
Article https://doi.org/10.1038/s41467-023-43934-4

Merizo: a rapid and accurate protein domain
segmentation method using invariant point
attention

Andy M. Lau1, Shaun M. Kandathil 1 & David T. Jones 1

The AlphaFold Protein Structure Database, containing predictions for over
200 million proteins, has been met with enthusiasm over its potential in
enriching structural biological research and beyond. Currently, access to the
database is precluded by an urgent need for tools that allow the efficient
traversal, discovery, and documentation of its contents. Identifying domain
regions in the database is a non-trivial endeavour and doing so will aid our
understanding of protein structure and function, while facilitating drug dis-
covery and comparative genomics. Here, we describe a deep learning method
for domain segmentation called Merizo, which learns to cluster residues into
domains in a bottom-upmanner. Merizo is trained on CATHdomains and fine-
tuned on AlphaFold2 models via self-distillation, enabling it to be applied to
both experimental and AlphaFold2 models. As proof of concept, we apply
Merizo to the human proteome, identifying 40,818 putative domains that can
be matched to CATH representative domains.

Domains are locally compact regions within proteins that can fold
independently of the rest of the protein and can sometimes support a
biological function on their own. The fold of a domain is not unique to
individual proteins but can be found and adopted by a variety of dif-
ferent sequences. Structural domains are well-annotated in databases
such as CATH1,2, ECOD3, Pfam4 and SCOP5, which leverage sequence,
structure, function and their evolutionary relationships to provide a
comprehensive hierarchical classification of fold space, each with dif-
ferent levels of granularity.

A long-standing challenge in structural biology is the problem of
domain segmentation, or more precisely, how to divide protein
structures into their constituent domains. Wetlaufer envisioned split-
ting proteins into domains as early as 1973, but even the denomina-
tions of what constitutes a domain are contested by different
classification databases6. The structure of protein kinase CK2 (PDB
3BQC [https://doi.org/10.2210/pdb3BQC/pdb] chain A) for example, is
classified in CATH as a two-domain protein (superfamilies 3.30.200.20
and 1.10.510.10), but in ECOD as a single domain (ECOD 206.1.1.24)7.
The difference in the assignment is due to ECOD preserving an active
site formed between the N- and C-terminal lobes, while CATH bases its
assignment on the internal structures of the two (sub)domains.

Early segmentation methods such as PUU8, DOMAK9 and
DETECTIVE10 published in the 1990s relied on the proposition that
domains have a high intra-to-inter-domain contact ratio, and directly
applied this principle to each protein structure to identify its domains.
Newermethods, such as those used in automatic domain classification
by CATH, ECOD and SCOP, instead capitalise on the extensive anno-
tations already conducted and use existing classifications to seed and
find similar domains in query structures based on various criteria7.
CATH, for example, uses CATHEDRALwhich clusters new structures to
already assigned domains by detecting similarities between the sec-
ondary structure components in the protein core, using a graph
theory-based algorithm11.

Broadly, methods that identify domains can be divided into two
groups based on how segmentation is conducted. PUU, DOMAK and
DETECTIVE, as well as the more recent DeepDom12, DistDom13 and
FUPred14, all conduct segmentation in a top-down fashion, inwhich the
most likely “cut points” along the protein sequence are determined
andused topartition it intodomains.A keydisadvantageof this regime
is that discontinuous domains - those that fold in 3D space via two or
more disjoint stretches of residues are typically left over-segmented as
separate domains. The dual of the task, and amore challenging one, is
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to instead predict the domain membership of each residue individu-
ally. The second category of domain detection methods is therefore
composed of bottom-up methods such as UniDoc15, SWORD16 and
DomBPred17, which decompose the input protein into fragments that
are then progressively aggregated into domains. SWORD, in particular,
proposes several alternative configurations as well as an optimal one,
which can be reviewed by users to identify a suitable partitioning.

The AlphaFold Protein Structure Database (AFDB) contains pre-
dicted models for over 200million protein sequences and constitutes
a valuable expansion of protein space18. An obvious use case for
domain segmentation is in the high-throughput identification of
domains from the AFDB, facilitating their sorting into structure data-
bases such as CATH. Compared to experimentallyderived PDB struc-
tures, AFDB models may exhibit less optimal packing or folding,
particularly for rare folds with limited known sequence homology.
Furthermore, unlike experimental structures, the generation of in
silico models is not constrained by the same factors (such as crystal-
lisation success, quality, etc.), enabling the modelling of the entire
sequences, including previously difficult-to-resolve regions. As such,
manyAFDBmodels also feature long stretches of unstructured regions
that may hinder the performance of methods that are not prepared to
operate on such models. More recently, methods such as DPAM have
been developed to specifically operate on AFDB models, leveraging a
combination of inter-residue distances, structural similarity to ECOD
domains and the predicted aligned error (PAE) map produced by
AlphaFold2 to inform domain assignment19.

