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High-throughput target trial emulation for
Alzheimer’s disease drug repurposing with
real-world data

Chengxi Zang 1,2, Hao Zhang 1, Jie Xu3, Hansi Zhang3, Sajjad Fouladvand4,
Shreyas Havaldar5, Feixiong Cheng 6,7,8, Kun Chen 9, Yong Chen10,
Benjamin S. Glicksberg 5, Jin Chen4, Jiang Bian 3 & Fei Wang 1,2

Target trial emulation is the process of mimicking target randomized trials
using real-world data, where effective confounding control for unbiased
treatment effect estimation remains a main challenge. Although various
approaches have been proposed for this challenge, a systematic evaluation is
still lacking. Here we emulated trials for thousands of medications from two
large-scale real-world data warehouses, covering over 10 years of clinical
records for over 170 million patients, aiming to identify new indications of
approved drugs for Alzheimer’s disease. We assessed different propensity
scoremodels under the inverse probability of treatment weighting framework
and suggested a model selection strategy for improved baseline covariate
balancing.Wealso found that the deep learning-based propensity scoremodel
did not necessarily outperform logistic regression-basedmethods in covariate
balancing. Finally, we highlighted five top-ranked drugs (pantoprazole, gaba-
pentin, atorvastatin, fluticasone, and omeprazole) originally intended for
other indications with potential benefits for Alzheimer’s patients.

Pharmaceutical development of novel therapeutics for Alzheimer’s
disease (AD) has consumed a large amount of resources over the past
decades but the majority of AD clinical trials have failed to produce
positive results1. Drug repurposing, i.e., identifying novel indications
for already approved drugs with well-defined safety and toxicity pro-
files can potentially serve as a cost-effective way to accelerate AD drug
developmentwith a higher success rate2,3. Although repurposing drugs
for AD has received increasing attention, no success has been reported
on clinical sites4. One important reason is that existing efforts have
been mostly based on pre-clinical (e.g., -omics, chemical, etc.) data,

however, due to the complexity of the disease, these insights may not
be directly translational to clinical settings.

On theother hand, large-scale real-world patient data (RWD), such
as electronic health records (EHR) or administrative claims, has been
accumulated in recent years and becoming readily available. Gen-
erating drug repurposing hypotheses from RWD through emulating
randomized clinical trials (RCTs) has demonstrated great potential in
accelerating drug development and discovery innovations5–8. Due to
the complexity of RWD, trial emulation with large-scale RWD has
becomeagreat touchstone for advancedmachine learning algorithms,
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including machine learning (such as deep learning)-based propensity
score (denoted as ML-PS) methods, for effective inference of treat-
ment effects of drugs by adjusting for confounding issues within the
observational data. As an example, recently a long short-termmemory
with attention-based propensity score model (LSTM-PS) showed
superior performance in balancing covariates than the conventional
logistic regression-based PS model under the inverse probability of
treatment weighting (IPTW) framework7. However, the superiority of
theseML-PSmodels still lacks systematic studies andevaluations in the
context of target trial emulation on different RWD databases and dis-
ease areas.

In this study, we systematically investigated the feasibility of
generating AD drug repurposing hypotheses through a high-
throughput target trial emulation pipeline, using ML-PS models
under the inverse probability of treatment re-weighting (IPTW) fra-
mework. We used two large-scale longitudinal RWD datasets. One is
OneFlorida9, which is a large-scale electronic health record dataset.
The other is MarketScan10, which includes general administrative
insurance claims. Rather than focusing on generating one AD drug
repurposing hypothesis at a time as did in the existing literature3,11–13,
we emulated trials for thousands of drugs recorded in the RWD data-
bases, trying to estimate their adjusted associations with incident AD
diagnoses among mild cognitive impairment (MCI) patients and gen-
erate top-ranked AD drug repurposing hypotheses. Inferring such
associations from large-scale RWD requires that the distribution of
high-dimensional baseline covariates of different drug exposure
groups be balanced after re-weighting, mimicking the randomization
procedure in RCTs5,7,14–16. However, by investigating different ML-PS
models including the gradient-boosted machine-based PS models
(GBM-PS)17–19, multi-layer perception neural network-based PS models
(MLP-PS)20 and the long short-term memory neural network with
attention mechanisms-based PS models (LSTM-PS)7, we found that
these advanced ML-PS models did not necessarily lead to better per-
formance in terms of balancing baseline covariates. In addition, using
the standard model selection strategy for ML-PS models, which splits
the data intomutually exclusive training and testing sets and picks the
hyper-parameters based on cross-validation on the training set (say,
according to the area under the receiver operating characteristic curve
on predicting treatment assignment)21,22, may lead to inferior perfor-
mance. We, therefore, proposed a new model selection strategy by
leveraging both the cross-validation framework and balance diag-
nostics, which yields better performance in balancing baseline cov-
ariates.With this strategy, we showed that a simple regularized logistic
regression-based PS model can outperform other complicated
machine learning models including deep learning in covariate balan-
cing. With the best-performed model, performance, we identified five
top-ranked drugs (summarized in Fig. 3) including pantoprazole,
gabapentin, atorvastatin, fluticasone, and omeprazole, which were
associatedwith reduced risk of AD amongMCI patients in the five-year
follow-up period across both RWD databases. These drugs can
potentially be repurposing candidates for AD. Figure 1 illustrates the
overall pipeline, which includes the following steps.

First, we specified the protocols of hypothetical targeted trials
and their emulations using RWD. For each drug recorded in the data-
sets, we tried to estimate its association with AD onset (Fig. 1a). Briefly,
for each target drug, we included MCI patients who were at least 50
years old at their MCI diagnosis, we need such MCI diagnosis to be
before the date of the first target drug prescription (the index date),
and there is at least one year of records in the database before the
index date for collecting covariates, and noADor AD-related dementia
diagnoses up to five years before the index date. For each target drug,
we emulated one hundred trials by constructing different comparison
groups by selecting patients exposed to either a random alternative
drug or a similar drug within the same therapeutic class (e.g.,
the second-level Anatomical Therapeutic Chemical classification23).

All patients were followed up to five years in the primary analyses and
the two-year follow-up results were provided in the sensitivity ana-
lyses. In total, we investigated over 4300 unique drugs (grouped by
their major active ingredients) in these two databases and emulated
430,000 trials, which are thus referred to as high throughput target
trial emulations. The protocol specifics are outlined in the “Method”
section.

Then, we estimated the adjusted association of the target drug
and the five-year risk of AD under the IPTW framework. To achieve
better baseline covariate balancing, we proposed a new model selec-
tion strategy for ML-PS modeling (Fig. 1b). Specifically, we randomly
partitioned each emulated trial data into mutually exclusive training
and testing sets, and then selected the best modeling hyper-
parameters following the K-fold cross-validation framework on the
training set by leveraging the balance performance on both the
training and validation folds and generalization performance on
the validation fold. We quantified the balance performance by the
standardized mean difference (SMD)15,16 and the generalization per-
formance by the area under the receiver operating characteristic
(AUC). We tested four different ML-PS models including LR-PS, GBM-
PS,MLP-PS, and LSTM-PS, and observed that (i) all theseML-PSmodels
balanced more emulated trials using our proposed ML-PS model
selection strategy than using typical ML model selection strategies,
and (ii) with our strategy, complicated machine learning models such
as LSTM and GBDT did not necessarily outperform the simple reg-
ularized logistic regression model in covariate balancing.

Based on the proposed ML-PS model selection practice, we per-
formed the stabilized IPTW for re-weighted survival analysis in each
emulated trial as shown in Fig. 1c. We estimated the adjusted hazard
ratio of successfully balanced trials after re-weighting. We prioritized
drug candidates that showed significantly reduced risk associatedwith
AD in the following five years after the adjustment, and their adjusted
associations were replicated across the two databases (See details in
the Method-Screening section). Extensive sensitivity analyses (includ-
ing model selection under a nested cross-validation framework, dif-
ferent comparison groups, different baseline covariates selection
driven by both knowledge and causal discovery algorithms, different
follow-up periods, etc.), simulation studies, and rapid literature
reviews were further conducted to show the robustness of our results.
Our proposed high-throughput target trial emulation pipeline can
inform hypothesis generation at scale and can potentially accelerate
real-world evidence generation in the drug development process.

