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A resilient battery electric bus transit system
configuration

Ahmed Foda 1 ,MoatazMohamed 1 , Hany Farag 2 & Ehab El-Saadany 3

Electric mobility is fundamental to combat climate change and attaining the
United Nations Sustainable Development Goals (SDG-11). However, electric
mobility necessitates a seamless integration between power and transporta-
tion systems, as the resiliency of both systems is becoming far more inter-
dependent. Here, we focus on disruption to Battery Electric Bus (BEB) transit
system charging infrastructure and offer a resilient BEB transit system plan-
ning model. The proposed model optimizes the BEB system costs while
ensuring the system’s robustness against simultaneous charging station fail-
ures. In our case study, a single charging station failure would lead to up to
34.03% service reduction, and two simultaneous failures would reduce the
service by up to 58.18%. Our proposed two-stage robust model addresses this
issue with a relatively small added cost (3.26% and 8.12% higher than the base
model). This cost enables uninterrupted BEB system operation during dis-
ruption, ensuring personal mobility, social interaction, and economic
productivity.

The electrification of public transit is a promising solution to combat
climate change1. Electric transit (e-Transit) renders substantial per-
passenger greenhouse gas (GHG) emissions2, aiding significantly in
reducing the transportation sector’s highGHGemissions share (20%of
global CO2 emissions)3,4. During the past decades, battery electric
buses (BEBs) have been identified as a feasible alternative to fossil-
fueled buses5,6. Moreover, BEBs’market share is growing rapidly (91.4%
of the electric bus market in 2020) owing to their energy efficiency,
quiet operation, low maintenance cost, and zero tailpipe emissions7.
However, BEB transit system configuration requires advanced opti-
mization models for charging infrastructure allocation, fleet config-
uration, energy management, and charging schedule8–10. Overall, the
complexity of designing a BEB transit system stems from the need to
balance contradictory objects/decisions, such as mitigating the
upfront investment costs (e.g., charging stations and fleet), annual
operational costs, GHG emissions, and utility grid impact. At the same
time, the system should satisfy the operational timetable and level of
service, energy supply considerations, and resiliency against
uncertainties.

Several studies have considered en-route charging for BEBs,
which exploits high-power fast chargers and utilizes layover times for
charging, leading to uninterrupted operation11,12. En-route charging
diminishes the need for a sizable battery size (overnight charging) or
high labor cost (battery swapping)13. However, it relies on a seamless
energy supply at the charging locations14.

However, BEB transit system operation is susceptible to several
disruptions, such as power outages and equipment malfunction
(real-world examples are detailed in Supplementary Discussion 1).
Recent studies show that current BEB optimization models are
robust against disruptions if solved promptly (within 1 h)15. However,
daily disruption of one charging station could reduce the frequency
of the service by 57%. Therefore, unexpected disruptions can pre-
vent BEBs from being effectively and timely charged, halting their
operation.

Concerns about the effects of charging disruptions on the BEB
system have been pointed out as a critical issue, and calls for plans,
best practices, and models for a resilient BEB system are in place16,17.
Charging station failure is a binary random variable, and it should be
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included in BEB system configuration planning models to achieve a
resilient system design.

BEB transit systems are vulnerable to several external energy
management disruptions, such as energy consumption rates, disrup-
tions to charging components, and electricity outages. Recent studies
focused on BEB system planning under uncertainty, as summarized in
Supplementary Table 1. These studies developed BEB models incor-
porating uncertainty parameters related to energy consumption, tra-
vel time, charging time, passengers’ boarding and alighting time,
battery degradation, and power supply fluctuation6,18,19.

Energy consumption is observed as the most investigated uncer-
tain BEB operation parameter, as it is affected by numerous uncertain
factors (e.g., the number of passengers, traffic, weather, etc.). Addi-
tionally, accurate energy consumption estimation is crucial to properly
configure and operate the BEB system20. Some studies also investi-
gated the uncertainty associated with the operation time21.

Most relevant to the present study are the recentworks of refs. 22,
23. Their work designed the BEB system considering power supply
fluctuation uncertainty in single-stage robust optimization models
using the budgeted uncertainty set. Their results, solidifying our
argument, show that considering power supplyfluctuationuncertainty
impacts the resulting BEB system configuration depending on the
priorities of decision-makers (changing the conservative level). Their
charging power variability formulation differs from the charging sta-
tion disruption uncertainty proposed herein.

First, the power supplied to a bus in a charging station was
assumed to be a random variable that varies within a continuous
uncertainty interval set. In comparison, the charging station failure
should be formulated as discrete (whether the charging station is
working or not). Second, the power supply fluctuation budgeted
uncertainty set in their work is related to the bus lines/trips, not the
charging stations22,23. In other words, the uncertainty set was for-
mulated for each bus line in each trip and budgeted the summation of
the supplied power deviation from the nominal value in all the char-
ging stations in this bus line/trip.

That said, the scope of previous studies did not consider the
optimal design of a resilient BEB system configuration under charging
station disruption uncertainty, where the uncertainty set is formulated
for the failure of the charging stations at the network level.

The definition of resiliency depends on application24. However,
there is a consensus that systemic resiliency is the system’s capacity to
adjust or react to disruptive events25. Four different concepts of resi-
liency are coined26: (1) robustness: effectively managing disruptive
events so that they have minimal or no impact on the functionality of
the network. (2) Rebound: effectively resuming normal network
operations after disruptions. (3) Extensibility: effectively addressing
unexpected events that may disrupt current activities by extending
system performance or capabilities. (4) Adaptability: effectively bal-
ancing competing priorities to develop the adaptive capacity that can
respond to constantly changing contexts26. This study focuses on the
robustnessof BEB systems as the goal is to design a resilient BEB transit
network against charging station disruption uncertainty.

Optimization models for network resiliency are introduced to
assess how the network performance changes due to disruption and/
or identify operation recommendations to overcome network fragility
and vulnerability. The output decisions could be taken before (pre-
perturbation), during, and/or after (post-perturbation) disruption.

Generally, models to improve network robustness include survivable
network design, fault tolerance problems, two-stage stochastic net-
work optimization, interdiction, N − K, attacker-defender, defender-
attacker-defender, and robust optimization (RO), as detailed in ref. 25.

For BEB networks, charging station disruption conforms to
removing network components (nodes/edges). The design of resilient
networks that are robust against component failure uncertainty is
often referred to as survivable network design models (pre-
perturbation)27. These models ensure the resultant network is robust
against up to k network components removal while maintaining the
network operation25. The survivable network design could be addres-
sed in various ways, such as through probability-based models28, RO
models29, and two-stage RO models30. The selection of system para-
meters before component failures naturally leads to min-max-min
formulations, which nicely correspond to two-stage robust optimiza-
tion problems. Moreover, the two-stage RO formulation avoids the
necessity of the component failure distribution (probability-based
models) and provides a less conservative design (single-stage RO
models)31. As such, two-stage RO models have been widely used in
many applications to design a survivable network under component
failure uncertainty32.

Overall, the two-stage robust optimization method is a practical
approach to address the uncertainty in situations like charging station
failures in the BEB system configuration planning. The focus is not on
the probability of charging station failures but on ensuring that the
BEB system works even in the worst-case scenario. Herein, system
disruption is defined as a charging station failure that impacts the
entire operation day.

This work develops a resilient BEB system configuration model
that optimizes the total costs (capital and operational) while ensuring
the model’s robustness against k simultaneous failures of charging
stations, where k is a conservative risk level supplied by the decision-
maker. The proposed model provides the optimal BEB system infra-
structure, including locations of the charging stations, stations’ con-
figurations (power of charger and the number of poles), and BEB’sfleet
battery sizes. Furthermore, it provides a resilient charging/operation
schedule for the transit fleet under any k charging station failures. The
model is applied to a real-world, large-scale bus transit network and
demonstrates its effectiveness. Undeniably, a resilient BEB system
design comes with additional costs. The Price of Robustness of the
RobustModelswith k= 1 and k=2 aremarginal (3.26% and8.12%higher
than the Base Model, respectively). This cost prevents a significant
service reduction if one (34%) or two (58%) charging stations fail.

Results
BEB system configuration: Base Model
The proposed resilient BEB system configuration model is formulated
as a two-stage RO and applied to the transit network in Oakville City
(see Supplementary Discussion 2). The solution framework is detailed
in “Methods: Solution algorithm”. In addition, the convergence of the
solution framework is shown in Supplementary Discussion 3.