Our approach to the domain segmentation problem, called Mer-
izo, is based on a deep neural network which conducts bottom-up
domain assignment by learning to directly cluster residues into
domains, based on a combination of its sequence and structure.
Notably, our method makes use of the Invariant Point Attention (IPA)
module introduced in AlphaFold220, leveraging its ability to mix
together sequence and coordinate information to directly encode a
protein structure into a latent representation (Fig. 1). Residue
embeddings are clustered together by using an affinity learning21–23

approachwhereby the ground-truth domainmap is used directly as an
objective, thereby allowing class index-invariant predictions. Residues
that are part of the same domain are encouraged towards the same
embedding, while those that are not are encouraged to have different
embeddings. Merizo is trained on CATH domain annotations and fine-
tuned on a subset of AFDB models using a self-knowledge distillation
approach, allowing the network to be equally applied to experimental
structures as well as those generated by AlphaFold2. Furthermore, we
show how fast and accurate methods such as Merizo can be applied to
the human genome, identifying 40,818 putative domains that can be
matched to existing structures in CATH at various levels of similarity.

Results
Benchmark against existing state-of-the-art methods
Merizo was trained on 17,287 multi-domain proteins with annotations
sourced from CATH 4.3, and another 663 chains were held out to be
used as a testing set (referred to as CATH-663). Targets in CATH-663
do not share any domains from the same homologous superfamily as
the training set in order to better gauge performance on folds that the
network has not seen before. How well a predicted assignment agrees
with the ground truth can be quantified via a number of different
measures. Here, we score predictions based on (1) how well the resi-
dues in a predicted domain overlap with a true domain, measured via
the intersect-over-union (IoU) between residues in the predicted and
ground-truth domain, and (2) how precise the predicted domain
boundaries are, when assessed using the Matthews Correlation Coef-
ficient (MCC; Supplementary Methods). The MCC describes the cor-
relation between the predicted and ground-truth boundary positions,
and a boundary is deemed correct if it is predictedwithin ±m residues
of a ground-truth domain boundary (where m is evaluated at 20

residues). Both scores are calculated at the domain level, andwe report
the domain length-weighted average for each target.

Our benchmark compares the accuracyofdomain assignments by
Merizo against those produced by four recently published methods
including DeepDom12, a CNN-based method from Eguchi et al24.
(referred to as Eguchi-CNN), SWORD16 and UniDoc15. Both DeepDom
and Eguchi-CNN are machine learning (ML)-based methods and
operate on primary sequence and distancemap inputs respectively. In
contrast, SWORD and UniDoc are non-ML-based and conduct seg-
mentation on coordinates in a bottom-up fashion by clustering low-
level structural elements into domains, in a manner similar to Merizo.
In addition to the four published methods, we include four baseline
measures, including scoring ECOD assignments against CATH (where
ECOD assignments are treated as a prediction result), and three ran-
dom assignment methods prefixed with’Random’, where the domain
count is estimated according to the Domain Guess by Size method25.
Targets are then divided into either equally or unequally sized seg-
ments (’Random equal/unequal’) or each residue is assigned into a
domain at random (’Random assigned’).

A summary of the benchmark is shown in Fig. 2. Overall, it can be
seen thatMerizo is the most performant method on the CATH-663 set
when scoring by IoU, achieving a similar median IoU to the ECOD
baseline. Merizo is followed closely by UniDoc which exhibits a similar
median IoU, albeit with a wider distribution. As domain assignments
can change drastically depending on the classification scheme used,
we further divided CATH-663 into two sets, depending on whether
there is consensus between the definitions from CATH and ECOD (a
consensus set with 313 targets and a dissensus set with 350 targets)
(Fig. 2a). Based on this split, most methods perform more strongly on
the consensus set, where targets may bemore obvious in their domain
arrangement and are easier to both classify (for CATH and ECOD) as
well as predict. The opposite is true for the dissensus set, where the
gap between Merizo and UniDoc widens, indicating that where CATH
and ECOD disagree on an assignment, Merizo is more likely than other
methods to produce a CATH-like result.

Where Merizo does not produce a well-scoring result based on
CATH, the assignment may not be wrong per se, but may represent an
alternative assignment that the network has negotiated given its
internal knowledge of domain packing. When the possibility of an
alternative ground truth is considered (such as scoring Merizo against
ECOD), it can be seen that Merizo does produce ECOD-like assign-
ments for a subset of targets despite not being trained to do so
(Fig. 2b). Points on the scatterplot where a data point falls in the upper
triangle indicate targets where Merizo’s domain assignment matches
that of ECOD over CATH, while the lower triangle represents the
opposite. For some targets, the domain annotation of CATH may
contain errors, or where the assignment was made from the culmina-
tion of other priors that our method does not have access to. Indeed,
several cases were identified in the CATH-663 set where pairs of chains
shared similar structures but were inconsistently parsed by CATH,
leading to Merizo underperforming against the conflicting ground-
truth labels (Supplementary Fig. 3).

WhenCATHor ECOD are individually used as the ground truth for
scoring Merizo, it is both expected and observed that Merizo is
attuned to producing CATH-like assignments (Fig. 2c). However,
scoring Merizo dynamically to either CATH or ECOD (whichever
ground truth scores highest), yields a much stronger performance in
terms of both IoU and MCC scores, as well as the number of correctly
predicted domains which increases to nearly 75%, from 65% when
scoring against CATH only (Fig. 2d).

Another important facet of domain segmentation is correctly
predicting the number of domains within a given target. On this task,
domain count predictions byMerizowere themost accurate, scoring a
mean absolute error (MAE) of 0.332 (Fig. 2e). All ML-based methods
including Merizo, Eguchi-CNN and DeepDom also have a tendency to
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underestimate rather than overestimate the number of domains,
whereas the opposite is true for all other methods (Fig. 2f).