Results
A model selection strategy tailored for ML-PS models results in
better balancing
Taking the OneFlorida database (see Data Section) as our discovery
set, we included 73,927 patients withMCI diagnosis from 2012 to 2020
(Fig. 1a). We found 1,825 unique drug ingredients and, for each drug
ingredients we emulated 100 trials by building different comparison
groups (exposed to random alternative drugs, or exposed to similar
drugs under the same ATC-L2 category), leading to 182,500 trials in
total. We focused on 66 drugs with 6, 600 emulated trials of which
each treatment group has ≥ 500 patients. For each emulated trial, we
randomly partitioned the data into mutually exclusive training and
testing subsets with a ratio of 80:20. Different machine learning-based
propensity score (ML-PS) models, including regularized logistic
regression (LR), gradient-boosted machines (GBM), multi-layer per-
ceptrons (MLP), and long short-term memory networks (LSTM), were
trained on the same training set following a tenfold cross-validation
(CV) procedure (“Method” Section and Fig. 1b), and the best model
hyperparameters were selected by following three strategies: (a) the
area under the receiver operating characteristic curve (AUC) score on
the validation fold during the CV procedure, (b) the cross-entropy loss
(negative log-transformed likelihood) on the validation fold during the
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CV procedure, and (c) our proposed strategy, which leverages balance
performance on the training and validation combined folds, and AUC
on the validation fold during the CV procedure (Method Section and
Box 1). We evaluated the performance of selected models in terms of
balancing baseline covariates before and after IPTW on the training,

testing, and combined datasets. We considered 267-dimensional
baseline covariates including age, gender, comorbidities, and medi-
cation use history (Method section). We considered one covariate as
balanced if its standardized mean difference (SMD) of its prevalence
≤0.124, and one emulated trial before/after IPTW is balanced if the ratio

Fig. 1 | System overview. a Target trial emulations were conducted for all drugs in
two large-scale and longitudinal real-world data: the OneFlorida electronic health
records data and MarketScan administrative claims. The contrast was made
between individuals exposed to the target drug versus different comparison drugs
(a random drug or a similar drug). b Machine learning-based propensity score
models and inverse probability of treatment re-weighting were used for adjusting
high-dimensional baseline covariates (e.g. age, gender, disease comorbidities,
medications, etc) or covariates selected based on causal diagrams and knowledge.

A model selection framework tailored for ML-PS models was proposed to better
balancebaseline covariates on the train, unseen test, and combined sets. cAdjusted
survival analysis per endpoint was computed for each drug. Top-ranked repur-
posing hypotheses were selected. RWD Real-World Data, EHR Electronic Health
Records,MCIMild Cognitive Impairment, AD Alzheimer’s Disease, ATC Anatomical
Therapeutic Chemical classification, DAGs Directed Acyclic Graphs, CV Cross
Validation, ML-PS Machine Learning-based Propensity Score modeling, IPTW
Inverse Probability of Treatment Weight.
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of unbalanced features among all covariates before/after IPTW ≤ 2%7.
We summarized our cross-validation algorithm for the ML-PS model
selection and training in Box 1 (Method section), the evaluation algo-
rithm in Box 2 (Method section), and an illustration in Fig. 1b.

Figure 2 summarizes the balancing performance of the LR-based
PS model on the seen training, the unseen testing, and the combined
datasets after IPTW when using different ML-PS model selection stra-
tegies. We illustrated drugs with at least 10% balanced emulations
among emulations after re-weighting. Figure 2a shows the proportion
of successfully balanced drug trials on the training and testing com-
bined data; we observed that LR-PS models built with our proposed
model selection strategy balanced more emulated trails than using
typical ML model selection strategies. Strategies based on AUC or the
cross-entropy loss on the validation set selected less superior PS
models which balanced far fewer trials across different drugs. Speci-
fically, the existing ML-based model selection strategy selected PS
models that reduced more unbalanced covariates than others on the
testing set (Fig. 2d), but reduced fewer unbalanced covariates on the

training set (Fig. 2c), leading to less superior reduction of unbalanced
covariates on the training and testing combined data (Fig. 2b). Our
proposedmodel selection strategy balanced well on both training and
unseen testing sets, leading to better overall balance performance on
the training and testing combined set (Fig. 2b). The same phenomena
were also observed in other ML-PS models, including GBM-PS (Sup-
plementary Fig. S1), MLP-PS (Supplementary Fig. S2), and LSTM-PS
(Supplementary Fig. S3): existing ML-based model selection strategy
focusedmore on the generalizable performance on the testing set but
showed less superior balance performance on the training set. By
contrast, our prosed model selection strategy achieved improved
overall balancing performance for different ML-PS models.

To test the generalizability of our conclusion, we further applied
ourmodel selection strategy to another type of RWD, theMarketScan,
which is a national healthcare insurance claims database (see
Data Section). Following the same procedures as we did with the
OneFlorida data, we identified a total of 424,961 MCI patients from
2009 to 2020 amongwhich, therewere 2489 unique drug ingredients.

BOX 1

Cross-validation algorithm for training and selecting the machine
learning-based propensity score model
Input: train dataset (X, T) where covariates X 2 Rn×d and treatment
assignment T 2 0,1f gn;

FΘ,Φ: a set ofmachine learning-basedpropensity scoremodelswith
hyperparameter set Θ and learnable parameter set Φ;

Output: fθ0 ,ϕ0 : the best propensity score model with the best
hyperparameter setting θ0Θ and learned parameter ϕ0Φ estimated
from (X, T).

1. Initialize the best hyperparameter θ0 =θ Θ, the best balance
performance n0

unbalance = +1 and the best generalization perfor-
mance AUC0 =0.

2. For each θ in Θ do:
3. Randomly split (X, T) into K equal-sized

folds X,Tð Þ= SK
k= 1

ðXk,TkÞ:

4. For each (Xk, Tk) fold in the K folds do:
5. Train fθ,ϕ on the remaining K-1 folds (XK�k,TK�k) by minimizing

binary cross-entropy loss LðT,fθ,ϕðXÞÞ leading to fkθ,ϕ̂.

6. On the whole (X, T), (a) compute stabilized IPTW w by using fkθ,ϕ̂
and Eq. (1); (b) compute reweighted SMDk using w, Eqs. (2, 3); and (c)

compute the number of unbalanced features nk
unbalance after

reweighting using Eq. (4).
7. On the validation set (Xk,Tk), compute the AUCk using fkθ,ϕ̂
8. Repeat step 4. to 7. until finishing K-fold iterations.
9. Compute average balance performance

nθ
unbalance =E

θ
k∼K½nθ

unbalance� and generalization performance
AUCθ =E

θ
k∼K½AUCk� over K folds.

10. Update θ0 =θ, n0
unbalance =n

θ
unbalance and AUC0 =AUCθ, if

nθ
unbalance<n

0
unbalance or if nθ

unbalance ties n0
unbalance and AUCθ>AUC

0.
11. Repeat step 2. to 10. until all the hyperparmater settings are

iterated.
12. Retrain fθ0 ,ϕ on the whole (X, T) leading to fθ0 ,ϕ0

13. Use fθ0 ,ϕ0 on the whole (X, T), (a) compute stabilized IPTW w by
using Eq. (1); (b) compute reweighted SMD usingw, Eqs. (2), (3); and (c)
compute the number of unbalanced features n0

unbalance after
reweighting using w and Eq. (4).

14. return fθ0,ϕ0 , n0
unbalance, and AUC0.

BOX 2

Evaluation algorithm for themachine learning-basedpropensity score
model on both the seen train and unseen test data
Input: train data (X, T) and test dataðXtest,TtestÞ; fθ0,ϕ0 the propensity
score model with hyperparameter setting θ0 and learned para-
meter ϕ0.