The BEB system configuration of the Base Model (no station fail-
ure) is presented in Table 1. The optimal BEB systemunder the nominal
operation required five heterogeneous charging stations equipped
with eight poles. A fleet of 91 BEBs with heterogeneous battery capa-
cities is required to satisfy operation. Most buses (59.34%) are equip-
ped with 100 kWh battery capacity.

Table 1 | Results of BEB system configuration (Base Model)

Total system cost ($/year) BEB fleet configuration (# × kWh) Number of charging
stations

Power of charging units (#
× kW)

Number of poles (#)

Base Model $ 6,959,381.19 54 × 100
34 × 200
3 × 300

5 1 × 250
4 × 500

8
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The distribution of the BEB system costs is presented in Table 2,
with a total annual cost of $6,959,381.19. It should be highlighted that
the capital expenses are amortized over the 12-year lifespan. The pri-
mary contributor is the fleet cost without batteries (76.63%), while
operational costs (electricity ToU, demand charge, and GHG emis-
sions) account for 11.58%. In comparison, BEBs’ batteries contribute
10.03%, and the charging system (charging stations infrastructure and
chargers) accounts for 1.77%.

The optimal five locations for the en-route charging stations are
distributed across the network (see Supplementary Fig. 2). The num-
ber of BEBs charging at each station varies between 8 and 50 buses. In
turn, the charging instances, overall duration of charging, and energy
demand differ widely from one charging station to another. Each
charging station failure scenario affects the BEB system operation
differently. For example, OakvilleGO Station (ID 1) is a critical charging
point. It charges 50 BEBs out of 91, serving 15 routes, using 318 char-
ging events with a total of 4837.02 kWh daily energy demand (27.45%
of the fleet energy demand). Therefore, any disruption to this station is
expected to significantly impact the system’s operation.

The robustness of the Base Model is assessed by estimating the
number of daily failed buses and service reduction in all the r simul-
taneous charging station disruption scenarios (r interdictionmethod).
This robustness assessment is calculated by solving the inner sub-
problem (ISP) (Eqs. 75–77 in “Methods: Solution algorithm”) for each
failure scenario. It is worth noting that ISP is minimizing the impact of
the charging station failure scenario on the BEB system operation by
obtaining the optimal charging scheduling that reduces the number of
failed buses. The results of r = 1 and r = 2 are presented in Tables 3 and
4, respectively.

In the event of a single charging station failure (designated as r =
1), the daily operation is reduced by up to 34.03%. In the case of two
simultaneous charging station failures (r= 2), the failureof Stations ID 1
and 4 reduces the service by 58.18% due to a failure of 48 BEBs.

The robustness assessment of the Base Model emphasizes the
sensitivity of the BEB system operation to the charging station failure.
It demonstrates the importance of the developed resilient BEB system
configuration model in preserving the full operation and level of
service.

A resilient BEB system configuration
The BEB system configurations of the Robust Models (k = 1 & 2) are
summarized in Table 5 (for more details, see Supplementary
Tables 4–6). For the Robust Model (k = 1), the BEB charging system
comprises 18 charging locations with a heterogeneous charger-rated
power and 19 poles. Moreover, the fleet configuration differs from the

BaseModel, introducing BEBs with higher battery sizes (400 kWh, 500
kWh, and 600 kWh). This resulting BEB system configuration is robust
against any single charging station failure. During failure, the model
creates a new charging schedule utilizing the remaining charging sta-
tions and ensures that all BEBs complete their scheduled trips (an
example is illustrated in Supplementary Tables 7 and 8). For instance,
the energy demand of Bus ID 3 is 412.8 kWh drawn from four en-route
charging stations ID 4, 7, 19, and 24 in the nominal operation (163.79
kWh, 33.33 kWh, 118.52 kWh, and 97.18 kWh, respectively). In the case
of the failure of any of these four charging stations, Bus ID 3 charges
the same amount from the remaining three stations (for more details,
see Supplementary Tables 9 and 10).

In the Robust Model (k = 1), the day-to-day operational costs vary
from$2,021.47 (nodisruption) to $2,069.85 (disruption of Station ID 4).
Supplementary Fig. 3 and Supplementary Table 11 illustrate the dai-
ly operational costs of all the scenarios of one and two charging
station disruptions in the Robust Models with k = 1 and k = 2,
respectively.

For a higher level of conservative (k = 2), a resilient BEB system
requires 33 charging stations with 33 poles. The remaining 31 stations
will satisfy the fleet energy demand if any two charging stations are
jointly disrupted.

Even though the robust BEB system configuration has more allo-
cated charging stations (18 locations in k = 1 and 33 locations in k = 2)
compared to the Base Model (5 locations), the number of charging
stations withmultiple poles in the Robust Models is lower (one station
in RobustModel with k = 1 and none in the RobustModel with k = 2). In
comparison, the Base Model has two stations with multiple poles.

The energy demand shows the same trend (Supplementary
Tables 12–14). The Base Model’s highest daily energy demand location
is 5679.78 kWh. However, in the robust BEB system configuration with
k = 1 and k = 2, the highest daily energy demands are 2807.45 kWh
(≈49% of the Base Model) and 1805.25 kWh (≈32% of the Base Model),
respectively.

The Price of Robustness (PoR)
The proposed two-stage RO Model provides a resilient BEB system
configuration against k simultaneous charging stations. However, this

Table 2 | System annual costs (Base Model)

Parameter Amount ($) Percentage (%)

Construction cost $ 39,957.07 0.574%

Chargers cost $ 83,004.14 1.193%

Battery cost $ 697,916.73 10.028%

Fleet cost $ 5,332,936.24 76.629%

Operational cost $ 805,567.01 11.575%

Total annual cost $ 6,959,381.19 100.00%

Table 3 | Failed buses and service reduction at r = 1
(Base Model)

Disrupted Station ID 1 3 4 11 14

Number of failed buses 30 8 21 12 6

Service reduction 34.03% 10.28% 26.39% 14.55% 2.85%

Table 4 | Service reduction at r = 2 (Base Model)

Disrupted Station ID 3 4 11 14

1 44.11% 58.18% 46.43% 38.08%

3 38.72% 22.93% 14.59%

4 44.54% 30.12%

11 19.44%

Table5 | Results of BEB systemconfiguration (RobustModels)

Models Total system
cost ($/year)

BEB fleet con-
figuration (#
× kWh)

Number
of char-
ging
stations

Power of
charging
units (#
× kW)

Number
of
poles (#)

Base
Model

$
6,959,381.19

54 × 100
34 × 200
3 × 300

5 1 × 250
4 × 500

8

Robust
Model k
= 1

$
7,186,845.54

54 × 100
33 × 200
2 × 300
1 × 500
1 × 600

18 9 × 250
9 × 500

19

Robust
Model k
= 2

$
7,524,798.35

47 × 100
29 × 200
9 × 300
5 × 400
1 × 500

33 21 × 250
12 × 500

33
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comes at an additional cost, as presented in Table 6. This cost is called
the Price of Robustness (PoR) (see Eq. 22 in “Methods: Two-stage
robust model”).

The PoR of the robust BEB system configurationswith k = 1 and k =
2 are 3.26% and 8.12%, respectively. Therefore, designing a robust BEB
system for Oakville’s transit network that can function with one char-
ging station failurewill only cost 3.26%more than the BaseModel. This
will prevent up to a 34.03% reduction in operation. The dollar value of
such service reduction is enormous. For k = 2, a robust BEB system
costs 8.12% more than the Base Model. However, it prevents up to
58.18% of service reduction if two charging stations are disrupted.
Eventually, system robustness enhancement increases the total
expenditure.

For further clarification, Fig. 1 shows the percentage cost devia-
tion of each component between the Base Model and the Robust
Models with k = 1 & 2. All the capital costs are increased in the Robust
Models except the fleet cost (without batteries). The charging system
costs are also increased, including infrastructure costs (number of
stations) and chargers costs. The battery costs also increased, but not
as much as the charging system costs. On the other hand, the opera-
tional costs in the Robust Models are lower. Similarly, the on-peak

demand of the Robust Model with k = 2 is 77% lower than the Base
Model. Most importantly, the total system GHG emissions of the
Robust Model with k = 2 is 8% lower than that of the Base Model.

Discussion
Several certain (e.g., maintenance) and uncertain actions (e.g., elec-
tricity outage and component failure) face BEB transit systems,
accentuating the importance of a resilient BEB system configuration
implementation. However, the cost of a resilient BEB system is related
to the conservative level (k). The BEB system configuration, total sys-
tem costs, and surely the degree of the system robustness depend on
the k value. The appropriate k value for any given transit network
should consider the project budget, the risk facing the charging sys-
tem, the price of robustness (PoR) for several k values, and the
robustness assessment.