Fine-tuning Merizo on AlphaFold2 models
As some AFDB models may contain large stretches of unstructured
regions (which we refer to as non-domain residues or NDRs), we fine-
tuned Merizo on a subset of the AFDB human proteome (AFDB-
human) to encourage the network to become performant on these
models. Domains from AFDB-human have been classified in ECOD,
describing 47,577 domains across 18,038 proteins26. Since Merizo is a
CATH-specific domain segmentationmethod, weopted not to train on
the ECOD classifications, but to instead utilise a self-knowledge

distillation approach whichwas conducted in two stages (seeMethods
sections ‘Fine-tuning on AFDB models’).

A comparison of before and after fine-tuning Merizo is shown in
Fig. 3. On the task of NDR detection, we compared the number of
NDRs predicted by Merizo before and after fine-tuning, as well as to
three baselines: (1) predictions by UniDoc, (2) inferring from PAE/
plDDT and (3) predictions by DPAM. Results show that after fine-
tuning, the ability of Merizo to detect NDRs drastically increases, and
is highly correlated with NDR counts inferred from PAE/plDDT and
those reported by DPAM (Fig. 3a). Examples of domain assignments
by Merizo before and after fine-tuning are shown in Supplementary
Fig. 4. Performance on domain prediction on the CATH-663 set
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Fig. 1 | Overview of the Merizo network. a Summary of the network architecture.
Network inputs to the IPA encoder are the single and pairwise representations and
backbone frames in the style of AlphaFold2. The IPA encoder comprises six weight-
shared blocks, each containing a single IPA block with RoPE positional encoding,
and a bi-GRU transition block. N denotes the residue count in a given target, and k
denotes the maximum number of assignable classes, set to 20. The encoder
returns an updated single representation which is decoded by a masked trans-
former decoder. b Summary of the masked transformer decoder. In the decoder,
learnable domain mask embeddings d are concatenated to the single representa-
tion and passed through a 10-layer MHA stack with ALiBi positional encoding. The

attention-treated output is split to recover updated single and domain mask
embeddings, and each are passed through a linear layer followed by normalisation.
Domain mask predictions are made via calculating the inner product between the
updated single representation s’’ and the conditioned domain embeddings d’. The
positions of NDRs are predicted by passing s’’ through a two-layer bi-GRU followed
by projection into two dimensions. To make per-domain pIoU predictions, the
predicted domain mask tensor is split according to the predicted domain and is
passed through a two-layer bi-GRU, followed by projection into one dimension to
produce a single pIoU value for each domain. ndom represents the number of
predicted domains.
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changes little after fine-tuning but noticeably results in a small drop
in median IoU and MCC scores, but with narrower overall distribu-
tions, suggesting that self-distillation leads to more consistent
assignments (Fig. 3b).

On the set of AFDB-1195, where ground-truth domain assignments
are unavailable, Merizo identifies a total of 3752 domains (Fig. 3c).
Despite DPAM identifying many more domains (5119) than Merizo,
only 3749 (73%) were later classified into ECOD domains. One possible
explanation for this discrepancy is that DPAM has detected domains
that are novel to ECOD and cannot be easily assigned to an ECOD class.
However, a closer examination of targets where DPAM has predicted a
large number of domains revealed thatDPAMhad the tendency to find
domains within the unstructured regions of AFDB models (Fig. 3d-e).
The examples depicted in Fig. 3d, e illustrate cases where DPAM has
over-segmented NDRs, leading to inflated estimates of domain counts.

Furthermore, nearly all domains (3605 domains; 96%) identified by
Merizo can be aligned to the ECOD F40 representative set3 with a TM-
align score of 0.5 or greater27 (Fig. 3c). Even at a higher threshold of
0.6, 3242 domains (86%) can be matched, suggesting that Merizo-
identified domains are reasonably recognisable by ECOD (Fig. 3c).

Both SWORDandUniDoc are incapable of differentiatingdomains
from NDRs, resulting in the inclusion of the latter in domain predic-
tions. In models with a significant proportion of NDRs, this limitation
reduces the effectiveness of both methods when applied to AFDB
models, as NDRs must be addressed separately in order to accurately
segment domains. We briefly explored the possibility of using a plDDT
filter to remove low-quality residues, however, this commonly resulted
in over-fragmented structures, unsatisfactory clean-up, or removal of
residues from folded domains at higher plDDT thresholds (Supple-
mentary Fig. 5). Assigning domains on these models using UniDoc,
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Fig. 2 | Benchmark against existing methods on the CATH-663 set. a IoU dis-
tributions for each method for all CATH-663 targets, and targets where there is
consensus or no consensus between CATH and ECOD assignments. b Comparison
of IoU achieved when scoring Merizo against CATH or ECOD domain assignments.
The colour gradient indicates the density of data points, where yellow and dark
blue are high and low respectively. c Box plots showing IoU and MCC (± 20) dis-
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domains aredefined as thosewith an IoUof at least 0.8 to the ground-truth domain.
Performance of each method on e domain count prediction, and f the number of
under (blue) and over-predicted (red) domains across all targets. All data shown in
this figure represent the fine-tuned version of Merizo. n = 663 for all panels unless
specified otherwise. For all box plots shown, minima andmaxima are shown by the
whiskers, the box limits represent the lower and upper quartiles, and solid lines
inside each box represent the distribution median. Outliers are defined as data
points exceeding 1.5x the interquartile range.
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highlighted cases where UniDoc was unable to partition folded
domains from leftover NDR fragments (Fig. 3d and Supplementary
Fig. 5). In many cases, removing low plDDT residues altered the
assignment by UniDoc (Fig. 3d and Supplementary Fig. 5). Taken
together, the above observations illustrate that the presence of NDRs
in AFDB models can obfuscate the performance of methods that are
unable to handle such regions, leading to unsatisfactory segmentation.
By employing a targeted approach whereby Merizo is fine-tuned to

