
Article https://doi.org/10.1038/s41467-023-43908-6
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Parametrized quantum circuits (PQCs) represent a promising framework for
using present-day quantum hardware to solve diverse problems in materials
science, quantum chemistry, and machine learning. We introduce a “syner-
gistic” approach that addresses two prominent issues with these models: the
prevalence of barren plateaus in PQC optimization landscapes, and the diffi-
culty to outperform state-of-the-art classical algorithms. This framework first
uses classical resources to compute a tensor network encoding a high-quality
solution, and then converts this classical output into a PQC which can be
further improved using quantum resources. We provide numerical evidence
that this framework effectively mitigates barren plateaus in systems of up to
100 qubits using only moderate classical resources, with overall performance
improving as more classical or quantum resources are employed. We believe
our results highlight that classical simulation methods are not an obstacle to
overcome in demonstrating practically useful quantum advantage, but rather
can help quantum methods find their way.

In the coming years and decades, quantum computing resources will
likely remain more expensive and less abundant than classical com-
puting resources1–3. Despite the intrinsic theoretical advantages of
quantum computers, the widespread adoption of quantum technolo-
gies will ultimately depend on the benefits they can offer for solving
problems of high practical interest using these limited resources. To
this end, parametrizedquantumcircuits (PQCs)4–6 havebeenproposed
as a promising formalism for leveraging near-term quantum devices
for the solution of problems in quantum chemistry7–9, materials
science10, and quantum machine learning11–18 applications which are
difficult for classical algorithms.

However, several distinct challenges stand in the way of reaching
practical advantage over classical methods using parametrized quan-
tum algorithms, such as the existence of barren plateaus19–22 and
unfavorable guarantees for local minima23–25 in the PQC optimization
landscape. Such results typically apply to the setting of generic PQC
ansätze and parameter initialization schemes, and much less is known
about scenarioswhere the initial parametersof a PQCare adapted for a
particular task. While this adaptation has proven useful in quantum

chemistry, where circuits for computingmolecular ground states have
been shown to reach higher-precision results using initializations
based on mean-field Hartree-Fock or more sophisticated coupled-
cluster-based solutions (e.g., see refs. 26–29), task-specific initializa-
tions have seenmuch less use in other areas, such as quantummachine
learning (QML).

Another difficulty for demonstrating an advantage over classi-
cal algorithms using PQCs is the increasing sophistication of clas-
sical simulation algorithms based on tensor networks (TNs), whose
classically parametrized models can efficiently describe PQCs
whose intermediate states have limited entanglement. The ability of
TNs to be deployed on powerful classical hardware accelerators,
such as graphical and tensor processing units (GPUs and TPUs),
raises the bar for quantumhardware to overcome. This situation has
led to a zero-sum game perspective on improvements in quantum
vs. classical technologies, where advances in one domain are fre-
quently viewed as placing additional burdens on practitioners of the
other to attain relative advantages (see ref. 30 for a representative
example).
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Compared to previousworks, ourmethod is broadly similar to the
proposal of ref. 31 to use classically trained TN models for initializing
PQCs, which was predicted to yield benefits in performance and
trainability within general machine learning tasks. Our findings can
thus be seen as both a concrete realization of this general proposal,
applicable to a diverse rangeof circuit architectures and learning tasks,
as well as a robust experimental verification of the benefits anticipated
there. Closer to our work is the pretraining method of ref. 32, where
trainedMPS with bond dimension χ = 2 were exactly decomposed into
a staircase of two-qubit gates, which were then used to initialize
quantum circuits for machine learning tasks. While this method was
shown to improve theperformanceand trainability of PQCmodels, the
restriction to χ = 2 MPS placed a limit on the extent of classical
resources which could be used to improve quantum models. By con-
trast, our synergistic optimization framework can be scaled up to
utilize arbitrarily large classical and quantum resources, a difference
that our results suggest gives continued returns in practice.

While the method we develop utilizes the specific circuit
decomposition procedure of ref. 33, any other scalable MPS to PQC
decomposition canbe used in its place, so long as the following criteria
are met: (a) It must accept as input MPS of arbitrarily large bond
dimensions, (b) It must output a circuit of any desired depth formed
from one- and two-qubit gates, and (c) It must converge to the original
MPS state vector at a reasonable rate as the circuit depth increases. All
of these criteriamustbe satisfied for themethod todeliver the benefits
seen here, with criterion (a) needed to use increasing classical
resources (ref. 32 is limited here), criterion (b) needed to use
increasing quantum resources within real-world quantum computers
(the methods of refs. 34–36 output single-layer circuits of k-qubit
gates, with k unbounded), and criterion (c) needed to avoid fidelity
plateaus which hinder the conversion of high-quality MPS into high-

quality PQC (ref. 37 exhibits such fidelity plateaus33). Besides ref. 33,
also the decomposition algorithms in refs. 38,39 satisfy all of these
criteria, and are therefore promising candidates to be employedwithin
this synergistic optimization framework.