Motivated by these issues, this work contributes to the develop-
ment of a two-stage ROmodel for a resilient BEB system configuration,
planning, and operation that considers charging station disruptions. In
the first stage, the model decides the optimal locations and config-
urations of the charging stations and the BEB fleet configuration based
on the worst-case realizations in the charging station failures uncer-
tainty set. In the second stage, the recourse decisions of the charging
schedule are obtained based on the first-stage BEB system infra-
structure and the revealed uncertainty. In summary, the main con-
tributions of this work
1. The model estimates the optimal locations of the charging sta-

tions, the number of poles and charger-rated power (hetero-
geneous), and the BEB fleet battery capacities (heterogeneous).
The model minimizes the BEB system infrastructure and opera-
tional costs while accounting for the electricity Time-of-Use (ToU)
tariff and demand charges, the time-based spread of the GHG
emissions intensity, and limit constraints of the utility grid
demand.

2. The model guarantees that the optimal BEB system satisfies full
operation under any charging station failure scenario while opti-
mizing the BEB system configuration for planning and operation.

3. The proposed resilient BEB system configurationmodel is applied
to a real-world, large-scale multiple hubs transit network under

Table 6 | System annual costs (base and robust models)

Parameter Base Model Robust Model, k
= 1

Robust Model, k
= 2

Construction cost $ 39,957.07 $ 143,845.43 $ 263,716.63

Chargers cost $ 83,004.14 $ 242,086.54 $ 405,324.47

Battery cost $ 697,916.73 $ 729,882.38 $ 836,434.56

Fleet cost $ 5,332,936.24 $ 5,332,936.24 $ 5,332,936.24

Capital costs $ 6,153,814.18 $ 6,448,750.60 $ 6,838,411.89

Operational
costsa

$ 805,567.01 $ 737,837.80 $ 686,386.46

Total annual cost $ 6,959,381.19 $ 7,186,588.40 $ 7,524,798.35
aOperational costs include the electricity ToU, demand charges, and emissions costs and are
estimated in the Robust Models based on the scenario of no charging station failures (nominal
operation). Please note that the battery capacity of eachmodel is a decision variable, hence the
variation of the battery cost across models.
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Fig. 1 | Cost comparison between BaseModel, RobustModel (k = 1), and Robust
Model (k = 2). Each parameter in the Robust Model with k = 1 (one charging station
failure) and the RobustModelwith k = 2 (two charging stations failure) is compared
with the Base Model parameter (no charging station failure). These parameters
include the system costs, GHG emissions, and energy demand in each period. Each

bar represents the parameter’s relative percentage change in Robust Models from
the Base Model value. The relative percentage value is estimated using the fol-
lowing formula: (Robust Model parameter value − Base Model parameter value)/
(Base Model parameter value).

Article https://doi.org/10.1038/s41467-023-43924-6

Nature Communications |         (2023) 14:8279 4



the nominal condition (k = 0) and different charging station
failure budgets (k = 1 & 2).

4. The model quantifies the price of robustness, enabling decision-
makers to balance costs and risks.

5. The proposed resilient BEB system configuration model against
charging station failure uncertainty couldbe readily implemented
in practice.

Previous works in the literature, including our work in Foda33,
focused on developing static and generic BEB system configuration
optimization models that are insensitive to the impact of charging
station disruptions on the system configuration. Considering our work
in Foda33 and recent BEB literature, the BEB systemdesign is not robust
against charging station failure. Therefore, the service is susceptible to
severe operation reduction during charging station failure.

Thus, in this study, the proposed model provides an optimal BEB
system configuration design that satisfies full operation under any
charging station failure scenario while optimizing the BEB system
configuration for planning and operation. The obtained resilient BEB
system design provides a feasible charging schedule under any k
simultaneous charging station failure scenario.

Specifically, this work is different from our previous work in
Foda33 across the following aspects: (1) the main objective here is to
develop a resilient BEB system configuration that is robust against
charging station disruptions. In comparison, the model in Foda33

focused onproviding a static and generic BEB systemconfiguration for
planning and charging schedules that did not consider the impact of
the charging station disruption. (2) The optimization model in the
present study is formulated as a two-stage robust optimization pro-
blem to address charging station failure uncertainty. The proposed
model is solved using the nest column-and-constraint generation
algorithm. In contrast, the model developed in Foda33 is formulated as
an integer linear programming problem and solved by an over-the-
shelf solver. Therefore, the two models are different in the model
structure.

Indeed, the BEB transit system is susceptible to unexpected dis-
ruptions that could prevent BEBs from charging. In turn, BEB system
configuration predominantly relies on cost-minimization-based mod-
els, which are vulnerable to charging station disruptions15. Post-
perturbation efforts (e.g., external generators or bus replacement)
could either decrease the operation level of service (e.g., BEBs violate
the timetable) or increase the costs, lowering the BEB system’s eco-
nomic and reliability competitiveness. These concerns emphasize the
need for a resilient BEB systemconfigurationmodel (pre-perturbation)
that could handle the charging station failures uncertainty while
minimizing the system costs and, most importantly, ensuring full-
service provision.

We developed a two-stage Robust Optimization model with a
budgeted uncertainty set thatminimizes the total system annual costs,
including capital and operational costs. This formulation produces
fewer conservative designs compared to a single-stage model and
avoids the necessity of failure probability distribution required in
stochastic models.

The model is applied to a real-world, large-scale bus transit net-
work and demonstrates its effectiveness. The model is solved under
two different levels of disruption (conservative k = 1 & 2), as sum-
marized in Table 7. Undeniably, a resilient BEB system design comes
with additional costs. However, these costs will be lower than any
unoptimized post-perturbation activities to handle the charging sta-
tion failures impact. The PoR of the RobustModels with k = 1 and k = 2
are 3.26% and 8.12%, respectively. This additional cost prevents a sig-
nificant service reduction if one (34%) or two (58%) charging stations
fail. Such service reduction could lead to enormous losses in economic
productivity, personal mobility, and social interaction. Interested
readers are encouraged to see Supplementary Discussion 4 for more
details.

The proposed model is applied to another transit network with a
different network structure, operational timetable, and number of
buses (Guelph City, Ontario, Canada). The detailed results are pre-
sented in Supplementary Discussion 5.

Sensitivity analyses are conducted to understand the impact of
parameter variations, including the charging system costs (infra-
structure and chargers), battery costs, and operational costs (elec-
tricity ToU, demand charges, and GHG emissions). The results of the
sensitivity analysis are detailed in Supplementary Discussion 6.

Methods
ABEB systemcomprises three components: a transit network, afleet of
BEBs, and charging infrastructure (stations andpoles).As such, it could
be abstracted as a directed graphG(N,E). A set of nodesN representing
potential charging locations, a set of edges E representing routes
served by BEBs.

This study develops a two-stage robust model for a generalized
resilient BEB system configuration. The proposedmodel optimizes the
total annual BEB system cost while handling up to k charging stations
failure (k ≥ 1). The model estimates the optimal locations of the char-
ging stations, system components (number and location of charger
stations/poles, their rated power, and BEBs onboard battery size), and
optimal charging schedule (which station, charging time, charging
duration, and charged energy). Moreover, the model considers partial
and continuous charging strategies, electricity ToU tariffs and demand
charges, WTT GHG emissions temporal distribution, and the utility
grid power constraints at the station and network levels. The proposed
model follows six assumptions as follows:

• The operational timetable of the transit network is satisfied34.
• All BEBs begin their operation day at full charge35.
• The battery capacities of the BEB fleet are heterogeneous36,37.
• The number of stations, poles, and charger-rated power are

heterogeneous38,39.
• Systemdisruption is defined as a charging station failure thatwill

impact the entire operation day15.
• Nobackup buses are utilized to fulfill the trips of the failed buses

due to the high added cost.

The rationale of the last assumption is (1) the high cost of the BEB
relative to the cost of the charging station, (2) the high number of
failed BEBs due to daily charging station disruption (more than the

Table 7 | Cost and behavior of the proposed resilient BEB models

Model Base Model Robust Model, k = 1 Robust Model, k = 2

Total annual cost (budget) $ 6,959,381.19 $ 7,186,588.40 $ 7,524,798.35

Price of Robustness (PoR) NA 3.26% 8.12%

Additional cost from the previous model with k − 1 NA $ 227,207.21 $ 338,209.95

Maximum service reduction if one station fails 34.03% 0.0% 0.0%

Maximum service reduction if two stations fail 58.18% 13.73% 0.0%

Maximum service reduction if three stations fail 59.67% 22.38% 8.92%
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spare ratio), (3) and the need to provide smooth operation to the
passengers, drivers, and transit agency even during charging station
disruption.