recognise NDRs, domain segmentation on AFDB models can be made
more robust.

Application of Merizo to the human proteome
As a demonstration of our method, we applied Merizo to the entire
AFDB-human set containing 23,391models generated byAlphaFold228.
The first observation is that approximately 37% of analysed residues
were classified byMerizo as NDRs (Fig. 4a). This value is supported by
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NDR detection is the most robust in Merizo, while UniDoc and SWORD do not
classify these regions entirely, and DPAM over-segments NDRs into additional
domains.
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observations fromSchaeffer et al26. which found that globular domains
comprised 62% of residues in the AFDB-human set. Overall, across
23,391 AFDB-human models, 74,250 candidate domains were identi-
fied, with most of these having high domain-level plDDT scores (resi-
due plDDT averaged across the domain). 96.4% of these domains fall
within the’confident’ to’very high’ plDDT bins demarcated by
AlphaFold228, indicating that most domains identified by Merizo are
segmented from well-folded regions where AlphaFold2 is con-
fident (Fig. 4b).

In addition to predictions of domains, Merizo also outputs esti-
mates of confidence in the predictions, expressed as predicted IoU

(pIoU). The pIoU distribution produced by Merizo also illustrates that
the network is confident inmost of its predictions, asmost fall into the
0.95–1.00pIoUbin (Fig. 4c). Fromour analysis of theCATH-663 set, we
determined that a pIoU cut-off of 0.75 can be used to group domain
predictions into high (pIoU ≥ 0.75) and low-quality (pIoU <0.75) pre-
dictions (Supplementary Fig. 6).

Next, to verify the validity of the identified domains, we extracted
a subset of high-confidence domains by applying cut-offs to the
domain-level plDDT (plDDT ≥ 70) and pIoU scores (pIoU ≥ 0.75). This
process yielded 50,175 high-confidence domains, which were then
putatively assigned to CATH superfamilies using the sequential
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Fig. 4 | Putative domains identified in the entire human proteome. a The
numberof residues identified asdomain residues (DR) andNDR in theAFDB-human
set. Distributions showing the b average domain plDDT and c domain pIoU for
74,250 domains identified byMerizo in 23,391 models of the AFDB-human set. The
red lines indicate thresholds applied to the plDDTandpIoU scoreswhichwereused
to dichotomise a subset for further analysis. The colour bar indicates the plDDT
confidence bin as per AlphaFold2, with very low (red), low (yellow), confident (light
blue) and very high (dark blue) bins. d Distribution of SSAP scores for 50,175
confident domains, aligned to the CATH S40 non-redundant set. SSAP score bins

demarcated above the histogram represent similarity at the CATH architecture (A;
70 > SSAP≥ 60; yellow), topology (T; 80> SSAP≥ 70; light blue) and homologous
superfamily (H; SSAP≥ 80; dark blue) levels. SSAP scores below 60 indicate weak
similarity (red). 40,818 identifieddomains align toCATHdomainswith a SSAPscore
of at least 60. e The most abundant superfamilies identified in AFDB-human by
Merizo. The inset shows the distribution of domains assigned to each CATH class.
f-i Examples of AFDB-human models segmented by Merizo, where each colour
represents a different predicted domain. NDRs are shown in white.
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structure alignment program (SSAP) score29 against the CATH S40
nonredundant set2. The SSAP score quantifies the similarity between
two structures, taking into account the order of residues as well as
secondary structure elements andmotifs. SSAP scores in the ranges of
60–70, 70–80, and 80–100 correspond to similarity at roughly the
architecture, topology, and homologous superfamily levels, respec-
tively. The distribution of SSAP scores, depicted in Fig. 4d, illustrates
the similarity between each high-confidence domain and the best-
matching representative CATH domain. Overall, 40,818 domains
(81.3%)were successfully aligned to an existingCATHclass, with 49.7%,
19.2%, and 12.5% matching at the superfamily, topology, and archi-
tecture levels, respectively.

To analyse the subset of models that did not align straightfor-
wardly to a CATH representative domain, we employed Foldseek’s
easy-cluster algorithm30 for clustering these structures. Applying a
criterion of 50% coverage and a TM-score threshold of 0.5, we identi-
fied 5281 distinct clusters. On closer examination, a significant number
of clusters corresponded to domain fragments, including segmented
blades from propeller folds and variable-sized fragments from repe-
titive domains like HEAT repeats. However, several clusters corre-
sponded to structures exhibiting high domain plDDT (average residue
plDDT greater than 70), which did not find a match among CATH
representatives. We provide examples of these identified folds in
Supplementary Fig. 7.