Output: the number of unbalanced covariates after re-weighting
using fθ0,ϕ0 on the train set, test set, and particularly their
combined set.

1. Use fθ0,ϕ0 on the train (X, T), (a) compute stabilized IPTW wtrain by
using Eq. (1); (b) compute reweighted SMDtrain usingwtrain, Eqs. (2), (3);
and (c) compute the number of unbalanced features n0

train after
reweighting using wtrain and Eq. (4).

2. Use fθ0,ϕ0 on the test ðXtest,TtestÞ, (a) compute stabilized IPTWwtest

by using Eq. (1); (b) compute reweighted SMDtest using wtest, Eqs. (2)
and (3); and (c) compute the number of unbalanced features n0

test after
reweighting using wtest and Eq. 4.

3. Use fθ0,ϕ0 on the combined ðX,TÞ∪ ðXtest,TtestÞ, (a) compute sta-
bilized IPTWwall by using Eq. (1); (b) compute reweighted SMDall using
wall, Eqs. (2) and (3); and (c) compute the number of unbalanced fea-
tures n0

all after reweighting using wall and Eq. (4).
4. return n0

train n0
test and n0

all
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We emulated 24,600 trials for 246 drugs that had ≥500 patients
in their respective treated groups. With the MarketScan data, we were
able to obtain the same conclusions: our model selection strategy
selected betterML-PSmodelswhich balancedmore trials than existing
model selection strategies for different ML-PS classes (Supplementary
Figs. S5, S6).

Do deep learning-based PS models result in better balancing?
Recently deep learning-basedmodels have demonstrated great promise
in various applications and researchers have proposed to apply these
models for PS calculation in trial emulation7. However, they followed
model selection strategies based solely on the validation set, leading to
less superior overall balancing performance than our proposed model
selection strategy as shown in the last subsection. Here, using the pro-
posed model selection strategy, we evaluated the performance of the

ML-PS calculationmodel basedon the long short-termmemorynetwork
with attention mechanisms (LSTM) used in Liu et al.7 and the deep
multilayer perceptron network (MLP) on the RWDs.

We observed that both LSTM-PS and MLP-PS did not necessarily
outperform simple LR-PS in terms of balancing baseline covariates in
our emulated trials. Supplementary Table S2 summarizes the balance
performance of different ML-PS models under the best model selec-
tion practice on theOneFlorida data.We also added results fromGBM-
PS as a comparison. We highlighted the best balancing performance in
bold. When considering the number of unbalanced covariates before
(column 5) and after (columns 6 and 9) re-weighting, we observed that
all the ML-PS models greatly reduced the unbalanced covariates after
re-weighting. However, the LR-PS model achieved fewer unbalanced
covariates (columns 6 and 9) andmore balanced trials (column 8) than
otherML-PSmodels after re-weighting. Thus, towards the best balance

a

b c d

Fig. 2 | Balance performance of the regularized logistic regression-based pro-
pensity score models (LR-PS) selected by different model selection strategies,
OneFloridadatabase, 2012–2020. aTheproportion of successfully balanced trials
by LR-PS selected using different model selection strategies. b–d The average
number of unbalanced baseline covariates before and after re-weighting on (b)
train and test combined set, (c) train set, and (d) unseen test set. Three model
selection strategies are (i) the AUC score on the validation fold during the cross-
validation procedure, (ii) the cross-entropy loss on the validation fold, and (iii) our
proposed strategy, which leverages balance performance on the training and
validation combined folds and generalization performance on the validation fold.

We reported drugs with ≥10% balanced trials among 100 emulations. A covariate is
assumed balanced if its standardized mean difference (SMD) of its prevalence
between exposure groups is at most 0.1 and a trial is assumed balanced if the ratio
of unbalanced features among all covariates before/after re-weighting is ≤2%. The
errorbars indicate 95%confidence intervals by 1000-timesbootstrapping.Welch’s t
test (two-sample, two-sided) is used for testing the means of binary indicators for
balanced trials, and p values and their associated significance marks are shown.
*p <0.05; **p <0.01; ***p <0.001; not significant with p ≥0.05 were not marked;
AUC, area under the receiver operating characteristic curve. Source data are pro-
vided as a Source Data file.
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practice in our empirical studies, we adopted our proposed ML-PS
model selection strategy (“Method” section, Box 1) and the LR-PS
model under the inverse probability of treatment weighting (IPTW)
framework to adjust for baseline covariates (Method sections).

Generating drug repurposing hypotheses for AD
We took the OneFlorida database as our discovery set and the Mar-
ketscan database as our validation set. For each drug ingredient in the
databases, we emulated 100 trials with varying comparison groups: (a)
50 groups with subjects being exposed to random drugs, and (b) 50
groups with subjects being exposed to similar drugs under the same
ATC-L2 category (mimicking active-comparator design25). We focused
on 66 drugs from OneFlorida and 246 drugs from Marketscan of
which emulations had at least 500 patients in their treated groups. The
outcome event was the AD onset in the five-year follow-up period
among the MCI patients, and we quantified the risk by the adjusted
hazard ratio (aHR) with 95% confidence intervals (CI). Toward the best
balancing performance, we adopted our proposed selection strategy,
the LR-PS model, and the IPTW framework to adjust for 267-
dimensional baseline covariates (Method sections). A repurposable
drug candidatewas identified if (i) it was associatedwith a reduced risk
(aHR <1) of developing AD among MCI patients than comparison
groups, (ii) its decreased riskwas replicated in both twodatasets (EHRs
and administrative claims), and (iii) to control for potential false
findings, we used the corrected significance level of 1:6× 10�4 by the
Bonferroni method26. Fig. 3 highlights the identified five repurposable
drug candidates, and for additional evidence, we further conducted a
rapid literature review27 for each drug. We summarized the results as
follows:

Pantoprazole is a proton pump inhibitor (PPI) drug for treating
gastroesophageal reflux disease (GERD), a damaged esophagus, and
high levels of stomachacid causedby tumors.The associationbetween
using PPI drugs and the risk of incident AD or non-AD dementias was
contradictory in the existing literature28,29. We observed that panto-
prazole was associatedwith a reduced risk of ADwith aHR 0.81 (95%CI
0.80–0.83) from the OneFlorida and aHR 0.94 (95% 0.92–0.96) from
the MarketScan in the five-year follow-up period.

Gabapentin is an anti-epileptic drug for treating seizures and pain.
Previous research suggested the possible benefit of gabapentin for
behavioral and psychological symptoms of dementia in AD patients
based on summarizing case reviews30 and revealed a crucial role of
gabapentin in the Amyloid Beta toxicity cascade31. We observed that
gabapentin was associated with a reduced risk of AD with aHR 0.76
(95% CI 0.73–0.77) from the OneFlorida and aHR 0.79 (95% CI
0.77–0.81) from the MarketScan in the five-year follow-up period.

Atorvastatin is used to treat high cholesterol and triglyceride
levels and shows potentially beneficial but not significant effects on
AD32,33. We observed that atorvastatin was associated with a reduced
risk of AD with aHR 0.74 (95% CI 0.73–0.76) from the OneFlorida and
aHR 0.92 (95% CI 0.90–0.94) from the MarketScan in the five-year
follow-up period.

Fluticasone is used to treat nasal symptoms, skin diseases, and
asthma. Xu et al. validated fluticasone fromMarketScan and showed a
decreased risk for AD (HR 0.86, 95% CI 0.83–0.89)11, and Lehrer et al.
also suggested a lower incidence of AD after taking fluticasone in
another independent database, FDA MedWatch Adverse Events
Database34. We observed that fluticasone was associated with a
decreased risk of AD with aHR 0.92 (95% CI 0.89–0.95) and aHR 0.86
(95% CI 0.84–0.87) in the five-year follow-up period from the One-
Florida and the MarketScan, respectively.

Omeprazole is also a PPI drug. There is still no consensus on the
role of PPIs and AD28,29,35. We observed that omeprazolewas associated
with a decreased risk of ADwith aHR 0.86 (95%CI 0.84–0.88) from the
OneFlorida and aHR 0.91 (95% CI 0.89–0.94) from the MarketScan in
the five-year follow-up period.