During operation, the recovering time between two consequence
trips is exploited to charge BEBs. Specifically, during each recovering
time, the decisions to charge and the charging duration are informed
through the BEB system configuration optimization. Moreover, each
charging event should satisfy two concepts: partial charging, which
caps the charging duration by the available recovering time, and
continuous charging, which restricts the charging to be in a con-
tinuous time interval. In addition, the charging power of each charging
event is variable. It is related to several parameters, such as the charger
pole-rated power limits, the available power depending on the sta-
tion’s charger unit-rated power, the number of BEBs charging simul-
taneously, and the BEB battery capacity.

For the reader’s convenience, the abbreviations and notations are
summarized in Table 8, and the decision variables are presented in
Table 9.

Base Model
The Base Model, without failure uncertainty of charging stations, is
constructed as follows. Let I denotes the set of candidates charging
locations. The binary decision variable xi indicateswhether location i∈
I is selected as a charging station. The selection of candidate charging
station locations is based on three measures. First, the weighted
degree centrality (the number of buses recovering) of each bus stop,
terminal, or hub in the network is estimated, and stations with a higher
weighted degree are prioritized. Second, for each route, the start, end,
and anyother en-route stopwith a lengthy recovering time (≥2Ts)were
considered. Third, the number of en-route candidate charging stations
in the routes for each bus should be at least k + 1, where k is the budget
of the charging station failure. The rationale is to ensure that the
resulting solution is flexible to address the failure uncertainty using all
the available decisions (charging station location and configuration,
onboard battery capacity, and charging schedule).

The charging station in location i (xi= 1) is equippedwith a charger
unit of rated power Pst

i and a number of charger poles Npo
i . A penalty

Table 8 | Abbreviations and notations

Abbreviation Description Abbreviation Description

BEB Battery electric bus SP Sub-problem

WTT Well-to-tank LB Lower bound

GHG Greenhouse gas UB Upper bound

ToU Time-of-Use IMP Inner master problem

SoC State of charge ISP Inner sub-problem

MILP Mixed integer linear programming ILB Inner lower bound

C&CG Column and constrained generation IUB Inner upper bound

NC&CG Nested column and constrained generation GTFS General Transit Feed Specification

MP Master problem VKT Vehicle kilometers traveled

Sets Description Index Description

I Set of potential charging station locations i, i′ Potential charging station location index

B Set of buses b bus index

Jb Set of segments accomplished by bus b j Segment index

Ast Set of power levels of the station charger unit t Timeslot index

Abatt Set of battery capacity levels q Failure scenario index

Rb,j,i Set of timeslots of the recovering time of bus b after accomplished seg-
ment j at the location i

r Inner-level C&CG scenario index

Ξ Set of the uncertainty of charging station failure ω Demand measurement interval index

Ω Set of daily demand measurement intervals

T Set of the timeslots within a workday

Tω Set of timeslots in demand interval ω

Parameters Description Parameters Description

ρst Construction cost of a charging station ($ per location) Qmax Maximum battery size (kWh)

ρch Charger cost ($ per kW) λ1 Upper charging limit related to the battery capacity

ρpo Charger pole cost ($ per unit) Pmax ,st
i,t The station’s upper limit of power in timeslot t according

to ToU (kW)

ρbatt Battery cost ($ per kWh) ϑmin Minimum SoC limit (%)

ρbus Bus cost without battery ($ per bus) ϑmax Maximum SoC limit (%)

δ Number of workdays (#) ebase The constant energy consumption rate (kWh per km)

Ts Timeslot duration (hour) ebatt The energy consumption rate factor relevant to the BEB
battery size

ρelect
t Electricity rate according to ToU in timeslot t ($ per kWh) Pmax

po The charger pole’s maximum power (kW)

ρem
t WTT GHG emissions rate in the timeslot t ($ per kWh) db,j Segment j∈ Jb length of bus b (km)

τ Annualization factor (#) Nmax
i Maximum number of charger poles in charging station

i (#)

ρDC Electricity daily demand charges ($ per kW) k Maximum number of failed stations (#)

ηch Charger efficiency (%) ρpen Penalty cost for the failed bus ($)

Pmax ,net
t The network upper limit of power in timeslot t according to ToU (kW)
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cost of unsatisfied operation is added, which accounts for failed BEB
trips during disruption. This is to meet the relative complete recourse
property of the proposed two-stage robust model. For each bus b∈B,
zb,j is a binary variable indicating if bus b will fail to operate after
serving segment j due to insufficient battery state of charge (SoC)
under the lower limit. A high penalty cost with a suitably large value is
includedensuring that a full operation is satisfied. The trips of eachbus
b are split into a set of segments Jb, where the index j∈ Jb indicates a
sub-trip between two consecutive potential charging locations. The
working day is discretized to uniform timeslots Ts and is indexed by
t∈ T. The objective function of the Base Model in (1) aims to minimize
the total annual BEB system cost, comprising six terms. The capital
costs are annualized using a factor τ related to lifespan and the dis-
count rate.

min
x,Pst ,Npo ,Q,z,y,α,γ,P,Pd ,Pavg ,Sdep

τ
X
i2I

ρstxi + τ
X
i2I

ρchP
st
i +ρpoNpo

i

� �
+ τ
X
b2B

ρbattQb +ρ
bus

� �
+
X
b2B

X
j2Jb

ρpenzb,j + δTs

X
t2T

X
i2I

X
b2B

X
j2Jb

ρelect
t + ρem

t

� �
Pb,j,i,t

2
4

3
5+ δX

i2I
ρDCPd

i

ð1Þ

In Eq. (1), the construction cost of charging stations is (ρst),
followed by the cost of charging components (charger units ρch and
charger poles ρpo). The fleet cost includes batteries ρbatt and buses
ρbus. The penalty cost (ρpen) is allocated for unsatisfied trips due to
failed buses if they exist. The operational costs include electricity
ToU tariffs (ρelect

t ), well-to-tank (WTT) GHG emissions (ρem
t ), and

demand charges (ρDC). The first two parts of the operational costs are
related to the power to charge bus b in station i after serving seg-
ment j at timeslot t (Pb,j,i,t), and the latter is related to the daily peak
power demand (Pd

i ).
It isworth noting that including the temporalWTTGHGemissions

resulting from electricity generation in the proposed model aims to
decrease the overall GHG emissions of the entire system, enhances the
environmental competitiveness of the BEB system, and aligns with
carbon pollution pricing policies40. In Rupp35, the charging schedule is
optimized, incorporating the electricity ToU rates and the time-based
values of CO2e emissions per kWh. The research reveals that inte-
grating WTT GHG emissions into the optimization process results in a

14.9% reduction in total systemGHG emissions. Additionally, in Foda33,
when both the ToU of WTT GHG emissions and electricity tariffs are
taken into account, the total annual WTT GHG emissions decrease
by 13.34%.

The model in (1) is solved under a set of constraints (2–18).
Constraints for the battery state of charge (SoC) are described in
(2–5). The battery capacity of each bus b during operation is
limited to a predetermined range to satisfy the scheduled trips. In
(2 and 3), the arrival battery capacity of bus b to location i after
serving segment j should be higher than a minimum value (ϑmin

Qb). Equation (2) restricts the arrival battery level for the first sub-
trip as the buses are fully charged at the start of the operation
ϑmax Qb (Assumption 2), while Eq. (3) constrains the remaining
sub-trips. Where Sdepb,j,i is the battery level when bus b departs from
location i to serve segment j and db,j ebase + ebattQb

� �
is the con-

sumed energy in this segment. The consumed energy during
operation in segment j is a function of the segment length db,j and
the energy consumption rate. In this work, the energy con-
sumption rate is formulated as ebase + ebattQb

� �
, where ebase is the

energy consumption rate for the base component without
including the battery weight, ebatt Qb is the variable component of
the energy consumption rate due to the weight of a battery pack
with capacity Qb, and ebatt denotes the extra energy consumption
rate resulting from an increase in the battery size by one unit41,42.
It is worth noting that raising the bus battery capacity results in
an increase in the weight of the battery pack, subsequently
leading to a higher bus energy consumption rate43. While the
departure battery capacity (Sdepb,j,i) is restricted below a maximum
percentage (ϑmax) of the battery capacity (Qb) as mentioned in
Eq. (4). Moreover, the relation between the departure battery
capacity of bus b from location i to serve segment j (Sdepb,j,i) and the
following segment departure battery capacity Sdepb,j + 1,i0 is presented
in Eq. (5).