The superfamily distribution of the putatively assigneddomains is
shown in Fig. 4e. CATH classes 1 to 3 (1: mainly alpha, 2: mainly beta,
and 3: alpha beta domains) comprised most of the assignments, with
only roughly 1% finding matches to classes 4 and 6 (4: few secondary
structures and 6: special). Like the ECOD classification of the AFDB-
human set26, the most abundant domain families included
immunoglobulin-like folds such as canonical immunoglobulins
(2.60.40.10) and cadherins (2.60.40.60). Domains in this topology are
found in a range of proteins related to cell adhesion and immune
response and are formed as long tandem repeats, including titin
(Q8WZ42), sialoadhesin (Q9BZZ2), hemicentin-1 (Q96RW7), and
FRAS1 (Q86XX4; Fig. 4f–i). The most abundant superfolds identified
included Rossmann folds (3.40.50), jelly rolls (2.60.120), alpha/beta
plaits (3.30.70), transferases (1.10.510) and helix-hairpins (1.10.287)
(Supplementary Fig. 8).

Benchmarking runtime against other segmentation methods
Besides accuracy, another important consideration of a method is its
speed. Although accuracy should be the primary concern, the enor-
mous number of models that have been made available in different
databases including the AFDB, means that the speed and efficiency of
methods are increasingly important factors that should not be over-
looked. As such, we conducted a benchmark study of runtimes, com-
paring Merizo against other methods on two sets of proteins. The first
is the CATH-663 benchmark set which contains proteins from 90 to
739 residues long, while the second is a small set of 27 proteins
(referred to as AFDB-27) selected from the AFDB-human set, chosen to
encompass the full range of lengths (up to a maximum of 2700 resi-
dues) and to test runtimes on longer models.

Table 1 shows the measured runtimes for Merizo against UniDoc,
SWORD, DeepDom and Eguchi-CNN and on different hardware. For
several methods including Merizo, the average runtime per target on
the most optimal hardware type (CPU or GPU) is less than a fifth of a
second, with the fastest method being DeepDom, which can process
inputs in batches to allow them to be segmented concurrently. The
slowest method in our benchmark was SWORD, which required
6366 sec (1.7 h) to process theCATH-663 set. As expected, runtimes on
CPU are in general slower than on GPU hardware, however an excep-
tion to this is the UniDoc method which was 30% faster than Merizo
(GPU). While UniDoc boasts faster runtime than Merizo, it is con-
strained by a rule whereby residues that are part of secondary

structure elements are never considered as potential domain bound-
aries. Although this, in theory, reduces the computational cost of the
method greatly, it comes at the cost of not being able to split domains
on residues which fall onto secondary structure elements. Examples of
such cases can be seen in CATH, ECOD as well as in SCOPe (Supple-
mentary Fig. 9 and Supplementary Fig. 10).

Similar results were obtained from the AFDB-27 set which com-
paredMerizo against other high-accuracymethods (including UniDoc,
SWORD and DPAM) on AFDB models. Results are shown in Supple-
mentary Fig. 11, where it can be seen thatMerizo (GPU) andUniDoc are
overall the fastest methods. On targets with fewer than 1500 residues,
UniDoc achieves lower runtimes than Merizo, however, the difference
becomes smaller as models approach 2000 residues in length. The
maximum model size that Merizo can process is limited by GPU
memory; on an NVIDIA 1080Ti with 11GB of memory, this maximum is
roughly 2100 residues. Models longer than this cut-off can instead be
processed either on a GPU with larger memory capacity, or by CPU,
albeit at an 8–10x increase in runtime. Even on a CPU, however,Merizo
compares very favourably to SWORD and DPAM, which on the longer
models can be up to three orders of magnitude slower than Merizo.
This difference is especially prominent when comparing the total
runtime of each method, as SWORD and DPAM require approximately
40 h to process the set of 27models on a single CPU core whileMerizo
requires only 14minon the samehardware.When the accuracy of each
method is also taken into consideration, as well as applicability to
AFDBmodels, the performance ofMerizo compares favourably, being
able to produce accurate domain assignments even on AFDB models
with reasonable runtimes.

Discussion
In this study, we have developed a fast and accurate domain seg-
mentation method which can be applied to both experimentally-
derived PDBs as well as in silico models such as those generated by
AlphaFold2. AlphaFold2 models differ considerably from the former,
particularly in the abundance of NDRs seen in somemodels (which we
estimate to be around 40% of residues in the AFDB-human set). The
presence of these residues can preclude some methods (including
UniDoc and SWORD) from operating successfully. Despite the appar-
ent correlation between NDRs and residues with low plDDT, it is
important to note that applying a simple plDDT filter does not guar-
antee the successful removal of NDRs, as shown in Fig. 3d and Sup-
plementary Fig. 5. It is conceivable that there could exist less common
domains that are adequately modelled by AlphaFold2, but may be
scored with lower confidence owing to their limited representation in
the training data. Applying a poorly characterised plDDT filter could
inadvertently lead to the exclusion of the most interesting aspects of
the AFDB. The process of NDR detection is an intricate process and is
addressed in Merizo by explicitly predicting their locations through a
fine-tuning regime that familiarises the network with these types of
residues.

