital angular momentum (OAM) has proven parti-
cularly useful and topical15–17, as has path18 and pixels19, as potential
routes towards high-dimensions. Yet experimental progress has been
slow, with sharing keys shown up to d = 6 in optical fibre20 and d = 7 in
free-space21, and sharing secrets up to d = 1122. Our interest is in
schemes where the information is remotely shared and not physically
sent, such as teleportation, which has been limited to d = 2 using
OAM23–25 and d = 3 using the path degree of freedom26,27. So far all of
these approaches have used linear optics for their state control and
detection, which has known limitations in the context of high-
dimensional states28. More recently, nonlinear optics has emerged as
an exciting creation, control and detection tool for spatially structured
classical light29, but has not found its way to controlling spatially
structured quantum states beyond polarisation qubit measurement30.
Although theoretical schemes have been proposed to use nonlinear
approaches for high-dimensional quantum information processing
and communication31–33, none have yet been demonstrated
experimentally.

Here, we experimentally demonstrate a nonlinear spatial quan-
tum transport scheme for arbitrary dimensions using two entangled
photons to form the quantum channel and a bright coherent source
for information encoding. One of the photons from the entangled pair
is upconverted in a nonlinear crystal using the coherent beam both as
the information carrier and efficiency enhancer, with a successful
single photon detection resulting in information transported to the
other photon enabled by a bi-photon coincidence measurement. Our
systemworks for spatial information in amanner that is dimension and
basis independent, with the modal capacity of our quantum channel
easily controlled by parameters such as beam size and crystal prop-
erties, whichweoutline theoretically and confirm experimentally up to
d = 15 dimensions. Using the spatial modes of light as our encoding
basis, we use this channel to transfer information expressed across
many spatial bases, including OAM, Hermite-Gaussian and their
superpositions. Our experiment is supported by a full theoretical
treatment and offers a new approach to harnessing high-dimensional
structured quantum states by nonlinear optical control and detection.

Results
Concept
A schematic of our concept is shown in Fig. 1 together with the
experimental realisation in Fig. 2a, with full details provided in Sup-
plementary Note 1. Two entangled photons, B and C, are produced
from a nonlinear crystal (NLC1) configured for collinear non-
degenerate spontaneous parametric downconversion (SPDC). Pho-
ton C is sent to interact with the state to be transferred (coherent
source A), as prepared using a spatial light modulator (SLMA), while
photon B is measured by spatial projection with a spatial light mod-
ulator (SLMB) and SMF.

In our scheme, we overlap photons from the coherent source A
with single photon C in a second nonlinear crystal (NLC2), and detect
the upconverted photon D, generated by means of sum frequency
generation (SFG). The success of the process is conditioned on the
measurement of the single photon D (due to the single photon C from
the entangled pair) in coincidence with the single photon B from the
entangled pair. We use a coherent state as input to enhance the
probability for up-conversion, where all the photons carry the same
modal information which we want to transport.

To understand the process better, it is instructive to use OAM
modes as an example; a full basis-independent theoretical treatment is
given in Supplementary Notes 2 through 4. We pump the SPDC crystal

with a Laguerre-Gaussian mode of azimuthal and radial indices ℓp = 0
and pp =0, respectively. OAM is conserved in the SPDC process15 so
that ℓp =0 = ℓB + ℓC. The up-conversion process also conserves OAM34,
so if the detection is by a single mode fibre (SMF) that supports only
spatial modes with ℓD =0, then ℓD =0 = ℓA + ℓC. One can immediately
see that a coincidence is only detected when both A and B are con-
jugate to C, ℓA = ℓB = − ℓC, and thus the prepared state (A) matches the
transported state (B). One can show more generally (see Supplemen-
tary Note 2) that if the detection of photon D is configured to be into
the same mode as the initial SPDC pump (we may call photon D the
anti-pump), then the up-conversion process acts as the conjugate of
the SPDC process, and the state of each photon in the coherent source
A that is involved in the up-conversion is transported to that of photon
B. To keep the language clear, we will refer to those photons in
coherent source A that take part in the up-conversion as photon-state
A, as in the SPDC process where only one pump photon is considered
to take part in the down-conversion process, ignoring the vacuum
term in both cases since they do not give rise to coincidences in our
process. However, up-conversion aided quantum transport only takes
place under pertinent experimental conditions, namely, perfect anti-
correlations between the signal and idler photons from the SPDC
process in the chosen basis, and an up-conversion crystal with length
and phase-matching to ensure for anti-correlations between photon-
state A and photon C (see Supplementary Note 3 for full details).