In the case of a bus b failure after serving segment j (zb,j = 1),
according to Eq. (5), all battery capacity constraints will be redundant,
the bus will be out of the charging network, and a penalty cost will be
added. While if no failure occurs, Eq. (5) emphasizes that the battery
capacity when bus b departure to segment j + 1 (Sdepb,j + 1,i0 ) equals the
summation of the battery capacity when the bus departure to the pre-
vious segment j (Sdepb,j,i) and the charged energy during the recovering
time after serving segment j ðPt2Rb,j,i0

ηchTsPb,j,i0 ,tÞ minis the consumed

Table 9 | Decision variables

Decision variables Description

xi A binary decision variable denotes whether the location i is chosen as a charging station or not

Npo
i A non-negative integer denotes the number of the charger poles in location i ∈ I

Pst
i The charger unit-rated power at station i ∈ I

Qb The battery size for bus b ∈ B

zb,j A binary decision variable denotes whether the bus b failed after serving segment j or not

yb,j,i,t A binary decision variable, yb,j,i,t = 1 if the bus b charged in charging station i after serving segment j at timeslot t, yb,j,i,t = 0 otherwise

αb,j,i,t An auxiliary binary decision variable

γb,j,i,t An auxiliary binary decision variable

Pb,j,i,t A non-negative continuous variable indicates the charging-rated power for bus b after accomplishing segment j in location i at timeslot t

Pd
i Peak power demand of charging station i

Pavg
i,ω Average power demand in charging station i during demand interval ω

Sdep
b,j,i A non-negative continuous variable presents the battery level of bus b before departure to serve segment j from the potential location i (kWh)

ξi A binary decision variable, ξi = 1 if the charging station in location i is failed, ξi = 0 otherwise

σ An auxiliary continuous variable

θ An auxiliary continuous variable

π Dual variable for the sub-problem continuous variables
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energy during segment j.

ϑmaxQb � db,j ebase + ebattQb

� �
≥ ϑminQb 8b 2 B,j = 1 ð2Þ

Sdepb,j,i � db,j ebase + ebattQb

� �
≥ ϑminQb 8b 2 B,8j 2 Jbn1,i 2 I

ð3Þ

Sdepb,j,i ≤ ϑmaxQb 8b 2 B,8j 2 Jbn1, i 2 I ð4Þ

Sdepb,j + 1,i0 ≤ S
dep
b,j,i � db,j ebase + ebattQb

� �
+
P

t2Rb,j,i0
ηchTsPb,j,i0 ,t

+Qmax P
j0 ≤ j

zb,j0

8b 2 B,8j,j0 2 Jbn1,i&i0 2 I

ð5Þ

Through Eqs. (6 and 7), the charging power of bus b after
serving segment j in location j during timeslot t (Pb,j,i,t) is boun-
ded. Constraint (6) works in two ways. First, the charging power
Pb,j,i,t is zero if the binary decision variable of charging bus b in
timeslot t (yb,j,i,t) is zero. In addition, Pb,j,i,t is lower than a max-
imum charger pole’s power limit Pmax

po . In Eq. (7), the charging
power is lower than a maximum factor (λ1) multiplied by the
battery capacity. This factor is related to the battery C-rate (the
rate of charge or discharge relative to the battery capacity).
Charging above the C-rate will lead to accelerated battery
fading44.

Pb,j,i,t ≤P
max
po yb,j,i,t 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i ð6Þ

Pb,j,i,t ≤ λ1Qb 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i ð7Þ

Equations (8–10) establish a continuous charging strategy using
the auxiliary variables αb,j,i,t and γb,j,i,t. From Eq. (8), αb,j,i,t captures the
status of unplugging the charger pole. Similarly, in Eq. (9), γb,j,i,t equals
one if the charger pole is plugged into the bus. Therefore, Eq. (10)
enforces the charging continuity by setting the status change of
plugging and unplugging to be less than or equal to one during the
same charging process.

αb,j,i,t ≥ yb,j,i,t � yb,j,i,t + 1 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i ð8Þ

γb,j,i,t ≥ yb,j,i,t � yb,j,i,t�1 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i ð9Þ

X
t2Rb,j,i

αb,j,i,t =
X
t2Rb,j,i

γb,j,i,t ≤ 1 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i ð10Þ

The charging station constraints are presented in Eqs. (11–13).
Equation (11) guarantees that if no charging station is built in location i,
there is no charger unit with Npo

i charger poles deployed at this loca-
tion. Moreover, the number of charger poles utilized in any allocated
station is bounded by an upper limit Nmax

i which varies across loca-
tions. Equation (12) ensures that the number of buses charging in the
same timeslot t and location i is less than or equal to the deployed
charger poles. Similarly, in Eq. (13), the summation of the charging
power at the same location and timeslot will not exceed the charger-
rated power at this charging station (Pst

i ). In Eqs. (14 and 15), the total
charging power during each timeslot t for each allocated station and
network level is restricted to be less than the upper bounds that

depend on the ToU.

Npo
i ≤Nmax

i xi 8i 2 I ð11Þ

X
b2B

yb,j,i,t ≤N
po
i 8i 2 I,j, 2 Jb,8t 2 T ð12Þ

X
b2B

Pb,j,i,t ≤ P
st
i 8i 2 I,j 2 Jb,8t 2 T ð13Þ

X
b2B

Pb,j,i,t ≤ P
max ,st
i,t 8i 2 I,8t 2 T ð14Þ

X
i2I

X
b2B

Pb,j,i,t ≤P
max ,net
t 8t 2 T ð15Þ

The electricity demand charges are determined by the peak
power demand recorded during a billing period. It is measured as the
maximum average electric power consumed within a specific time
interval (e.g., 1 h). The average power of each demand measurement
intervalω∈Ω in station i is calculated based on Eq. (16), whereΩ is the
set of daily demand chargesmeasurement intervals and Tω is the set of
timeslots in demand interval ω. In turn, in Eq. (17), the maximum daily
power demand Pd

i in charging station i is estimated.

Pavg
i,ω =

P
t2Tω

P
b2B

Pb,j,i,t

jTωj
8i 2 I,8ω 2 Ω ð16Þ

Pd
i ≥P

avg
i,ω 8i 2 I,8ω 2 Ω ð17Þ

Equation (18) imposed the types of variables, such as
xi,zb,j,yb,j,i,t ,αb,j,i,t and γb,j,i,t are binary, Npo

i is a non-negative integer,

andPb,j,i,t ,P
d
i ,P

avg
i,ω , and Sdepb,j,i are continuous. The variables P

st
i andQb are

selected from predefined finite sets that represent a wide range of the
available values/specifications in the market with the recent technol-
ogy. TheBaseModel of theBEB systemconfiguration is formulated as a
mixed integer linear programming (MILP).

xi 2 0,1f g 8i 2 I

Pst
i 2 Ast 8i 2 I

Npo
i 2 Z0+ 8i 2 I

Qb 2 Abatt 8b 2 B

zb,j 2 0,1f g 8b 2 B,8j 2 Jb
yb,j,i,t 2 0,1f g 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i

αb,j,i,t 2 0,1f g 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i

γb,j,i,t 2 0,1f g 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i

Pb,j,i,t ≥0 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i

Pd
i ≥0 8i 2 I

Pavg
i,ω ≥0 8i 2 I,8ω 2 Ω

Sdepb,j,i ≥0 8b 2 B,8j 2 Jb,i 2 I

ð18Þ

Two-stage robust model
The two-stage robust model satisfies all the charging station failure
scenarios at the minimum total system costs. A budgeted uncertainty
set presented in Eq. (19) is defined to allow up to k simultaneous fail-
ures of charging stations from the beginning of the BEB system
operation. Where ξi is a random binary variable denoting whether the
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charging station in location i∈ I fails.