Besides its speed, the major advantage of Merizo over other
AFDB-centric methods such as DPAM is that Merizo requires only a
PDB structure to operate, while DPAM makes use of several tools and
databases (including HH-suite31, DALI32, Foldseek30 and databases
UniRef30,33 PDB7034 and ECOD3) as well as the PAE map from Alpha-
Fold2. In a high-throughput setting, the minimal dependencies of
Merizomake it particularlywell-suited to operate on a large number of
models, reducing both the amount of time spent on computation as
well as on file management.

On an individual basis, one may surmise that identifying the
boundaries of a domain within a single structure may not be difficult
even by eye, however, the segmentation problem rapidly becomes
intractable when a large number of structures are concerned. As the
basic structural and functional units of protein structures, expanding
our coverage of domain annotations across protein space can improve
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our understanding of their functions and how they interact with one
another. In drug discovery, an expanded description of domains may
facilitate the identification of potential targets as well as aid in repur-
posing existing drugs to new targets. A combination of Merizo toge-
ther with structure searching or comparison tools such as Foldseek30

or Progres35 would be well suited for identifying the structural homo-
logs of a proteinof interest by limiting the search space to the domains
that matter most.

More recently, developments in single-sequence and language
model-based prediction methods36–38 have also been accompanied by
faster runtimes over traditional sequence alignment-based methods
(includingAlphaFold2),whichwill undoubtedly boost the rate atwhich
models will be made available to the scientific community. As these
methods continue to improve in predictive accuracy, it may become
commonplace for predictions to be made at genome scale or above,
necessitating that any downstream analysis such as domain segmen-
tation or function prediction be prepared to process or even re-
process large amounts of data on a regular basis.

Furthermore, classification schemes such as CATH, which we
used for our ground-truth labels, would benefit from having domains
pre-parsed from these large model databases in order to facilitate
their sorting into families. Although we have based our segmentation
predictions on CATH, we recognise that other databases such as
ECOD or SCOP could have been used. However, as other studies have
pointed out, domain assignments for the same protein are not
necessarily agreed upon between different schemes, and classifica-
tion by function, secondary structure or spatial separation may give
different, but equally valid assignments16. In the context ofML, it may
be advantageous to confine the labels used for training on a single
classification scheme (at least in cases where assignments by differ-
ent databases are at odds with one another) in order to avoid inad-
vertently introducing conflicting ground truths. That being said, as
shown in Supplementary Fig. 3, there are cases where Merizo has
produced an assignment that matches that of ECOD but not CATH,
and these cases illustrate that the network’s definition of domain
packing was confident enough to challenge the ground-truth CATH
assignment.

Fast and accurate segmentation methods could also play a role
in determining the domain arrangement of newly discovered folds
and structures, which is especially applicable to exercises such as the
Critical Assessment of Structure Prediction (CASP). In CASP, tools
such as Merizo could be used by the organisers to determine the
domain boundaries of prediction targets, particularly in the free-
modelling category, in which targets have no known homologs in the
Protein Data Bank. Supplementary Fig. 12 shows three multi-domain
targets from the CASP15 exercise which we predicted the domain
boundaries for. Two of these targets, T1170 and T1121, are annotated
by the CASP organisers as two-domain proteins, however, are seg-
mented into three plausible domains by Merizo. It is interesting to
speculate how the prediction performance of some participating
groupsmay have changed depending on the domain definitions used
for assessment.

Methods
CATH training dataset
The PDB chains and domain annotations used for training were
accessed from version 4.3 of the CATH database2. To later assess our
method’s ability to generalise to folds not seen during training, we
devised a training-test split which did not overlap at the CATH
homologous superfamily (H) level. Splitting the dataset at the
superfamily level is imperative, as homology can occur even at low
sequence identities. To generate non-overlapping training and test-
ing datasets, we constructed an adjacency matrix containing all
CATH superfamilies across classes 1 to 6. Edges were added between
superfamilies if a PDB chain can be found that contains domains from
two superfamilies (Supplementary Fig. 1). The resulting graph con-
tains 655 components and is highly disproportionate, with the first
and largest component containing roughly 60% of all superfamilies
(2295), while the rest are spread across the other 654 components
(1585 superfamilies). Additional statistics are summarised in Sup-
plementary Table 1.

Each graph component represents a subset of PDB chains which
only contain domains from an isolated set of superfamilies. Thus, by
iterating over the list of components, each can be assigned to either
the training or the test set without PDB chains overlapping at the
H-level. As the largest component contains the majority of super-
families and domains, it is naturally assigned to the training set. Of the
remaining components, roughly 1 in 20 were held out to comprise the
test set. Further redundancy filtering with CD-HIT39 was performed to
cluster targets which had a sequence identity of greater than 99%. The
final training and testing set contained 17,287 and 663 chains
respectively.

CATH maintains a list of ambiguous domains which have not yet
been assigned to any superfamily referred to as being in the “holding
pen”. Suchdomains are unfinalized in their classification and boundary
annotations. As such, they are masked out during training to avoid
polluting the network by learning these regions as either single
domains or NDRs.