To find a bound on the modal capacity of the channel, one can
treat the process as a communication channel with an associated
channel operator. This, in turn, can be treated as an entangled state,
courtesy of the Choi-Jamoilkowski state-channel duality35, from which
a Schmidt number (K) can be calculated. We interpret this as the
effective number of modes the channel can transfer (its modal capa-
city), given by

K =

R
T2ðqA,qBÞd2qAd

2qB

h i2
R R

TðqA,qCÞTðqC ,qBÞd2qC

h i2
d2qAd

2qB

, ð1Þ

Fig. 1 | High-dimensional quantum transport enabled by nonlinear detection.
In our concept, information is encodedon a coherent source andoverlappedwith a
single photon from an entangled pair in a nonlinear crystal for up-conversion by
sum frequency generation, the latter acting as a nonlinear spatial mode detector.
The bright source is necessary to achieve the efficiency required for nonlinear
detection. Information and photons flow in opposite directions: one of Bob’s
entangledphotons is sent to Alice and has no information, while ameasurement on
the other in coincidence with the upconverted photon establishes the transport of
information across the quantum link. Alice need not know this information for the
process towork,while the nonlinearity allows the state to be arbitrary andunknown
in dimension and basis.
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where

TðqA,qBÞ=
Z

ψ*
SFGðqA,qCÞψSPDCðqC ,qBÞd2qC ,

with the SFG and SPDC wave functions expressed in the momentum
(q) basis.

Full details are given in Supplementary Note 4. The controllable
parameters are the beam radii of the pump (wp), and the spatially
filtered photons D (wD) and B (w0). Using Equation (1), we calculated
the channel capacity forOAMmodes, with the results shown in Fig. 2b,
revealing that a large pump mode relative to the detected transferred
modes is optimal for capacity. A large pumpmode with respect to the
crystal length also increases the channel capacity, consistent with the
well-known thin-crystal approximation. However, this comes at the
expenseof coincidence events, theprobability of detecting thedesired
OAM mode, which must be balanced with the noise threshold in the
system. We show three experimental examples of this trade-off in
Fig. 2c–e, where the parameters for each can be deduced from the
corresponding labelled positions in Fig. 2b. Good agreement between
theoretical (Kth) and experimentally measured (Kex) capacities vali-
dates the theory. Using the theory, we adjust the experimental para-
meters to optimise the quantum transport channel, reaching a
maximumof K ≈ 15 for OAMmodes, as shown in the inset of Fig. 3. This

Fig. 2 | Realising a quantum transport channel. a A pump photon (λp = 532 nm)
undergoes spontaneous parametric downconversion (SPDC) in a nonlinear crystal
(NLC1), producing a pair of entangledphotons (signal B and idler C), at wavelengths
of λB = 1565 nm and λC = 808 nm, respectively. Photon B is directed to a spatial
mode detector comprising a spatial lightmodulator (SLMB) and a singlemodefibre
coupled avalanche photo-diode detector (APD). The state to be transferred is
prepared as a coherent source A using SLMA (λA = 1565 nm), and is overlapped in a
second nonlinear crystal (NLC2) with photon C, resulting in anupconverted photon
D which is sent to a singlemode fibre coupled APD. Photons B and D aremeasured

in coincidence to find the joint probability of the prepared and measured states
using the two SLMs. b The quantum transport channel’s theoretical modal band-
width (K) as a function of the pump (wp) and detected photons' (w0 and wD) radii,
with experimental confirmation shown in c through e corresponding to parameter
positionsC,D, and E inb.Kth and Kex are the theoretical and experimental quantum
transport channel capacities, respectively. The cross-talk plots are shown as orbital
angular momentum (OAM) modes prepared and transferred. The raw data is
reported with no noise suppression or background subtraction, and considering
the same pump power conditions in all three configurations.