Ξ= ξ 2 0,1f g Ij j :
X
i2I

ξ i ≤ k

( )
ð19Þ

Given the uncertainty set Ξ defined in Eq. (19), the resilient BEB
system configuration model is formulated as follows.

min
x,Pst ,Npo ,Q

τ
X
i2I

ρstxi + τ
X
i2I

ρchP
st
i +ρpoNpo

i

� �
+ τ
X
b2B

ρbattQb +ρ
bus

� �" #

+ max
ξ2Ξ

min
z,y,α,γ,P,Pd ,Pavg ,S

dep

X
b2B

X
j2Jb

ρpenzb,j

2
4

+ δTs

X
t2T

X
i2I

X
b2B

X
j2Jb

ρelect
t + ρem

t

� �
Pb,j,i,t

0
@

1
A+ δ

X
i2I

ρDCPd
i

3
5
ð20Þ

Subject to: (2–12), (14–19), and

X
b2B

Pb,j,i,t ≤P
st
i 1� ξ i
� � 8i 2 I,j 2 Jb,8t 2 T ,ξ 2 Ξ ð21Þ

In this two-stage ROmodel, the decisions of the charging stations
allocation, charging unit-rated power, the number of charger poles in
each station, and the battery capacity of each bus are taken in the first
stage of minimization (here-and-now decisions). However, the actual
operation decisions, such as the charging schedule (charging decision,
charging power, and segments-specific departure battery SoC) and the
bus failure decision, are taken in the second stage after the charging
station perturbations have occurred via the maximization over the
uncertainty set Ξ (wait-and-see decisions).

Most notably, multiplying the daily operational costs in the
objective function by the parameter δ (number of workdays) does not
mean that the charging station failure ξ∈Ξ will last for all the δ days.
This approach is utilized as the operational costs are estimated daily
(depending on the charging schedule), and the objective function is
represented annually. Moreover, the two-stage optimization model
relies on minimizing the impact of the worst-case scenario approach,
which aligns with assuming the annual operational costs are caused by
the worst-case charging station failure on all days. However, this is just
the worst-case scenario. The actual annual operational costs of the
obtained resilientmodel are estimated after the realization of eachday
charging station failure uncertainty.

The objective function of the two-stage ROmodel is solved under
the same constraints of the BaseModel aftermodifying Constraint (13)
to Eq. (21) to include the uncertainty budget set constraint presented
in Eq. (19) and have the failure decision and the associate uncertainty
set in the model.

Equation (21) ensures that the charging power in the failed station
is zero. Moreover, this emphasizes that the charging decision variable
yb,j,i,t of bus b∈B after serving segment j during timeslot t∈ T in failed
station iwill equal to zero as restricted in Eq. (6). It is worth noting that
thismodification does not restrict charging infrastructure allocation in
the failed location. In contrast, and due to the maximization max

ξ2Ξ
to

estimate the worst-case scenarios, the random disruption variable ξi
will equal to one only in locations i chosen to build charging stations
(xi= 1). Toward this end, theproposed resilientmodel provides theBEB
system infrastructure planning (number and configuration of charging
stations and BEBs configuration) that is robust against the charging
system infrastructure disruption.

The price of robustness is calculated using Eq. (22)27, where
ROSC(k) and DOSC are the optimal annual system cost of the Robust

Modelwith budget k and the deterministic BasicModel. The PoRof the
robust BEB system at each value k is calculated by comparing the
annual system cost with the Base Model (k = 0).

PoR kð Þ= ROSC kð Þ � DOSC
DOSC

ð22Þ

Solution algorithm
The proposed two-stage RO model is considered a tri-level optimiza-
tion problem with mixed integer variables, which takes the form
of min

x,Pst ,Npo ,Q
�max

ξ2Ξ
� min

Z ,y,α,γ,P,Pd ,Pavg ,Sdep
. The solution algorithms are

detailed in Supplementary Discussion 7. Moreover, computational
performance enhancement approaches for the solution algorithm are
described in Supplementary Discussion 8. Fig. 2 depicts a framework
of the solution algorithm.

Nevertheless, the two-stage RO problems are generally NP-hard
and computationally intractable for more realistic size models45.
Moreover, the proposed model’s second-stage problem is mixed-
integer programming (i.e., z,y,α,γ∈ {0, 1}). Therefore, the strong
duality cannot be directly applied to the second-stage problem
max
ξ2Ξ

� min
Z ,y,α,γ,P,Pd ,Pavg ,Sdep

: This condition renders the standard decom-

position methods such as the L-shaped method46, Benders
decomposition47, and classical column-and-constrained generation
(C&CG) method27,48 unsuitable to solve the proposed model. There-
fore, we apply the nested column-and-constrained generation
(NC&CG) framework developed by Zhao and Zeng49 to solve the two-
stage RO models with mixed-integer recourse problem. The NC&CG
method is proven to be an exact algorithm for solving the two-stage
RO problem in finite steps49.

In the NC&CG algorithm, the two-stage ROmodel is decomposed
into outer-level and inner-level problems. Each problem is solved using
the standard C&CG method. Specifically, the outer-level problem cal-
culates theBEBsystem infrastructure configurationby solving thefirst-
stageproblemunder theworst-case scenarios estimatedusing the sub-
problem. While the inner-level problem iteratively solves the second-
stage problem to identify the worst-case scenarios for the given BEB
system infrastructure configuration (i.e., x,Pst ,Npo,Q) resulted from
the outer-level problem.

For any resulting first-stage variables (x,Pst ,Npo,Q), the second-
stage problem is feasible. As the recourse variables related to the
charging schedule (y,α,γ,P,Pd ,Pavg ,Sdep) and penalizing the unsatisfied
operational trips are addressed in the objective function of the second
stage (z). Therefore, the relative complete recourse condition is
maintained in the proposed model under any scenario estimated
according to the maximization function with respect to the random
failure variable (ξ).

Outer-level C&CG solution algorithm. The outer level of the NC&CG
algorithm is considered a standard C&CG framework49. Generally, the
C&CGprocedure comprises twoproblems, aMaster Problem (MP) and
a Sub-Problem (SP), solved in an iterative process48. This is based on
the formulation of the two-stage RO problem that includes a master
problem (first stage) in the form of min and a sub-problem (second
stage) in the form of max − min.

The MP and the SP of the proposed two-stage RO BEB system
configuration model are presented in Eqs. (23–40) and Eqs. (41–50),
respectively.

[MP]:

min
x,Pst ,Npo ,Q,zq ,yq ,αq ,γq ,Pq ,Pd,q ,Pavg,q ,Sdep,q

τ
X
i2I

ρstxi + τ
X
i2I

ðρchPst
i + ρpoNpo

i Þ + τ
X
b2B

ðρbattQb +ρ
busÞ+σ

ð23Þ
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Subject to: (2), (11),

X
b2B

X
j2Jb

ρpenzqb,j + δTs

X
t2T

X
i2I

X
b2B

X
j2Jb

ρelect
t +ρem

t

� �
Pq
b,j,i,t

2
4

3
5

+ δ
X
i2I

ρDCPd,q
i ≤σ 8q≤n

ð24Þ

Sdep,qb,j,i � db,j ebase + ebattQb

� �
≥ ϑminQb 8b 2 B,8j 2 Jbn1,i 2 I,8q≤n

ð25Þ

Sdep,qb,j,i ≤ ϑmaxQb 8b 2 B,8j 2 Jbn1,i 2 I,8q≤n ð26Þ

Sdep,qb,j + 1,i0 ≤ S
dep,q
b,j,i � db,j ebase + ebattQb

� �
+
X

t2Rb,j,i0

ηchTsP
q
b,j,i0 ,t

+Qmax
X
j0 ≤ j

zqb,j0 8b 2 B,8j,j0 2 Jbn1,i&i’ 2 I, 8q≤n
ð27Þ

Pq
b,j,i,t ≤P

max
po yqb,j,i,t8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i, 8q≤n ð28Þ

Pq
b,j,i,t ≤ λ1Qb 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i,8q≤n

ð29Þ

αq
b,j,i,t ≥ y

q
b,j,i,t� yqb,j,i,t + 1 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i,8q≤n

ð30Þ

γqb,j,i,t ≥ y
q
b,j,i,t � yqb,j,i,t�1 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i,8q≤n