AFDB models used for fine-tuning
After training our network initially on the CATH dataset, Merizo was
fine-tuned on models from the AFDB-human set, in order to improve
predictive performance on these types of models. The AFDB-human
set contains 23,391 models, however, not all models could be used for
fine-tuning for several reasons. First, some AFDB-human models may
contain domains that are homologous to those in the CATH-663 set
and such models should be avoided. To determine a subset of AFDB-
humanmodelswhichdid not sharehomologous domainswith those in
theCATH-663 set, wemade use of ECODdomain annotations available
for both datasets (standard ECOD database for CATH-663, and
Schaeffer et al26. for AFDB-human models). Any AFDB-human model
which contained an ECOD domain in the sameH-group as those in the
CATH-663 set were considered overlapping and thus were not suitable
for training during fine-tuning. Conversely, such overlapping models
were suitable for testing purposes following fine-tuning. Applying this
methodology to the 18,038 AFDB-human models which had ECOD
domain annotations, followed by the removal of single-domain targets
and those with fewer than 200 residues (to expose the network to
longer models with more varied NDRs), we were able to identify 7502
and 1195 AFDB-human models for the training and testing sets,
respectively.

To determine ground-truth NDR labels for each model, we
developed a proxy measure which incorporated both residue plDDT
and PAEmaps for each target. Residues were dichotomised into either
NDR (class 0) or non-NDR (class 1) categories based on two criteria: (1)
the residue plDDT is less than60, and (2) the standarddeviation of PAE
values for the residue is less than0.4. All residuesmeeting both criteria
are assigned as NDR, and all other residues are non-NDR.

Table 1 | Comparison of runtimes on CATH-663 targets

Method Hardware Average time per tar-
get (s)

Total run-
time (s)

Relative

Merizo GPU 0.112 74.32 1.00

CPU 1.095 725.77 9.77

UniDoc CPU 0.078 51.75 0.70

SWORD CPU 9.602 6366.00 85.65

DeepDom GPU 0.020 13.29 0.18

CPU 0.055 36.69 0.49

Eguchi-CNN CPU 4.475 2966.77 39.92
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Network architecture
Merizo is a small encoder-decoder network with approximately 37M
parameters (20.4M in the encoder and 16.8M in the decoder; Fig. 1). At
the core of our network is the Invariant Point Attention (IPA) encoder,
whichmakes use of the IPAmodule foundwithin the structuremodule
of AlphaFold220,40. The role of the IPA module is to facilitate informa-
tionmixing between the single and pairwise channels, while iteratively
organising the backbone frames towards the ground-truth structure.
In our usage, we repurpose the IPA module in an input-reversed
fashion to instead read a folded structure into a latent representation
which can then be decoded to provide the segmentationmap. The IPA
module takes three inputs: a single representation, pairwise repre-
sentation and backbone frames. The single representation is produced
by one-hot encoding the primary sequence into 20 amino acid classes
and then projected into 512 feature dimensions. The dimensionality of
the single representation is maintained throughout the network. For
the pairwise representation, we use the pairwise distance map derived
from alpha carbons, directly embedded into 32 feature dimensions as
continuous values using a linear layer. Finally, the Euclidean backbone
frames are calculated from each residue “frame” (N-CA-C atoms) via
Gram-Schmidt orthogonalization as per AlphaFold2. Each frame con-
sists of a rotation matrix of shape [3, 3] and translation vector of
length 3.

The IPA encoder is composed of six weight-shared blocks, each
with 16 attention heads and employs rotary positional encoding
(RoPE41). In place of the typical feed-forward network that processes
the attention outputs in the original Transformer model (and in
AlphaFold2), we instead utilise a two-layer bi-directional gated recur-
rent unit (bi-GRU) which processes the post-attention single repre-
sentation and introduces sequential dependency to the residue
embeddings. The output of the IPA encoder is an updated single
representation which is conditioned on structural information present
in the pairwise and frame channels.

To make predictions from the single representation, the masked
transformer decoder adapted from the Segmenter model42 is used to
predict domain masks (Fig. 1b). Learnable embeddings corresponding
to k domain masks, where k is an arbitrary value which controls the
maximumnumber of domains that canbe assignedby the network (set
to 20 in our implementation), are concatenated with the single
representation (as if they were extra residues). Setting k to 20 is an
architectural decision and a value greater than the largest number of
domains concurrently seen by the network during training is typically
selected. The largest target in our training set consists of 18 domains
(Supplementary Fig. 2), however with input cropping (see “Methods”
section ‘Training procedures’), this value will drop to approximately
2–4 domains.

The new single representation and learnable domain mask
embeddings are passed through a stack of 10 multi-head attention
(MHA) blocks. Each MHA block employs Attention with Linear Biases
(ALiBi) style positional encoding43 which applies a penalty to the
attention score between pairs of residues, according to the separation
between their residue indices. The output of the MHA stack is divided
to recover the original dimensions of the single representation and
learned domain mask embeddings. Per-residue domain probability
distributions of shape [N, k] are derived by calculating the inner pro-
duct between the [N, 512] single representation and [k, 512] domain
mask embeddings. The per-residue domain probability distributions
can be converted into predicted domain masks (per-residue domain
indices) via the argmax function.