Fig. 3 | Quality of thequantumtransport process. Experimentalfidelities (points)
for our channel dimensions up to the maximum achievable channel capacity of
K = 15 ± 1, all well above the classical limit (dashed line). The solid line forms a
maximum fidelity for the measured transferred state. The inset shows the mea-
sured OAM modal spectrum of the optimised quantum transport channel with
maximum coincidences of 320 per second for a 5 min integration time. The raw
data is reported with no noise suppression or background subtraction.
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limit is not fundamental and is set only by our experimental resources.
We are able to establish a quantum transport setup where the channel
supports at least 15 OAMmodes. The balance of channel capacity with
noise is shown in Fig. 3. Using a probeof purity and dimension36 we use
a traditional measure and estimate a channel fidelity which decreases
with channel dimension, but is always well above the upper bound of
the achievable fidelity for the classical case, i.e., having no entangle-
ment between photons B and C, given by Fclassical ≤

2
d + 1 for d dimen-

sions and shown as the classical limit (dashed line) in Fig. 3. Blue points
show the quantum transportfidelity,measured from Eq. (12), using the
channel fidelity FCh. Here, the channel fidelity measures the quality of
the correlations that can be established between photon-state A and
photon B over the two particle d2 subspace while the quantum trans-
port fidelity, F measures how well SLMB and APDB canmeasure states
transmitted over the channel, requiring measurements over a single
particle d dimensional space. Since FCh ≤F = FChd + 1

d + 1 , it follows that F ,
shown as the solid line above the shaded region in Fig. 3, sets the
upper-bound for the quantum transport fidelity37 and is therefore the
highest achievable fidelity for our system (See Methods for further
details). Note that we use a measurement of a two particle system
becausewe condition on coincidence events between singlephotons B
and D.

Quantum transport results
In Fig. 4 we show results for the quantum transport channel in two,
three and four dimensions. We confirm quantum transport beyond
just the computational basis by introducing a modal phase angle, θ,
on photon B relative to photon-state A (θ = 0) for the two-
dimensional state Ψj i= ‘j i+ expðiθÞ �‘j i (we omit the normal-
ization throughout the text for simplicity). We vary the phase angle
while measuring the resulting coincidences for three example OAM
subspaces, ℓ = ± 1, ± 2 and ± 3. The raw coincidences, without any
noise subtraction, are plotted as a function of the phase angle in
Fig. 4a, confirming the quantum transport across all bases. The
resulting visibilities (V) allow us to determine the fidelities38 from
F = 1

2 ð1 +V Þ, with raw values varying from 90% to 93%, and

background subtracted all above 98% (see Supplementary Notes 7
through 9). Example results for the qutrit state Ψj i = �1j i+ 0j i+ 1j i
are shown in Fig. 4b as the real and imaginary parts of the density
matrix, reconstructed by quantum state tomography, obtaining a
transferred qutrit with an average channel fidelity of 0.82 ± 0.016
(see Supplementary Note 13 for all detailed measurements with the
raw coincidences from the projections in all orthogonal and
mutually unbiased basis). Further analysis of judiciously chosen
transferred states themselves lead to even higher values (see Sup-
plementary Notes 11 and 14).

Next, we proceed to illustrate the potential of the quantum
transport channel by sending four-dimensional states of the form
Ψj i= �3j i+ expðiθ1Þ �1j i + expðiθ2Þ 1j i+ expðiθ3Þ 3j i, with inter-modal
phases of {θ1, θ2, θ3} = { − π/2, −π, −π/2}, { − π/2, 0,π/2}, {π/2, π,π/2}
and {π/2, 0, −π/2}. All possible outcomes from these mutually
unbiased basis (MUBs) are shown in Fig. 4c. We encoded each
superposition (one at a time) in SLMA and projected photon B in each
of the four states. The strong diagonal with little cross-talk in the off-
diagonal terms confirms quantum transport across all states. Fig-
ure 4d shows an exemplary detection of one such MUB state in the
OAM basis: the transferred state (solid bars) with the prepared state
(transparent bars), for a similarity of S = 0.98 ± 0.047 (see description
used in the Methods section). Note that the prepared states (trans-
parent bars) in the figures throughout the letter are obtained by the
averaged sum of all measured values involved, facilitating compar-
isonwith the raw coincidences. Furthermore,wehave also transferred
various unbalanced superpositions of OAM states (see Supplemen-
tary Note 12 and Suppl. Fig. 14 for full details), being able to assign
different weightings. The encoded states are the following:
Ψj i=2 �1j i+ 3 0j i+ 1j i, Ψj i=2 �2j i+3 0j i+ 2j i, Ψj i= �2j i+ 2 0j i+ 2j i,
and Ψj i=2 �3j i+ �1j i+ 1j i+ 2 4j i.