Sensitivity analyses
To assess the robustness of our results, we conducted multiple sensi-
tivity analyses to investigate how the generated repurposing hypoth-
eses would change when we modified different modeling aspects.

First, we developed our primaryML-PSmodel selection under the
cross-validation framework. We further extended our model selection
strategy to the nested cross-validation procedure (with 10-fold outer
cross-validation and 5-fold inner cross-validation)36. As shown in Sup-
plementary Fig. S4, we got similar results as our primary analysis
in Fig. 2.

Second, we investigated how the estimated adjusted hazard ratios
will change when constructing comparison groups in different ways,
including patientswhowere exposed to randomdrugs or similar drugs
under the same ATC-L2 category (Method Section). Two types of
controls are trying to mimic placebo-comparator design and active-
comparator design respectively. As shown in Fig. 3, the aHR results in
sensitivity analyses (-Rand, -ATC) were consistent with primary results
(-All) across both the OneFlorida (FL) and the MarketScan (MS) data-
bases for most of the drugs. One exception is the fluticasone when
using ATC-L2 controls and using the OneFlorida data (Fig. 3d, FL-ATC),
exhibiting a nonsignificant aHR 1.02 (95% CI 1.00–1.04).

Third, adjusting for high-dimensional baseline covariates might
introduce additional bias by conditioning on “bad controls” (e.g.,
mediator, or collider covariates)37,38. Here we adjusted for likely “good
controls”38 by considering hypothetical causal diagrams in the form of
directed acyclic graphs (DAGs). The DAGs were built based on both
existing knowledge and data-driven causal discovery algorithms.
Specifically, we selected a subset of baseline covariates which are,
based on the best available knowledge, risk factors for or associated
with AD, including age (the single most significant factor), gender,
hypertension, hyperlipidemia, obesity, diabetes, heart failure, stroke,
ischemic heart disease, traumatic brain injury due to brain damage,
anxiety disorders, sleep disorders, alcohol use disorders, menopause,
and periodontitis3,39. Second, we used the constraint-based causal
structure learning algorithm stable PC-algorithm40 in each emulated
trial to learn its associated DAGs. For each emulated trial, we excluded
identified colliders (includingM-colliders) andmediators and assumed
that the remaining covariates were more likely to be confounders of
the treatment assignment and theADonset to adjust for.We replicated
our analyses by adjusting for these baseline covariates across two
databases and summarized the results in Fig. 4 (See more on experi-
ment setup and DAG examples in Supplementary Method). Again, we
found consistent aHR trends in this sensitivity analysis as in our pri-
mary results (Fig. 3) for the top five drugs. One additional drug iden-
tified in this sensitivity analysis is albuterol, which is a drug for asthma
and chronic obstructive pulmonary disease (COPD) treatment. We
found aHR 0.85 (95% CI 0.83–0.88) in the OneFlorida and aHR 0.75
(95% CI 0.73–0.76) in the MarketScan in this sensitivity analysis. By
contrast, in the primary analysis albuterol showed aHR of 1.09 (95% CI
1.07-1.10) in the OneFlorida and aHR of 0.72 (95% CI 0.71-0.73) in the
MarketScan.

Lastly, we investigated how different follow-up periods will influ-
ence the generated hypotheses. We estimated aHR at the end of the
two-year follow-up and summarized results in Supplementary Fig. S7.
We replicated all five generated repurposing hypotheses as in the
primary analyses (Fig. 3). One additional hypothesis generated is the
albuterol, as shown in Supplementary Fig. S7f, showing aHR 0.80 (95%
CI 0.79–0.82) in the OneFlorida and 0.78 (95% CI 0.75–0.80) in the
MarketScan.

Simulation studies
We further conducted simulation studies to validate the balancing
performance and, more importantly, the bias reduction when using
our proposed ML-PS model selection algorithm and LR-PS model as
used in our primary analysis. We generated high-dimensional baseline
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covariates X, treatment assignments Z, and time-to-event (t2e) out-
comes T, aiming to simulate high-dimensional covariate space
encountered in our real-world data settings. The data generation
process was detailed in the Method section and illustrated in Supple-
mentary Fig. S8.We simulated trialswith different numbers of subjects
(3000, 3500, 4000, 4500, 5000), different treatment assignment
mechanisms in generation (linear and nonlinear), and different treat-
ment assignment mechanisms in estimation (correctly specified and
incorrectly specified). We summarized the results in Supplementary
Figs. S9, S10. Specifically, our ML-PSmodel selection strategy selected
LR-PSmodels which consistently balancedmore emulated trials under

different settings than other strategies (Supplementary Fig. S9a) and
did well in reducing the number of unbalanced covariates after re-
weighting on the seen training and unseen testing combined set
(Supplementary Fig. S10a). What’s more, regarding the outcome esti-
mation, our strategy showed best 95% confidence interval coverage of
true hazard ratios (Supplementary Fig. S9b) and best reduction of bias
of the estimated marginal hazard ratio (Supplementary Fig. S10d–f)
and lowest mean squared error of the estimatedmarginal hazard ratio
after reweighting (Supplementary Fig. S10g–i) on both seen training
and unseen testing sets (See details in the Method section, and sum-
marized results in Supplementary Table S7). In all, our modeling

(d) fluticasone

Sensitivity analysis on                                          with random drugs as controls 

Sensitivity analysis on                                          with ATC-L2 drugs as controls 

(a) pantoprazole (b) gabapentin

(c) atorvastatin

Primary analysis on 

(Lower risk) (Higher risk) (Lower risk) (Higher risk)

OneFlorida / MarketScan

OneFlorida / MarketScan

OneFlorida / MarketScan

(e) omeprazole

Fig. 3 | Generated drug repurposing hypotheses for AD with adjusted hazard
ratios and 95% confidence intervals in the five-year follow-up period. Target
Trial emulations of these drugs (a–e) were performed on OneFlorida and Market-
Scan data separately. For each drug, treated groups consisted of patients whowere
exposed to the trial drug, and control groups were built by either: (i) randomly
selecting alternative drug groups, or (ii) using drug groups under the same second-
level Anatomical Therapeutic Chemical classification codes (ATC-L2) as the trial
drug. The primary analysis emulated 100 trials consisting of 50 random control
groups and 50 ATC-L2 control groups (FL-All and MS-All), and two sensitivity

analyses using only random controls (FL-Rand and MS-Rand) or only ATC-L2 con-
trols (FL-ATC and MS-ATC). The error bars indicate 95% 1000-time-bootstrapped
confidence intervals of aHR from balanced trials. The aHR was calculated by the
Cox proportional hazard model for each balanced trial after re-weighting. The
average number, denoted by #, of patients in treated and control arms was also
shown. FL OneFlorida, MS MarketScan, aHR adjusted hazard ratio, CI confidence
interval, ATC Anatomical Therapeutic Chemical classification. Source data are
provided as a Source Data file.
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strategy showed superior performance than existing model selection
strategies in both balance diagnostics and outcome estimation in our
simulation settings.

Discussion
Leveraging our ML-PS model selection algorithm towards the best
balancing performance, a high-throughput clinical trial emulation
pipeline, and two large-scale RWD data warehouses covering both
EHRs and claims, we generated drug repurposing hypotheses which
were associated with decreased risk of AD over a five-year follow-up
period among MCI patients. The robustness of our results was further

validated by extensive sensitivity analyses (including a nested cross-
validation framework extension, two ways of building comparison
groups, baseline covariates selection driven by both existing knowl-
edge and causal discovery algorithms, two-year follow-up period, etc.)
and simulation studies. There are several aspects we would like to
highlight.