In addition to domainmasks, our network predicts two additional
outputs: the positions of NDRs and per-domain pIoU predictions. NDR
positions are predicted by passing the decoder-updated single repre-
sentation through a two-layer bi-GRUwith 256 hidden dimensions and
projecting the output features of the final layer into two dimensions
(with indices 0 and 1 signifying whether a residue is an NDR or not,

respectively). The argmax of the output generates a binary array of
length N (where N is the number of residues in the input) which can be
multiplied with the domain ID assignments to mask out the positions
of predicted NDRs. To make pIoU predictions, the domain ID prob-
ability distributions are divided according to the predicted domain
masks, and the set of residue probability distributions corresponding
to each domain are passed through a two-layer bi-GRUwith 512 hidden
dimensions. In each case, the final timestep of the bi-GRU is projected
into one dimension to predict a pIoU value between 0–1 which is
trained tomatch the calculated IoUof the assigned domain against the
ground-truth assignment.

In a final stage, the predicted domain assignments are post-
processed in a cleaning step which coalesces any domain with fewer
than 30 residues or any segment fewer than 10 residues, with the
domain preceding it. This step is also performed on the output of the
network prior to pIoU prediction by the final bi-GRU to ensure that
domain pIoU is predicted on the same assignments produced by the
network. During inference, an additional post-processing step is per-
formed on the full chain input whereby if multiple domains are
assigned to the samedomain indexby thenetwork (which for example,
can occur when a target contains a large number of domains), these
domains are separated into different domains if theminimumdistance
between them is greater than 10 Å. This can be done by calculating the
intersection between the predicted domain map and the thresholded
distance map (a.k.a. contact map), as an adjacency matrix, and
assigning each graph component to a new unique domain index.

Training procedures
Our method is trained fully end-to-end in PyTorch, with all input fea-
tures calculated directly fromPDB files. Trainingwas conducted in two
phases: initial and fine-tuning (not to be confused with fine-tuning on
AFDB models, described in Methods section ‘Fine-tuning on AFDB
models’). Initial training was carried out for approximately 30 epochs
using the Rectified Adam (RAdam) optimiser with a learning rate of 1e-
4. During training, each target chain was randomly cropped to a win-
dow of 512 residues. Fine-tuning was carried out for approximately 10
epochs in which the contribution of both the IPA and decoder loss
terms were multiplied by a factor of 2. A minibatch of size 1 was used
throughout, and gradients were accumulated and back-propagated
every 32mini-batches. All trainingwas conducted using up to 6NVIDIA
GTX 1080Ti GPUs with 11GB of memory. Additional details such as the
affinity learning procedure as well as loss functions are described in
the Supplementary Methods section.

Fine-tuning on AFDB models
The fine-tuning of Merizo on AFDB models was performed in two
stages. First, Merizo was fine-tuned to detect NDRs in the AFDB mod-
els. NDR tuning needs to occur first before self-distillation since the
predicted NDRmask overrides the domainmask. Poor performance in
predicting NDRs would naturally lead to poor domain boundary pre-
diction. As ground-truth labels for NDRs are not available, we inferred
these positions via an empirically determined proxy based on residue-
level PAE and plDDT scores (see Methods section ‘AFDB models used
for fine-tuning’). All network parameters are frozen with the exception
of the bi-GRU that predicts the NDR masks. The dataset used for this
exercise consists of the set of 7052AFDBmodels (seeMethods section
‘AFDB models used for fine-tuning’). The Lbg,CE loss component (Sup-
plementary Methods) on the AFDB-1195 set is monitored throughout
to measure network performance on the NDR task.

The second stage is conducted when the loss on the NDR task
converges. All network weights are unfrozen, and training is con-
ducted as described in Methods section ‘Training procedures’. As
ground-truth labels for the AFDB-human models are not available, we
adopted a self-distillation approach whereby the predicted domain
assignment is taken as the ground truth, following a cleaning function
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that removes anydomains smaller than30 residues aswell as coalesces
any segments that are fewer than 10 residues with the domain pre-
ceding it. During fine-tuning, the network is trained on the 17,287
chains with CATH annotations and 7052 AFDB-human models. Net-
work performance on the CATH-663 set is monitored to ensure that
performance on this set does not degrade. Losses on AFDB models
were also scaled by a factor of 0.2. Hyperparameters were the same as
those described in Methods section ‘Training procedures’.

Statistics & Reproducibility
Sample sizes reported throughout the study were determined based
on the availability of training and testing data available. The proce-
dures taken to generate the training and testing split for developing
our deep learningmethod aredescribed clearly in theMethods section
“CATH training dataset” and “AFDB models used for fine-tuning”. No
data were excluded from the analyses. The experiments were not
randomised. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Datasets used as part of this study have been deposited to https://
github.com/psipred/Merizo. Domain assignments for PDB and AFDB
structures from CATH, ECOD, SCOPe and DPAM have been deposited
at https://github.com/psipred/Merizo/tree/main/datasets. AlphaFold2
human proteome models used in this study can be downloaded from
https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/UP000005640_
9606_HUMAN_v4.tar. Protein Data Bank structure files were accessed
from https://www.rcsb.org including PDB 3BQC [https://doi.org/10.
2210/pdb3BQC/pdb] (protein kinase CK2). Source data are provided
with this paper.

Code availability
The code and network weights of Merizo are available at https://
github.com/psipred/Merizo andwill be incorporated into the PSIPRED
workbench at http://bioinf.cs.ucl.ac.uk/psipred/.
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