The result in Fig. 4c also confirms that the channel is not basis
dependent, since this superposition of OAM states is not itself an OAM
eigenmode. To reinforce this message, we proceed to transfer d = 3
and d = 9 states in the Hermite-Gaussian (HGn,m) basis with indices n
and m, with the results shown in Fig. 5.

Fig. 4 | Visibilities and quantum state tomography. a Measured coincidences
(points) and fitted curve (solid) as a function of the phase angle (θ) of the corre-
sponding detection analyser for the state ϕ

�� � = ‘j i + expðiθÞ �‘j i, for three OAM
subspaces of ℓ = ± 1, ± 2, and ± 3 (further details in the Supplementary Note 5).
bThe real (Re[ρ]) and imaginary (Im[ρ]) parts of thedensitymatrix (ρ) for the qutrit
state Ψj i= �1j i+ 0j i+ 1j i as reconstructedbyquantumstate tomography. The inset
shows the raw coincidences with maximum coincidences of 220 detected per

second from the tomographic projections (full details in the Supplementary
Notes 6 and 13). c Measurements for the quantum transport of a 4-dimensional
state, constructed from the states ℓ = { ± 1, ± 3}. d Measurements showing the
detection (solid bars) of all the prepared (transparent bars) OAMstates comprising
one of the MUB states. The raw data is reported with no noise suppression or
background subtraction.
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In both cases the measured state (solid bars) is in very good
agreement with the prepared state (transparent bars). Note that the
results only confirm that the diagonal terms of the density matrices of
the input states were transported successfully and so cannot confirm
the transportation of coherences (off-diagonal elements of the density
matrices) before and after quantum transport. The good agreement
between the diagonal elements of the initial and final states is evidence
that the quantum transportworks for these elements, corroborated by
the full phase information already confirmed up to d = 4 and a channel
capacity (that includes phases) up to d = 15. Toquantify the final state’s
diagonal terms for d = 9 we make use of similarity as a measure (see
Methods) because of the prohibitive time (due to low counts) to
determine Fidelity from a quantum state tomography, but note that
this measure does not account for modal phases in the prepared and
measured state. A final summary of example transferred states is
shown in Fig. 6, covering dimensions two through nine, and across
many bases. The prepared (transparent bars) and transferred (solid
bars) states are in good agreement, as determined from the similarity,
confirming the quality of the channel. Note that the coincidence
counts are given for the detected OAM states (solid bars). The

weightings of the prepared ones (transparent bars) are intended to
show the normalized probabilities for visualization purposes.

Discussion
Structured quantum light has gained traction of late39–41, promising a
larger Hilbert space for information processing and communication.
The use of nonlinear optics in the creation of high-dimensional quan-
tum states is exhaustive (SPDC, photonic crystals, resonant meta-
surfaces and so on), while the preservation of entanglement and
coherence in nonlinear processes42 has seen it used for efficient pho-
ton detection43, particularly for measurement of telecom wavelength
photons44. Full harnessing and controlling high-dimensional quantum
states by nonlinear processes has however remained elusive. Notable
exceptions include advances made in the time-frequency domain45,
another degree of freedom to harness high-dimensional states, such as
the demonstration of quantum pulse gates46 for efficient demulti-
plexing of temporal modes as well as for tomographic
measurements47,48, the inverse process of multiplexing by difference
frequency generation49, quantum interference of spectrally distin-
guishable sources50, high-dimensional information encoding51 and
simultaneous temporal shaping and detection of quantum
wavefunctions52. To the best of our knowledge, our work is the first in
the spatial domain, offering an exciting resource for controlling and
processing spatial quantum information by nonlinear processes.
Combining advances in high-dimensional spectral-temporal state
control53 and on-chip nonlinear solutions54 with the spatial degree of
freedom could herald new prospects in quantum information pro-
cessing beyond qubits.