First, existing AD repurposing studies typically focused on vali-
dating one hypothesis at a time with a single type of RWD3,11–13. By
contrast, our study enables generating multiple AD repurposing
hypotheses by screening hundreds of drugs using high-throughput
trial emulations onboth EHRs and claims,whichwould further scaleup

(d) fluticasone

(a) pantoprazole (b) gabapentin

(c) atorvastatin

(Lower risk) (Higher risk) (Lower risk) (Higher risk)

(e) omeprazole

Sensitivity analysis on                                          

Sensitivity analysis on                                          

Sensitivity analysis on OneFlorida / MarketScan

OneFlorida / MarketScan

OneFlorida / MarketScan

considering DAGs and with both controls

considering DAGs and with random drugs as controls 

considering DAGs and with ATC-L2 drugs as controls 

Fig. 4 | Sensitivity analysis of generated drug repurposing hypotheses when
adjusting for baseline covariates selected by using both existing knowledge
and causal discovery algorithms. The adjusted hazard ratios and 95% confidence
intervals in the five-year follow-up period were reported. Trial emulations of these
drugs (a–e) were performed on OneFlorida and MarketScan data separately. For
each drug, treated groups consisted of patientswhowere exposed to the trial drug,
and control groups were built by either: (i) randomly selecting alternative drug
groups, or (ii) using drug groups under the same second-level Anatomical Ther-
apeutic Chemical classification codes (ATC-L2) as the trial drug. The overall analysis
emulated 100 trials consisting of 50 random control groups and 50ATC-L2 control

groups (FL-All and MS-All), and two separate analyses using only random controls
(FL-Rand and MS-Rand) or only ATC-L2 controls (FL-ATC and MS-ATC). The error
bars indicate 95% 1000-time-bootstrapped confidence intervals of aHR from
balanced trials. The aHR was calculated by the Cox proportional hazard model for
each balanced trial after re-weighting. The average number of patients, denoted by
#, in treated and control armswas also shown. FLOneFlorida,MSMarketScan, DAG
directed acyclic graphs, aHR adjusted hazard ratio, CI confidence interval, ATC
Anatomical Therapeutic Chemical classification. Source data are provided as a
Source Data file.
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innovations in AD drug discovery or can be broadly applied to other
diseases.

Second, we emulated hundreds of trials for each drug based on
two different ways of constructing comparison groups, which allowed
for a potentially more robust estimation of treatment effects. In our
investigation, indeed, we sometimes observed a large discrepancy
between emulated trials when building control groups in different
ways (Fig. 3d, fluticasone, FL-Rand, aHR 0.84, 95% CI 0.80–0.87 versus
FL-ATC, aHR 1.02, 95% CI 1.00–1.04). These variabilities can become
big challenges for existing observational studies that use a single
control group41 or a singlewayof buildingmultiple control groups (e.g.
only random control groups)7. Besides, we observed inconsistent
results across different RWD datasets. For example, escitalopram
showed a reduced risk in the OneFlorida data (aHR 0.70, 95% CI 0.63-
0.79 at 2-yr follow-up, Supplemental Table S5) but increased risk in the
MarketScan database (aHR 1.56, 95% CI 1.49–1.62 at 2-yr follow-up,
Supplemental Table S6). Potential explanations were rooted in intrin-
sic heterogeneity across the two datasets: OneFlorida is a regional
database that mainly covers patients’ EHRs in the Florida area, while
MarketScan is a nationwide claims database across the US (Supple-
mentary Table S1). For example, the number of patients in the escita-
lopram group in OneFlorida and MarketScan were 767 and
5041, respectively. Such inconsistency highlights the necessity of
leveraging different RWD data sets to derive robust and consistent
evidence42,43.

Lots of recent research efforts have been devoted to developing
complex machine learning-based or deep learning-based models for
propensity score-based modeling using the IPTW framework, aiming
to better balance the distribution of covariates between treated and
control patients observed from the RWD, in lieu of randomization7,44,45.
In this paper, after emulating hundreds of thousands of trials from two
large-scale RWD warehouses, we found that GBM-PS, MLP-PS, and
LSTM-PS, which are representative ML-PS methods, did not outper-
form LR-PS in terms of balancing performance on training and testing
combined sets. Our study highlighted the importance of model
selection and we proposed a strategy tailored for ML-PS modeling.
Specifically, directly applying the cross-validation framework based on
AUC on the validation set, i.e., the typical MLmodel selection practice,
might select ML-PS models that lead to less superior balancing per-
formance on both the real-world data (Fig. 2) and simulated data
(Supplementary Figs. S9a, S10a–c), and estimated adjusted hazard
ratio with serious bias issues in our simulation studies (Supplementary
Figs. S9b, S10d–i). Thus, we emphasize the need for a better model
selection strategy for ML-PS calculation. With all these investigations,
we were able to show that our proposed model selection strategy
under the cross-validation framework (or its nested CV extension)
could serve as a better choice than existing model selection strategies
for ML-PS models in emulated trials.

This study has several limitations. First, we identifiedMCI patients
and AD onsets using ICD codes (Supplementary Table S3) which were
provided by physicians and validated46,47 yet there might be a certain
level of inaccuracy due to mis- and under-diagnosis or the lack of
clinical details in EHRs or claims48. Information contained in clinical
notes will be explored in the future through natural language proces-
sing to complement the structured codes. Second, we balanced both
high-dimensional baseline covariates as well as those selected by
knowledge anddata-driven causal discovery algorithmswith identified
likely mediators or colliders excluded38, measurement error, residual
confounding, and selection bias were still possible. Therefore, devel-
oping negative control tools49, consider the per-protocol association
analysis under the time-varying exposures, or incorporating more
ML-PS model classes by an ensemble framework50 under our high-
throughput trial emulation settings would be other promising
directions. In addition, we assumed non-informative censoring in our
time-to-event analyses and detecting and modeling potentially

informative censoring can be a future extension to our current pipe-
line. Third, assessing the comparability of different exposure groups in
the weighted sample is a very crucial step in the IPTW-based method
and should not be omitted15,51. However, would like to suggest that a
good performance of SMD is necessary but not sufficient for a good
balance or less-biased estimates in light of our simulation studies.
Thus, we would like to explore more simulation setups in the future
under more complex scenarios including different non-linear treat-
ment assignment mechanisms and time-to-event generation beyond
proportional hazard assumptions. In addition, we would like to
incorporate the relative effects of each covariate on the outcome as
future extensions. Fourth, we generated repurposing hypotheses by
considering the intention-to-treat association at a five-year or two-year
follow-up period as the outcome and adopted a concise set of elig-
ibility criteria. Further directions include considering the real-world
safety profiles46 as another outcome or automatically designing elig-
ibility criteria52 tailored for each emulated trial under our high-
throughput setting. Last but not least, to generate more generalizable
hypotheses, we validated our system on a nationwide claim database
and a regional EHR database. However, it is still worthwhile to validate
our proposed system or generate hypotheses based on more RWD
databases. Thus, adapting the proposed system with a federated
learning framework53 is also a potential future direction.

In conclusion, this study proposed a high-throughput target trial
emulation system for generating AD drug repurposing hypotheses
based on two longitudinal RWD databases, leveraging ML-PS models,
a tailored model selection strategy for ML-PS models, and the
IPTW framework. In two large-scale RWD datasets covering both EHRs
and general claims, we identified five top-ranked drugs (pantoprazole,
gabapentin, atorvastatin, fluticasone, and omeprazole) with different
original indications that could be potentially beneficial to AD
patients amongMCI patients. Our analyses highlighted that the model
selection, which is largely ignored compared with the design of the
ML-PS models, is critical in balancing emulated trials. Our study can
inform future target trial emulations at scale and can potentially
accelerate innovations in the drug discovery and development
process.

Methods
This study was approved by the Institutional Review Board of Weill
Cornell Medicine with protocol number 21-07023759. The use of
OneFlorida data for this study is approved under the University of
Florida IRB number IRB202001888. Access to the MarketScan data
analyzed in this manuscript is provided by the University of Kentucky.