ð31Þ
X
t2Rb,j,i

αq
b,j,i,t =

X
t2Rb,j,i

γqb,j,i,t ≤ 1 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i,8q ≤n

ð32Þ

X
b2B

yqb,j,i,t ≤N
po
i 8i 2 I,j, 2 Jb,8t 2 T ,8q≤n ð33Þ

Take , and add new C&C 

Initialization

Termination

Solve [MP] to estimate the first-stage 

variables , , , and LB

Take the failure scenario to update the 

ISP

Solve [ISP] to estimate , , , and ILP

≤

Take , , , , and add new 

C&C 

Update UB using the IUP 

≤

Yes

Yes

No

No

Take the first stage variables to update IP

Solve [IMP] to calculate and IUB

Fig. 2 | Nested column-and-constraint generation solution algorithm. The
algorithm started with solving the master problem (MP) to estimate the first-stage
variables (locations of the charging stations x, charger-rated power in each station
Pst, number of poles Npo, and fleet battery capacities Q) and the iteration lower
bound (LB). Then, the sub-problem (SP) is solved using the column-and-constraint
(C&C) generationmethod. The SP includes solving the inner master problem (IMP)
to obtain the failure scenario ξ and the inner problem upper bound (IUB), along
with solving the inner sub-problem (ISP) to get the value of the discrete variables of
the ISP (z,y,α,γ) and the inner problem lower bound (ILP). The values of the ISP

discrete variables z,y,α,γ are used iteratively to update the IMP until the con-
vergence condition of the SP is reached (relative optimality gap of the inner pro-
blem GI is lower than a small number ε). The solution of the SP is taken as the
iteration upper bound (UB). The obtained failure scenario from this iteration (ξ) is
used to update the MP of the next iteration by adding the associated C&C. This
procedure runs iteratively until the termination criteria of the outer problem are
achieved (relative optimality gap of the outer problem GO is lower than a small
number ε).
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X
b2B

Pq
b,j,i,t ≤P

st
i 1� ξ̂

q

i

� �
8i 2 I,j 2 Jb,8t 2 T ,8q≤n ð34Þ

X
b2B

Pq
b,j,i,t ≤ P

st
i 8i 2 I,j 2 Jb,8t 2 T ,8q≤n ð35Þ

X
b2B

Pq
b,j,i,t ≤P

max ,st
i,t 8i 2 I,8t 2 T ,8q≤n ð36Þ

X
i2I

X
b2B

Pq
b,j,i,t ≤P

max ,net
t 8t 2 T ,8q≤n ð37Þ

Pavg,q
i,ω =

P
t2Tω

P
b2B

Pq
b,j,i,t

jTωj
8i 2 I,8ω 2 Ω,8q≤n ð38Þ

Pd,q
i ≥Pavg,q

i,ω 8i 2 I,8ω 2 Ω,8q≤n ð39Þ

xi 2 0,1f g,Pst
i 2 Ast ,Npo

i 2 Z0+ 8i 2 I

Qb 2 Abatt 8b 2 B

zqb,j 2 0,1f g 8b 2 B,8j 2 Jb,8q≤n
yqb,j,i,t 2 0,1f g,αq

b,j,i,t 2 0,1f g,γqb,j,i,t 2 0,1f g,Pq
b,j,i,t ≥0 8b 2 B,8j2 Jb,i 2 I,8t 2 Rb,j,i,8q≤n

Pd,q
i ≥0 8i 2 I,8q ≤n

Pavg,q
i,ω ≥0 8i 2 I,8ω 2 Ω,8q≤n

Sdep,qb,j,i ≥0 8b 2 B,8j 2 Jb,i 2 I,8q≤n

ð40Þ
[SP]:

max
ξ2Ξ

min
z,y,α,γ,P,Pd ,Pavg ,Sdep

X
b2B

X
j2Jb

ρpenzb,j + δTs

X
t2T

X
i2I

X
b2B

X
j2Jb

ρelect
t + ρem

t

� �
Pb,j,i,t

0
@

1
A+δ

X
i2I

ρDCPd
i

2
4

3
5

ð41Þ
Subject to: (6), (8–10), (14–17), (19),

Sdepb,j,i � db,j ebase + ebattQ̂b

� �
≥ ϑminQ̂b 8b 2 B,8j 2 Jb1,i 2 I ð42Þ

Sdepb,j,i ≤ ϑ
maxQ̂b8b 2 B, 8j 2 Jb1,i 2 I ð43Þ

Sdepb,j + 1,i0 ≤ S
dep
b,j,i � db,j ebase + ebattQ̂b

� �
+
X

t2Rb,j,i0

ηchTsPb,j,i0 ,t

+Qmax
X
j0 ≤ j

zb,j0 8b 2 B,8j,j0 2 Jb1,i&i0 2 I
ð44Þ

Pb,j,i,t ≤ λ1Q̂b 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i ð45Þ

Npo
i ≤Nmax

i x̂i 8i 2 I ð46Þ

X
b2B

yb,j,i,t ≤ N̂
po
i 8i 2 I,j, 2 Jb,8t 2 T ð47Þ

X
b2B

Pb,j,i,t ≤ P̂
st
i 8i 2 I,j 2 Jb,8t 2 T ð48Þ

X
b2B

Pb,j,i,t ≤ P̂
st
i 1� ξ i
� � 8i 2 I,j 2 Jb,8t 2 T ,ξ 2 Ξ ð49Þ

zb,j 2 0,1f g 8b 2 B,8j 2 Jb
yb,j,i,t 2 0,1f g,αb,j,i,t 2 0,1f g,γb,j,i,t 2 0,1f g,Pb,j,i,t ≥0 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i

Sdepb,j,i ≥0 8b 2 B,8j 2 Jb,i 2 I

Pd
i ≥0 8i 2 I

Pavg
i,ω ≥0 8i 2 I,8ω 2 Ω

ξ i 2 f0,1g 8i 2 I

ð50Þ

First, the MP is solved to obtain the optimal first-stage variables
representing the optimal infrastructure configuration, such as the
allocated charging stations x̂, charger-rated power in each station P̂

st
,

number of charger poles N̂
po
, and the BEB fleet battery capacities Q̂

considering the charging station failure scenarios q ≤ n obtained from
the SP solutions. Where q is the failure scenario index, and n is the
number of scenarios. In the first iteration, the MP is solved with the
initial charging station failure scenario (n = 0). Then, the output MP

solution (x̂,P̂
st
, N̂

po
, Q̂) are provided to the SP to estimate the worst-

case scenario of charging station failure (ξ̂) that has the highest
operational cost and failed buses (minimum level of service). In the
next iteration, the resulting worst-case scenario q (ξ̂) is added to the
MP (variables (zq,yq,αq,γq,Pq,Pd,q,Pavg,q,Sdep,q) and Constraints
(24–40)) to improve the first-stage solution (more robust). The new
solution of the MP will satisfy all the added charging station failure
scenarios (q ≤ n) and provide robust BEB infrastructure decisions
against these failure scenarios.

As such, in each iteration, the sub-problem is mainly solved to
obtain the worst-case charging station failure ξ ∈ Ξ scenario
under the BEB system configuration estimated using the MP to add
this scenario in the next iteration. The SP takes the form of
max – min.

The outer-level C&CG algorithm iterates until reaching a robust
BEB system configuration against all the charging station failure sce-
narios that increase the second-stage costs. The MP’s objective func-
tion value is the solution LB. In addition, the summation of the
objective function of the SP and the first-stage infrastructure cost
denotes the solution UB. The gap between the UB and LB decreases
during iterations and the algorithm terminates after reaching a pre-
defined relative optimality gap (ε). It is worth noting that the relative
complete recourse property is satisfied in the proposed model.
Therefore, there is no need to add the feasibility cuts during the
iterations. Moreover, the algorithm guarantees convergence in finite
iterations as the extreme points of the feasibility region of the uncer-
tainty variable are finite. Finally, the outer-level C&CG solution pro-
cedure framework is summarized in Algorithm 1 in Supplementary
Discussion 7.

Inner-level C&CG solution algorithm. The inner-level C&CG solution
algorithm is utilized to solve the sub-problem (SP) presented in Eqs.
(41–50) that takes the form of max –min and supplies the MP with the
worst-case charging stations failure scenarios (ξ̂). The bi-level SP can-
not be directly reduced into a monolithic optimization problem using
the Karush-Kuhn-Tucker (KKT) conditions or the strong duality prop-
erty because of the integer recourse variables in the second level of the
SP (z,y,α,γ). Themain ideaof theNC&CGmethoddeveloped in ref. 49 is
to solve the bi-level SP by its equivalent tri-level problem. The tri-level
problem will take the form of max –min –min that is similar to a two-
stage RO model after separating the discrete variables (z,y,α,γ) from
the continuous variables (P,Pd ,Pavg ,Sdep) in the second-stage problem
as presented in Eq. (51). In this case, the recourse variables in the third
level are continuous. Therefore, the standard C&CG solution frame-
work could solve the SP. This is called the inner-level C&CG solution
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algorithm.