In conclusion, we have demonstrated an elegant way to perform a
projection of an unknown state using a nonlinear detector, facilitating
quantum information in high dimensions, and across many spatial
bases, to be transferred with just one entangled pair as the quantum
resource. Our results validate the non-classical nature of the channel
without any noise suppression or background subtraction. While our
quantum transport scheme cannot teleport entanglement due to the
need of encoding the state to be transferred in many copies, it
nevertheless securely transfers the state of the laser photons to the
distant and previously entangled photon, and it does this without
using knowledge of the state of the laser photons (see Supplementary
Notes 10 and 15 discussing the challenges to move from transport to

Fig. 6 | Summary of transferred states. Similarities for transport of a 2,3,4 and
9-dimensional superposition states in the OAM (represented as φ

�� �) and HG
(represented as γ

�� �) bases shown and labelled to the left. Transferred states
are φ1

�� �
= 0j i + �1j i, φ2

�� �
= �1j i+ 1j i, φ3

�� �
= 0j i � 1j i, φ4

�� �
= �2j i+ 0j i+ 2j i, γ1

�� �
=

HG1,0

�� �
+ HG1,1

�� �
+ HG0,1

�� �
, φ5

�� �
= �3j i � i �1j i+ 1j i + i 3j i, γ2

�� �
= HG0,0

�� �
+ HG1,0

�� �
+

HG1,1

�� �
+ HG0,1

�� �
and γ3

�� �
= HG0,0

�� �
+ HG2,0

�� �
+ HG0,2

�� �
+ HG2,2

�� �
+ HG4,0

�� �
+

HG0,4

�� �
+ HG4,2

�� �
+ HG2,4

�� �
+ HG4,4

�� �
. The similarity of diagonal elements of the

density matrix together with prior phase information confirms coherent transport
up to d = 4 but not for d = 9, where only the diagonal elements are assessed. Raw
data are reported without noise suppression or background subtraction.

Fig. 5 | Quantum transport in the Hermite-Gaussian basis. Coincidence mea-
surements for quantum transport of a a 3-dimensional andb a 9-dimensionalHGn,m

state, constructed from the states (n,m) = {(0, 1), (1, 0), (1, 1)} and (n,m) = {(0, 0),
(2, 0), (0, 2), (2, 2), (2, 4), (4, 2), (4, 4)}, respectively. The weights of the diagonal
elements of the density operator of the transported state (solid bars) are in good
agreement with the weights of the prepared state (transparent bars). The raw data
is reported with no noise suppression or background subtraction.
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teleport). Importantly, our comprehensive theoretical treatment out-
lines the tuneable parameters that determine themodal capacity of the
quantum transport channel, such as modal sizes at the SPDC crystal
and detectors, requiring only minor experimental adjustments (for
example, the focal length of the lenses). The modal capacity of our
channel was limited only by experimental resources, while future
research could target an increase of the number of transferred modes
by optimising the choice of the relevant parameters and improved
nonlinear processes. Our work highlights the exciting prospect this
approach holds for the quantum transport of unknown high-
dimensional spatial states, and could in the future be extended to
mixed degrees of freedom, for instance, hybrid entangled (polariza-
tion and space) and hyper entangled (space and time) states, formulti-
degree-of-freedom and high-dimensional quantum control.

Methods
Fidelity
To quantify the quality of the quantum transport process, we use
fidelity. It is defined for pure states as the squared magnitude of the
overlapbetween the initial state thatwas tobe transferred ψA

�� �
and the

final transferred state that was received by SLMB and APDB ψB

�� �
:

F = jhψAjψBij2: ð2Þ

In the ideal case, where the transferred state is
ψB

�� �
=
R
αðqÞây

BðqÞ vacj idq (with detailed description in Supplemen-
taryNote 2), the fidelity is F = 1. However, in a practical experiment, the
conditions for the ideal case cannot be met exactly. Therefore, the
fidelity is given more generally by

F =
Z

α*ðqBÞβðqBÞd2qB

=
Z

α*ðqBÞU*ðqDÞgðqA,qD � qA,qDÞ

× f ðqB,qD � qAÞαðqAÞd2qB d
2qA d

2qD:

ð3Þ

Here, f(qB,qC) is the twophotonwave-function of the SPDCstate,while
g(qA,qC,qD) and U*(qD) are the SFG kernel and projection mode for
photon D (the up-converted photon), respectively. It is possible to
envisage a classical implementation of the state-transfer process. One
would make a complete measurement of the initial state, send the
information and then prepare photon Bwith the same state. To ensure
that thequantum transport process canoutperformthis classical state-
transfer process, the fidelity of the process must be better than the
maximum fidelity that the classical quantum transport process can
obtain.

In order to determine the classical bound on the fidelity by which
we measure the transferred state ψ

�� �, we define the probability of
measuring a value a by

PψðaÞ= ψ
� ��Êa ψ

�� �, ð4Þ

where Êa is an element of the positive operator valued measure
(POVM) for the measurement of the initial state. These elements obey
the condition.

X
a

Êa = I, ð5Þ

where I is the identity operator. The estimated state associated with
such a measurement result is represented by ψa

�� �
.

For the classical bound, we consider the average fidelity that
would be obtained for all possible initial states. This average fidelity is

given by

F =
Z X

a

PψðaÞjhψjψaij2 dψ,

=
Z X

a

ψ
� ��Êa ψ

�� �jhψjψaij2 dψ,
ð6Þ

where dψ represents an integrationmeasure on the Hilbert space of all
possible input state. We assume that this space is finite-dimensional
but larger than just two-dimensional. Since all the states in this Hilbert
space are normalized, the space is represented by a hypersphere. A
convenient way to represent such an integral is with the aid of theHaar
measure. For this purpose, we represent an arbitrary state in the
Hilbert space as a unitary transformation from some fixed state in the
Hilbert space ψ

�� �! Û ψ0

�� �
, so that dψ→ dU. The average fidelity then

becomes the following

F =
Z X

a

ψa

� ��Û ψ0

�� �
ψ0

� ��Ûy
ÊaÛ ψ0

�� �
ψ0

� ��Ûy
ψa

�� �
dU

=
Z X

a

tr fρ̂aÛρ̂0Û
y
ÊaÛρ̂0Û

ygdU:

ð7Þ

The general expression for the integral of the tensor product of four
such unitary transformations, represented as matrices, is given by

Z
UijðUyÞklUmnðUyÞpq dU

=
1

d2 � 1
δilδjkδmqδnp + δiqδjpδmlδnk

� �

� 1

ðd2 � 1Þd
δilδjpδmqδnk + δiqδjkδmlδnp

� �
:

ð8Þ

Using this result in Eq. (7), we obtain

F =
1

ðd + 1Þd d +
X
a

ψa

� ��Êa ψa

�� � !
, ð9Þ

where d is the dimension of the Hilbert space and where we
imposed tr fρ̂0g= tr fρ̂2

0g= tr fρ̂ag= 1. We see that F is maximal if Ea
represents rank 1 projectors and Ea ψa

�� �
= ψa

�� �
, that is, Ea = ψa

�� �
ψa

� ��.
Then

P
a ψa

� ��Êa ψa

�� �
=d. It follows that the upper bound of

the fidelity achievable for the classical state-transfer process is
given by37

F ≤
2

d + 1
: ð10Þ

The fidelity obtained in quantum transport needs to be better than this
bound to outperform the classical scheme.

Furthermore, we can consider the particular quantum trans-
port of a subspace smaller than the supported by the quantum
transport channel capacity (see more details in Supplementary
Note 4). The quantum transport fidelity of the channel for each
subspace d0 within the d dimensional state, ρ, can be computed by
truncating the density matrix and overlapping it with a channel
state that has perfect correlations. The theoretical fidelity is given
by the expression37

FCh =
d0ðp0 � 1Þ+d02

d02 , ð11Þ

where p0 and d0 are the purity and dimensionality of truncated states.
While this assumes that the channel has a random noisy component
given by Id02=d02, the photon C only has a noise component given by
Id0=d0 therefore the quantum transport fidelity for each photon is
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given by,

F =
FChd

0 + 1
d0 + 1

: ð12Þ

Here the separability criterion admits the classical bounds 1
d02 ≤ FCh ≤

1
d0

and 1
d0 ≤F ≤ 2

d0 + 1
for the full channel and a single state received,

respectively.