Data
We used two large-scale real-world longitudinal patient-level
healthcare warehouses, including OneFlorida Clinical Research Con-
sortium and IBM MarketScan Commercial Claims and Encounters
(Data availability section). The OneFlorida database contains robust
patient-level electronic health record data for nearly 15 million
(14,883,388) patients mostly from Florida and selected cities in Geor-
gia and Alabama from January 2012 to April 2020, and the IBM Mar-
ketScan database (formerly known as Truven) contains administrative
claim records from January 2009 to June 2020 for over 164 million
(164,148,434) enrollees across the US, serving as a nationally repre-
sentative database of the US population (See Supplementary Table S1
for the population characteristics of two databases). Both databases
contain comprehensive longitudinal information on demographics,
diagnoses, procedures, prescriptions, andoutpatient dispensing for all
enrollees.

High-throughput target trial emulation specifications
We emulated trials for thousands of drugs recorded in two RWD
databases, aiming to find potentially new indications of non-AD
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drugs for AD among MCI patients. We described the protocol of
high-throughput trial emulations as follows and compared hypothe-
tical target trials and their emulations in Table 1. An illustration of the
high-throughput cohort selection process is shown in Fig. 1a.

Eligibility criteria
We included patients with at least one mild cognitive impairment
(MCI) diagnosis between January 2012 and April 2020 in the One-
Florida database (January 2009 to Jun 2020 in the MarketScan data).
Patients required with age ≥ 50 years old at MCI diagnosis, no history
of AD or AD-related dementia diagnoses within five years before the
index date, the first MCI diagnosis date should be before the index
date, and the baseline period captured in the database should ≥ one
year without an upper limit. We defined the index date as the date of
initiation of the trial drug, and at baseline, all of the above criteria
should have been met.

Treatment strategies
We compared two strategies for each drug trial: initiation of the trial
drug at baseline (treated group), and initiation of an alternativedrug at
baseline (comparison group).We defined the treatment initiation date
with the drug of interest as the first prescription date of the drug and
we required at least two consecutive drug prescriptions over 30 days

since the first prescription date in our database as a valid drug
initiation.

Treatment assignment procedures
We classified patients into different drug groups according to their
baseline eligibility criteria and their treatment strategies. We assumed
that the treated group and comparison group were exchangeable at
baseline conditional on baseline covariates, including age, self-
reported gender/sex, baseline comorbidities, medications, and time
from the MCI diagnosis date to the drug initiation date. The baseline
comorbidities consisted of selected comorbidities from Chronic
Conditions Data Warehouse54 and established risk factors for AD
selected by experts, resulting in 64 covariates (Supplementary
Table S4); each defined by a set of selected ICD-9/10 codes. We
grouped drug prescriptions coded as National Drug Code (NDC) or
RXNORM codes into their major active ingredients coded in RXNORM
defined in Unified Medical Language System55 for the OneFlorida case
and into the Medi-Span Generic Product Identifier (GPI)56 by their first
8 digits for the MarketScan data. We used the top 200 prevalent pre-
scribed drug ingredients for the covariates for the medication history.
The age and the time from theMCI diagnosis date to the drug initiation
date were encoded as continuous variables, and the gender, comor-
bidities, and medication uses were encoded as binary variables.

Table 1 | Specifications of hypothetical target trials and their high-throughput emulations using real-world data from
OneFlorida electronic health records and MarketScan claims

Protocol
component

Target trial specification Target trial emulation

Eligibility criteria Patients with MCI, age ≥ 50 at MCI diagnosis, and no upper age limit.
No history of AD or dementia before baseline. No trial drug prescrip-
tion before baseline. The baseline is defined as the date when all
eligibility criteria are met.

Same as for the target trial.WedefinedMCI diagnosis according to the
selected ICD-9/10 codes between January 2012 and April 2020 in the
OneFlorida data, and January 2009 and June 2020 in the MarketScan
data We required a minimum of one year and no upper limit from one
individual’s first record in the database to his/her index date. We
required no AD or related dementia five years before the index date.
We required the first MCI diagnosis before the trial drug initiation. The
index date is defined as the first date of the trial drug prescription and
at that time point, all eligibility criteria are met.

Treatment
strategies

Strategy a: Initiation of the trial drug at baseline. Strategy b: Initiation
of an alternative drug at baseline.

Same as for the target trial. We defined a drug initiation date to be the
first date of a prescription of the trial drug andwe required at least two
prescriptions separated at least onemonth from the initiation date as a
valid initiation.

Treatment
assignment

Patients are randomlyassigned to either treatment strategyat baseline
and are aware of the strategy they are assigned to.

We classified patients into different arms according to their baseline
eligibility criteria and treatment strategy.We assumed that the treated
group and control group were exchangeable by adjusting for covari-
ates collected before the baseline, including age, gender, comorbid-
ities, medications, time lag betweenMCI initiation and index date, etc.

Outcomes AD onset Same as for the target trial. We defined the incident AD outcome by
using selected ICD-9/10 diagnosis codes in the follow-up period.

Follow-up We followed each patient from his/her baseline date until the date of
his/her first AD diagnosis, loss to follow-up, or five years after the
baseline, whichever happens first.

Same as for the target trial.

Causal contrast Intention-to-treat effect Observational analog of intention-to-treat effect.

High-throughput
trials

For a largenumber of trial drugcandidates,weconducteda target trial
for each of themby following the above protocol to estimate its effect.

We emulated target trials for all drugs in the database with ≥ 500
patients in the trial drug group, and for each drug, we emulated 100
trials by constructing different comparison groups by selecting eligi-
ble patients exposed to either a random alternative drug or a similar
drug within the same therapeutic class. Patients who were prescribed
the trial drug were excluded from comparison groups.

Statistical analysis Intention-to-treatment analysis as the time-to-first event. Applying
IPTW to adjust for baseline covariates. Non-parametric bootstrapping
for 95% CIs

Same intention-to-treat analyses. ApplyingML-PSmodels to adjust for
baseline covariates under the IPTW framework. The bestML-PSmodel
was selected by our proposed model selection strategy. Adjusted
hazard ratio by CoxPH, survival difference by KMmethod, and sample
mean with 95% bootstrapped CIs for balanced trials from high-
throughput emulations were reported. The Bonferroni corrected sig-
nificance level was adopted for screening. Sensitivity analyses
regarding different comparison groups, different follow-up periods
(e.g. two years), different covariates selected by existing knowledge
and causal discovery algorithm, and different significance levels.

MCImild cognitive impairment, AD Alzheimer’s disease, KM Kaplan-Meier, aHR adjusted hazard ratio, CoxPH Cox proportional hazards, CIs confidence,ML-PS Machine learning-based propensity
score models, IPTW Inverse Probability of Treatment Weight.
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In total, there were 267 covariates to adjust for. In addition to the 267
baseline covariates, we also considered the sequences of each of the
comorbidities and medications variables over time for the deep long
short-term memory network with attention mechanisms-based PS
calculation.

On the other hand, following the arguments that bad controls
should not be adjusted for38, we also built the baseline covariates by
considering hypothetical causal diagrams built by both existing
knowledge and data-driven causal discovery algorithms. Specifically,
basedon thebest available knowledge,we selected a subset ofbaseline
variables that are risk factors for or associated with AD, including age
(the single most significant factor), gender, hypertension, hyperlipi-
demia, obesity, diabetes, heart failure, stroke, ischemic heart disease,
traumatic brain injury due to brain damage, anxiety disorders, sleep
disorders, alcohol use disorders, menopause, and periodontitis3,39.
Next, we applied the constraint-based causal structure learning algo-
rithm stable PC-algorithm40 to each emulated trial to learn its likely
underlying directed acyclic graph. For each emulated trial, we exclu-
ded detected colliders (including M-colliders) and mediators and
assumed that the remaining covariates are more likely to be con-
founders of the treatment assignment and the AD onset to adjust for.
We used corrected significance level 2:9× 10�4 and Fisher-z’s test for
the stable PC-algorithm. See details in Supplementary Method.

Follow-up
We followed eachpatient fromhis/her baseline until the dayof thefirst
AD diagnosis, loss to follow-up (censoring), five years after baseline, or
the end date of our databases, whichever came first. As a sensitivity
analysis, we further shrunk the follow-up period from five years to
two years.