max
ξ2Ξ

min
z,y,α,γ

X
b2B

X
j2Jb

ρpenzb,j + min
P,Pd ,Pavg ,Sdep

δTs

X
t2T

X
i2I

X
b2B

X
j2Jb

ρelect
t + ρem

t

� �
Pb,j,i,t

0
@

1
A+δ

X
i2I

ρDCPd
i

ð51Þ
Subject to: (6), (8–10), (14,17), (19), and (42–50)
After converting the SP to a tri-level model in Eq. (51), the proce-

dure of the C&CG is utilized. In otherwords, if all the points (scenarios)
of the feasibility region of the discrete variables z,y,α,γ are included in
the problem, the tri-level problem could be converted to an equivalent
model presented in Eqs. (52–64), where r is the scenario index and R is
the total number of feasible scenarios. Therefore, the SP solution
algorithm comprises solving two optimization problems iteratively:
the inner master problem (IMP) to find the failure scenario (ξ) and the
inner sub-problem (ISP) to provide the IMP with the discrete variables
zr ,yr ,αr ,γr scenarios.

max
ξ2Ξ,θ≥0,Pr ,Pd,r ,Pavg,r ,Sdep,r

θ ð52Þ

Subject to:

θ≤
X
b2B

X
j2Jb

ρpenzrb,j

+ min
Pr ,Pd,r ,Pavg,r ,S

dep,r

δTs
P
t2T

P
i2I

P
b2B

P
j2Jb

ρelect
t +ρem

t

� �
Pr
b,j,i,t

 !
+ δ
P
i2I

ρDCPd,r
i :

s:t: 54� 64ð Þ

8><
>:

9>=
>;8r 2 R

ð53Þ

Sdep,rb,j,i � db,j ebase + ebattQ̂b

� �
≥ ϑminQ̂b 8b 2 B,8j 2 Jbn1,i 2 I,8r ≤R

ð54Þ

Sdep,rb,j,i ≤ ϑmaxQ̂b 8b 2 B,8j 2 Jbn1,i 2 I,8r ≤R ð55Þ

Sdep,rb,j + 1,i0 ≤ S
dep,r
b,j,i � db,j ebase + ebattQ̂b

� �
+
X

t2Rb,j,i0

ηchTsP
r
b,j,i0 ,t

+Qmax
X
j0 ≤ j

zr
b,j’

8b 2 B,8j,j0 2 Jbn1,i&i’ 2 I,8r ≤R
ð56Þ

Pr
b,j,i,t ≤P

max
po yrb,j,i,t 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i,8r ≤R

ð57Þ

Pr
b,j,i,t ≤ λ1Q̂b 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i,8r ≤R ð58Þ

X
b2B

Pr
b,j,i,t ≤ P̂

st
i 8i 2 I,j 2 Jb,t 2 T ,8r ≤R ð59Þ

X
b2B

Pr
b,j,i,t ≤P

max ,st
i,t 8i 2 I,8t 2 T ,8r ≤R ð60Þ

X
i2I

X
b2B

Pr
b,j,i,t ≤P

max ,net
t 8t 2 T ,8r ≤R ð61Þ

Pavg,r
i,ω =

P
t2Tω

P
b2B

Pr
b,j,i,t

jTωj
8i 2 I,8ω 2 Ω,8r ≤R ð62Þ

Pd,r
i ≥Pavg,r

i,ω 8i 2 I,8ω 2 Ω,8r ≤R ð63Þ

Pr
b,j,i,t ≥0 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i,8r ≤R

Pd,r
i ≥0 8i 2 I,8r ≤R

Pavg,r
i,ω ≥0 8i 2 I,8ω 2 Ω,8r ≤R

Sdep,rb,j,i ≥0 8b 2 B,8j 2 Jb,i 2 I,8r ≤R

ð64Þ

A matrix formulation of the equivalent model in Eqs. (52–64) is
presented in Eqs. (65–66) to simplify the following steps. Generally, to
convert the optimization problem in Eqs. (65–66) to a monolithic
optimization problem, classical KKT conditions or the strong duality
property could be utilized50. However, the extended relative complete
recourse is not guaranteed in the proposed model case. Therefore,
only strong duality could be used49.

max
ξ2Ξ,θ≥0,Pr ≥0,Pd,r ≥0,Pavg,r ≥0,Sdep,r ≥0

θ ð65Þ

Subject to:

θ ≤ hZr + min gY r : AYr ≥ f +Dξ ,Yr = Pr ,Pd,r ,Pavg,r ,Sdep,r
h in o

8r 2 R

ð66Þ
Let πr denotes the dual variable to the continuous variable

Yr = ½Pr ,Pd,r ,Pavg,r ,Sdep,r � of the minimization problem in the rth con-
straint of (66). Then, the equivalent monolithic formulation of the
problem in Eqs. (65 and 66) is presented in Eqs. (67 and 68). Even
though this new formulation is single-level programming, the problem
becomes non-linear programming because of the multiplication of ξ
and the dual variable πr in Eq. (68). As the failure random variable ξ∈ Ξ
is binary, Eq. (68) could be linearized by the big −Mmethod. Let Vr are
auxiliary variables used in the linearization process.

max
ξ2Ξ,θ≥0,πr ≥0

θ ð67Þ

Subject to:

θ≤hZr + f +Dξð Þtπr 8r ≤R ð68Þ

Atπr ≤ gt 8r ≤R ð69Þ
As such, the final formulationof the innermaster problem (IMP) is

presented in Eqs. (70–74). This last formulation is linear programming
and could be solved effectively using an over-the-shelf solver (e.g.,
CPLEX, GUROBI). Moreover, it is not required to include all the points
in the feasibility region of the discrete variables z,y,α,γ in the IMP
solution. These scenarios will be added one by one in an iterative
process. Therefore, R is replaced by s, which represents the iteration
number. In each iteration, the values of zr ,yr ,αr ,γr in the IMP will be
obtained by the solution of the inner sub-problem (ISP).

[IMP]

max
ξ2Ξ,θ≥0,πr ≥0,Vr ≥0

θ ð70Þ

Subject to:

θ≤hZr + f tπr +
X

l
V r

l 8r ≤ s ð71Þ

Atπr ≤ gt 8r ≤ s ð72Þ

Vr ≤Mξ 8r ≤ s ð73Þ

Vr ≤Dtπr 8r ≤ s ð74Þ
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During the solution of the IMP, the resulting charging station
failure variable ξ will be provided to the ISP. Then, the ISP is solved to
estimate the minimum operational cost under this failure scenario.
The values of the discrete variables will be taken and included in the
next iteration of the IMP by adding new variables (Pr ,Pd,r ,Pavg,r ,Sdep,r)
and Constraints (71–74). The IMP and the ISP’s objective function
values are considered the IUB and ILB, respectively. Iteratively, the gap
will be reduced, and the inner-level C&CG algorithm will converge to
the worst-case charging station failure scenario ξ̂ with respect to the
BEB system infrastructure configuration provided by the MP. Finally,
the inner-level C&CG framework summary is presented in Algorithm 2
in the Supplementary Discussion 7.

[ISP]

min
z,y,α,γ,P,Pd ,Pavg ,S

dep

X
b2B

X
j2Jb

ρpenzb,j + δTs

X
t2T

X
i2I

X
b2B

X
j2Jb

ρelect
t +ρem

t

� �
Pb,j,i,t

0
@

1
A+δ

X
i2I

ρDCPd
i

2
4

3
5

ð75Þ
Subject to: (6), (8–10), (14–17), (42–48),

X
b2B

Pb,j,i,t ≤ P̂
st
i 1� ξ̂ i
� �

8i 2 I,j 2 Jb,8t 2 T ,ξ 2 Ξ ð76Þ

zb,j 2 0,1f g 8b 2 B,8j 2 Jb
yb,j,i,t 2 0,1f g,αb,j,i,t 2 0,1f g,γb,j,i,t 2 0,1f g,Pb,j,i,t ≥0 8b 2 B,8j 2 Jb,i 2 I,8t 2 Rb,j,i

Pd
i ≥0 8i 2 I

Pavg
i,ω ≥0 8i 2 I,8ω 2 Ω

Sdepb,j,i ≥0 8b 2 B,8j 2 Jb,i 2 I

ð77Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Oakville Transit General Transit Feed Specification (GTFS) data
used in this study is publicly available at (https://transitfeeds.com/p/
oakville-transit/615). Source Data file has been deposited in Figshare
under the accession code https://doi.org/10.6084/m9.figshare.
2457871051.

Code availability
Themathematical formulation and algorithmsdetailed in thiswork are
scripted in MATLAB (https://www.mathworks.com/products/matlab.
html), and the obtained MILPs are solved using Gurobi solver (https://
www.gurobi.com/). Customcodes used in this study are available from
https://doi.org/10.5281/zenodo.1011432652.
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