Similarity
We use a normalised distance measure to quantify the quality of the
state being transferred, denoted the Similarity (S),

S= 1�
P

jjðjCEx:
j j2 � jCTh:

j j2ÞjP
j
jCEx:

j j2 + P
j
jCTh:

j j2
: ð13Þ

Here we take the normalised intensity coefficients, jCTh:
j j2, encoded

onto SLMA for the jth basis mode comprising the state being trans-
ferred (i.e., Φj i=PjCj j

�� �) and compare it with the corresponding jth
coefficient jCEx:

j j2 detected after traversing the quantum transport
channel (made with jth-mode projections on SLMB) as described in
the Supplementary Note 4. A small difference in values between
encoded and detected state would result in a small ’distance’
between the prepared and received value. As such, the second term
in Eq. (13) diminishes with increasing likeness of the states, causing
the Similarity measure to tend to 1 for unperturbed quantum trans-
port of the state.

Dimensionality measurements
We employ a fast and quantitative dimensionality measure to deter-
mine the capacity of our quantum channel. The reader is referred to
ref. 36 for full details, but here we provide a concise summary for
convenience. The approach coherently probes the channel with mul-
tiple superposition states M,θ

�� �
n.

We construct the projection holograms from the states

Unðϕ,θÞ=M
Xn�1

k =0

exp iΦM ϕ;βk � θ
� �� �

, ð14Þ

which are superpositions of fractional OAM modes,

exp iΦM ðϕ;θÞ
� �

=
eiM 2π +ϕ�θð Þ 0:5em0 ≤ ϕ<θ

eiM ϕ�θð Þ 0:5emθ ≤ϕ<2π

(
, ð15Þ

s rotated by an angle βk � θ= mod βk +θ,2π
	 


for βk =
2π
n k. Here,ϕ is

the azimuthal coordinate.
While θ determines the relative phase for the projections,

physically it corresponds to the relative rotation of the holograms.
After transmitting the photon imprinted with the state M,θ

�� �
n,

through the quantum transport channel, T̂ =
P

‘λ‘ ‘j iA ‘h jB, the pho-
ton is projected onto the state M,0j in. The detection probability is
then given by

Pn θð Þ= j 0,Mh jT̂ M,θ
�� �j2, ð16Þ

having a peak value at P(θ =0) and a minimum at P(θ =π/n). In the
experiment, there are noise contributions which can be attributed to
noise from the environment, dark counts and from the down-
conversion and up-conversion processes. Since the channel is
isomorphic to an entangled state, i.e

T̂ =
X
‘

λ‘ ‘j iA ‘h jB ! ρT̂ : =
X
‘

λ‘ ‘j iA ‘j iB, ð17Þ

we represent the system by an isotropic state,

ρ=pρT̂ + ð1� pÞI2d=d2, ð18Þ

wherep is the probability of transferring a state through the channel or
equivalently the purity and I2d is ad

2 dimensional identitymatrix. In this
case, the detection probability is given by

Pn θð Þ= j 0,Mh jT̂ M,θ
�� �j2 + ð1� pÞ=d2 InðθÞ, ð19Þ

where InðθÞ= j 0,Mh jId2 M,θ
�� �j2.

We compute the visibilities

Vn =
jPnð0Þ � Pnðπ=nÞj
jPnð0Þ+Pnðπ=nÞj

: ð20Þ

Using the fact that the visibility, Vn≔Vn(p, d), obtained for each ana-
lyser indexed by, n = 1, 3, . . . , 2N − 1, scales monotonically with d and
p36, we determine the optimal (p, d) pair that best fit the function
Vn(p,K) to allNmeasured visibilities by employing themethod of least
squares (LSF). The fidelity for the channel, FCh, can therefore be
computed byoverlapping the truncated subspaces of dimensions d0 in
the d dimensional state from Eq. (18), with a channel state having
perfect correlations. From this we compute the quantum transport
fidelity, F from Eq. (12).

Data availability
The data that supports the plots within this paper and other findings of
this study are available from the corresponding authors upon request.
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