Outcomes
The outcome of interest is the incident AD diagnosis recorded in the
database within the follow-up period, which was denoted as a positive
event. If there was no AD diagnosis recorded in a patient’s follow-up
period, and the last prescription date or the last diagnosis date
recorded in the database came after the end of the follow-up, then we
marked it as a negative event. A censoring event is a case where there
was no AD diagnosis recorded in a patient’s follow-up period and the
last prescription date and the last diagnosis date recorded in the
database came before the end of the follow-up. The time to a positive
event is defined as the days between the baseline date and the first
diagnosis of AD. The time to a negative event is the time of the follow-
up period. The time to censoring is defined as the days between the
baseline date and the last prescription date or the last diagnosis date,
whichever comes last. Clinical phenotypes were identified by the
selected diagnosis codes by experts (Supplementary Table S3).

Causal associations of interest
The observational analogy of the intention-to-treat effect of being
assigned to trial drug initiation versus comparison drug initiation at
baseline.

High-throughput emulation
We emulated trials for all drugs that appeared in our databases. We
limited our analyses to drugs with at least 500 eligible patients in the
treated groups. For each emulated trial, its treated group consists of
eligible patients who initiated the trial drug, and its comparison group
consists of eligible patients who initiated alternative drugs. We con-
structed the comparison group by selecting patients who were
exposed to (a) a random drug other than the target trial drug, or (b) a
similar drug from the same second-level Anatomical Therapeutic
Chemical classification category (ATC-L2) as the target trial drug23,
trying to mimic active-comparator design25. We further excluded any
of those patients who were also in the trial drug group or prescribed

the trial drug before baseline.We emulated 100 trials for each targeted
drug among which 50 emulated trials adopted random controls and
the other 50 emulated trials adopted ATC-L2 controls as described
above. Different combinations of control groups were explored as
sensitivity analyses.

Adjusted survival analysis and generating repurposing drugs
We adopted machine learning models for propensity score modeling
(ML-PS) and followed the inverse probability of treatment weighting
(IPTW) framework for the adjustment15,51,57.

ML-PS and IPTW
We used (X, Z, Y, T) to represent data of the study population in one
emulated trial where X, Z, Y, T represent the baseline covariates,
treatment assignment, outcome indicator, and time to events,
respectively. The PS is defined as P(Z = 1|X) where Z is treatment
assignment (Z = 1 and Z = 0 for treated and control respectively) andX
denotes patients’observedbaseline covariates. The inverseprobability
of treatmentweight (IPTW) is defined as Z

PðZ= 1jXÞ +
1�Z

1�PðZ= 1jXÞ, which tries
to make the original trial into a more balanced pseudo-randomized
trial by re-weighting each data sample. We used an updated version
named stabilized IPTW, defined as

w=
Z×PðZ= 1Þ
PðZ= 1jXÞ +

ð1� ZÞ×PðZ=0Þ
1� PðZ= 1jXÞ ð1Þ

and further trimmed the top 1% smallest or biggest weight values, to
deal with extreme re-weighting weights and thus potentially inflated
sample size and large variance15.

A machine learning-based propensity score (ML-PS) model is a
binary classification model f θ,ϕ 2 FΘ,Φ : X ! Z, to estimate PðZ= 1jXÞ
by f θ,ϕ with pre-specified hyper-parameters θ and learnable para-
meters ϕ. Here, we use FΘ,Φ to denote a set of machine learning
models specified by a set of hyper-parameters Θ, and use f θ,ϕ to
denote one specific ML-PS model instance. We considered four
representative classes of machine learning models including (a) reg-
ularized logistic regression-based PSmodels (LR-PS), encompassing its
special case logistic regression without any regularization term which
is the most widely used statistical model for PS calculation; (b) the
gradient boosted machine-based PS models (GBM-PS) with the ran-
dom forest as base learners;17–19 (c) multi-layer perception network-
based PS models (MLP-PS)20, and (d) the long short-term memory
neural network with attention mechanisms for PS modeling
(LSTM-PS)7.

We searched the LR-PS model by varying regularizer terms
including L1-norm, L2-norm, and no regularizer, and varying inverse of
regularization strengths for the corresponding regularizer
ð10�3,10�2:5,10�2,10�1:5,10�1,10�0:5,100,100:5,101,101:5,102,102:5,103Þ.
The GBM-PSmodel space was defined by themaximumdepth (3, 4, 5),
max number of leaves in one tree (5, 25, 45, 65, 85, 105), and the
minimal number of samples in one leaf (200, 250, 300). The MLP-PS
model space was defined as a forward neural network with hidden
dimension (32, 64, 128, [32, 32], [64,64]), learning rate (1e-3, 1e-4),
weight decay (1e-3, 1e-4. 1e-5, 1e-6). The LSTM-PS model spaced was a
two-layered bidirectional LSTM by searching hidden dimensions (64,
128, 256), learning rate (1e-3, 1e-4), andweight decay (1e-3, 1e-4. 1e-5, 1e-
6). Both MLP-PS and LSTM-PS adopted 15 epochs and 128 batch sizes.
The best hyperparameter was selected by grid search for each of the
tenfold cross-validation rounds.

Balance diagnostics
We evaluated the performance of estimated ML-PS models in terms of
balancing baseline covariates. The goodness-of-balance is measured
by the standardized mean difference (SMD) of the covariates’
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prevalence15,16, defined as:

SMD xtreat,xcontrol

� �
=

jμtreat � μcontroljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS2

treat +S
2
controlÞ=2

q ð2Þ

where xtreat,xcontrol 2 RD represent the vector representations of D
covariates of the treated group and control group respectively,
μtreat,μcontrol 2 RD are their sample means, and s2treat,s

2
control 2 RD are

their sample variances. Suppose that we have learned sample IPTW
weight wi for each patient i, the weighted sample means and variance
are:

μweight =
P

wixiP
wi

ð3Þ

sweight =
P

wiP
wi

� �2 �Pw2
i

X
wi xi � μweight

� �2

Theweighted versions ofmean and variance hold for both treated
and control groups and thuswe ignored their cornermarks for brevity.
The SMDweight can be calculated by applying the above-weightedmean
and variance to Eq.2. All operations in Eqs.2 and 3 are conducted in an
element-wise way for each covariate. For each dimension d of either
original SMD or weighted SMD, it is considered balanced if its SMD
value SMD(d) ≤0.124, and the treated and control groups are defined as
balanced if the total number of unbalanced features ≤ 2% * D7. More
stringent balance criteria (e.g., requiring non-unbalanced features)
were also considered as sensitivity analysis. Taking a re-weighted case
as an example, the number of unbalanced covariates after IPTW by:

nweight =
XD
d = 1

l½SMDweightðdÞ>0:1� ð4Þ

To quantify the balance performance of high-throughput emula-
tions of one drug trial, we further defined the probability of success-
fully balancing one specific drugM trials by a set of ML-PS modelsFΘ

as PM,FΘ
, which can be estimated by the fraction of successfully

balanced trials over all emulations as follows:

PM,FΘ
=

Pne
i= 1 l½nweight ≤ 2% � Dj X,Z,Y,Tð Þi, f best 2 FΘ�

ne

ð5Þ

where ne is the total number of emulations X,Z,Y,Tð Þi,i= 1,2, . . . ,ne for
drug M, f best is the best ML-PS model amongFΘ learned from the ith
emulated trial, and the IPTWand nweight are calculated by applying f best
to the ith emulated trial. We will discuss how to learn and select f best 2
FΘ in the next section. In general, the larger the balancing success rate
PM,FΘ

is, the better FΘ the model balances the drug M trials.

Model selection, training, and evaluation
Here, we detail our cross-validation algorithm tailored for the ML-PS
model in Box 1, trying to select the best modeling hyper-parameters
from model space concerning the best balance performance on both
the train and unseen test datasets.We used binary cross-entropy loss L
as the objective function and gradient descend-based optimization
algorithms for learning empirical binary propensity scores. We
describe the evaluation (testing) algorithm for ML-PSmodels in Box 2,
to evaluate and benchmark different learned and selected ML-PS
models, in terms of their balance performance on the train and test
combined dataset..

Statistical analysis
The adjusted hazard ratio (aHR) and its P value were modeled by
the Cox proportional hazard model58 and the Wald Chi-Square test.

The adjusted survival difference was modeled by adjusted Kaplan-
Meier estimator59 for each emulated trial at the end of the follow-up.
we assumed non-informative censoring in our time-to-event analyses.
The stabilized inverse probability of treatment weights (IPTW) was
calculated by the best ML-PS model configuration selected by our
model selection strategy from regularized logistic regression model
space. For each drug, we reported their sample means of different
outcome estimators with 1000-time bootstrapped 95% confidence
intervals over all the balanced trials. The bootstrapping hypothesis
testing is used to test if the sample means of the adjusted aHRs is
<1 and we reported the aHR’s bootstrapped P value. The significance
level of aHR was corrected by the Bonferroni method for multiple
testing.

Screening and prioritization
To generate robust repurposing hypotheses, we required that
the fraction of successfully balanced trials of any drug candidate
after re-weighting should be ≥ 10%, the adjusted hazard ratios from
all the balanced trials smaller than 1, the aHR’s P value smaller
than the significance level 1:6× 10�4 (0.05/312) corrected by the
Bonferroni method, and the significantly reduced risk (aHR<1 and
aHR’s P value < 1:6× 10�4) should be replicated over both two RWD
databases. The candidate drugs were further ranked by their
estimated aHRs.

Comparison with existing works
We compared the analytic approach by Liu et al.7 and we found that
their methods led to biased SMD estimation and worse balance per-
formance as shown in Supplementary Table S2 due to their deep
LSTM-PSmethods. Besides, there are other major concerns. First, they
selected patients at baseline according to patients’ treatment strategy
over follow-up and such post-baseline information should not be used
at baseline60. Second, they estimated treatment effect by the average
treatment effect (ATE) ATE= E½Y1 � Y0� (Y1 and Y0 are the potential
outcomes for each patient under the treatment or the control
respectively), which can introduce selection bias due to loss to follow-
up (censoring)61. Third, they generated hypotheses only on one data-
base and used only random controls, ignoring the potential variability
we found over different databases and emulations with different
control groups.

Experimental settings
We implemented our high-throughput target trial emulation system
for drug repurposing using Python 3.9 and Pytorch 1.8 and trained
deep learning models by Adam optimizer62 on a Linux server with two
GeForce RTX 2080 Ti GPUs and 16 CPU cores. We used the Python
package lifelines-0.26 for survival analysis63, scikit-learn-0.23 for
machine learning models including regularized logistic regression64,
and lightgbm-3.2 for the gradient boostingmachine19. Python package
gcastle 1.0.3 for stable PC algorithm. We followed Liu et al. for their
LSTM-PS implementations7. We randomly partitioned each emulated
trial into complementary training and testing data sets with a ratio of
80:20, and 10-fold cross-validations were conducted on the training
set. Please refer to our python package for more details. For repro-
ducibility, we open-sourced our Python code package at https://
github.com/calvin-zcx/RWD4Drug.

Sensitivity analyses
We conducted multiple sensitivity analyses including (a) model
selection under a nested cross-validation framework, (b) different
comparison groups using patients who were exposed to random
alternative drugs or similar drugs as the trial drug, (c) different set of
baseline covariates selected by using existing knowledge and causal
discovery algorithms, (d) different follow-up periods like two-year
follow-up.
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Simulation Study
Here we conducted a simulation study to validate the balance per-
formance and bias reduction performance of our proposed model
selection algorithm for LR-PS as we did in our primary analyses.

Data generation. We generated baseline covariates X, treatment
assignments Z, and time-to-event (t2e) outcomes T for each subject by
adapting existing simulation algorithms65,66 from generating less than
ten baseline covariates to hundreds of baseline covariates, aiming
to simulate a high-dimensional covariate space encountered in our
real-world data experiments. We summarized the causal diagram
for our simulation algorithm in Supplementary Fig. S8a. In total
267 baseline covariates (X1,…, X267) were simulated for each subject,
following the distributions and causal coefficients shown as follows:
X1,X3 ∼Bernoulli 0:5ð Þ, X2 ∼Bernoulli 0:3 +0:1*X1

� �
, X4,X6 ∼Normal

0,1ð Þ, X5 ∼0:3 +0:1*X6 +Normal 0,1ð Þ, X7:11 ∼Bernoulli 0:4ð Þ, and
X12:267 ∼Bernoullið0:2Þ.

The treatment assignment for each subject was drawn from one
linear generative mechanism as follows:

where U was sampled from a uniform distribution on (0,1). All the
generated survival times were censored at 200 and we didn’t assume
other censoring mechanisms. The distributions of time-to-events,
survival curves, and cumulative incidence curves of generated samples
were illustrated in Supplementary Fig. S8b-d. To estimate ground truth
marginal hazard ratios, we followed the strategy detailed by Austin,
et al.69 by generating 1 million samples with both potential outcomes,
assuming proportional hazard assumption, and using the Cox model
to estimate the ground truth marginal hazard ratio. Here we used a
ground truth hazard ratio of 0.578 for both the linear and nonlinear
treatment assignment models.

Simulation setups. We generated subjects by varying (1) sample sizes
(3000, 3500, 4000, 4500, 5000), (2) (1) linear andnonlinear treatment
assignment, and (3) using correct versus incorrect treatment assign-
ment mechanisms for estimating, leading to 20 simulation scenarios.
For each scenario, we repeated experiments 100 times with different
random seeds. We used a training set (80%) for model training and
model selection, following the tenfold cross-validation strategy, and
held out a test set (20%) to evaluate the generalization performance.
We compared our model selection algorithm with two typical model
selection strategies: (a) model selection strategy based on AUC on the
validation set, and (b) cross-entropy loss (negative log-transformed
likelihood) on the validation set. The best model was selected from a
model space defined based on logistic regression with different reg-
ularization terms (L1, L2, and no regularizer) with different inverse
strengths of the regularization ð10�3,10�2:5,10�2,10�1:5,10�1,10�0:5,
100,100:5,101,101:5,102,102:5,103Þ:). The incorrect X specifications

in the linear scenario are ðX2
1 ,X

2
2,X

2
3,X4,X5,X6,X7:11,X12:267Þ and

the incorrect specifications in the nonlinear scenario are
ðX 1,X2,X3,X4,X5,X6,X7:11,X12:267Þ.

Evaluation metrics. Different modeling performances were evaluated
in terms of (1) the ratio of successfully balanced simulations for each
scenario, (2) the average number of unbalanced features before and
after re-weighting, (3) theestimatedmarginal hazard ratios (HRs), (4) the
standarddeviationof the estimatedmarginalHRs, (5) the averagebias of
estimated marginal HRs, (6) the mean squared error of the estimated
marginal HRs, and (7) the confidence interval coverage (the percentage
of times the confidence interval contains the truth). The oracle standard
deviation is the standard deviation of the HR estimates across all simu-
lations; that is, (ψ1,…, ψB), for ψb representing the estimated hazard
ratio for simulation b, b 2 f1,:::,Bg, of B total simulations. TheWald type
95% confidence intervals, calculated as ψb ± 1.96 * σ, were used for
confidence interval (CI) coverage. The CI coverage is defined as the
proportion of times, across all simulations, the CI contains the true HR.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The OneFlorida data can be requested through https://
onefloridaconsortium.org/front-door/. Since the OneFlorida data is a
HIPAA-limited data set, a data use agreement needs to be established
with the OneFlorida network. The MarketScan dataset is available
from IBM at https://www.ibm.com/products/marketscan-research-
databases. The relevant raw data for each figure and table are pro-
vided in the Source Data file. Source data are provided with this paper.

Code availability
For reproducibility, we open-sourced our Python code package at
https://github.com/calvin-zcx/RWD4Drug with https://doi.org/10.
5281/zenodo.10070359.
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