In this work, we propose a synergistic framework for boosting the
performance and trainability of PQCs using a pre-optimized initi-
alization strategy built on scalable TN algorithms, which leverages the
complementary strengths of both technologies. As depicted in Fig. 1,
this method uses TNs to first find a promising quantum state for the
parametrized quantum algorithm at hand, then converts this TN state
to the parameters of a PQC, where further optimization can be carried
out on quantum hardware. We employ a circuit layer-efficient
decomposition protocol33 for matrix product states (MPS), whose
high-fidelity conversion of MPS to various PQC architectures allows
leveraging high-quality MPS solutions. The resulting quantum circuits
can be extended with classically infeasible gates which enable better
performance relative to theMPS, as well as purely quantum-optimized
circuits. We empirically verify these performance improvements in
various problems from generative modeling and Hamiltonian ground
state search, finding that our method successfully converts deep
quantum circuits from being practically untrainable to reliably con-
verging to high-quality solutions. We further give evidence for the
scalability of our synergistic framework by probing the gradient var-
iances, i.e., the “barrenness”, of PQCs with up to 100 qubits, finding
gradient variances and magnitudes to remain stable with increasing
number of qubits and circuit depth. By ensuring that PQCs are set up
for success using the best solution available with today’s abundant
classical computing resources, we believe that our methods
might finally unlock the true potential of parametrized quantum
algorithms as effectivemethods for solving problems of deep practical
interest.
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Fig. 1 | Schematic depictionof the synergistic training framework utilizingTNs
and PQCs. Rather than starting with a random initialization of circuit parameters
(black curve), which may suffer from problems such as barren plateaus and sub-
optimal local minima, we instead train a matrix product state (MPS) model on a
classical simulation of the problem at hand (left half of blue curves), whose per-
formance is bounded by the limited entanglement available via its bond dimension
χ. This MPS wavefunction is then approximately transferred using a layer-efficient
decomposition protocol that maps the MPS to linear layers of SU(4) gates. To

improve on the classical solution, the quantum circuit is extended with additional
gates (blue gates, initialized as near-identity operations) that would have been
unfeasible to simulate on classical hardware. We find numerical evidence that
quantum circuit models that leverage classically initialized circuit layers (gray &
blue shaded gates) exhibit drastically improved performance over quantum cir-
cuits that were fully optimized on quantum hardware (blue shaded gates) and are
likely to run into common trainability issues.
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Results
To assess the benefits of the synergistic training framework for real-
world applications, we explore the performance of this method in a
variety of generative modeling tasks, where the goal is to learn to
reproduce the discrete measurement outcome distribution that is
given by the training data, and a Hamiltonian ground state search
problem. The corresponding MPS minimize the same loss function as
the following PQCs, i.e., the KL divergence (4) for the generative
modeling tasks, and the energy of theHamiltonian for the ground state
search. In each case, we compare quantum circuits trained using our
MPS initialization approach to those which are initialized randomly or
with all gates close to the identity. The latter has been shown empiri-
cally to reduce the effects of barrenplateaus and improve convergence
behavior at the start of PQC optimization40.

We study the impact of different circuit architectures on our
results by designing the quantum circuit layers with either linear or all-
to-all topologies of fully parametrized SU(4) gates. While all-to-all
connectivity is likely not practical in a scalablemanner on near- tomid-
term quantum hardware, it provides a challenging use case for an
initialization method leveraging a TN model with linear connectivity,
while also illustrating an important advantage that quantum hardware
has over classical TN simulation techniques: The flexible choice of
circuit depth and entangling topology. Implementation details can be
found in Supplementary Note 4.

Our results find the use of TNs as a strategy to initialize the
parameters of quantum circuits succeeds in boosting the performance
of PQCs in all of these tasks, with an increase in classical computing
resources (as quantified by the bond dimension χ of theMPS) in nearly
every case leading to a corresponding increase in the final perfor-
mance of the trained quantum circuit. This is reflected not only in the
final losses in different tasks, but also through an analysis of the
parameter gradients seen by the circuit at initialization. We find that
although randomly initialized quantum circuits exhibit gradients of
exponentially vanishing magnitude in system size, a manifestation of
barren plateaus within generative modeling, the use of classically
trained MPS to provide learned initialization avoids this phenomenon
entirely.

In our first experiments, we explore the optimization perfor-
mance of QCBM and VQE, i.e., the progression of the loss function
values (Eqs. (4) & (5), respectively). We refer to Sec. IV A for details on
these methods. For the QCBM and its TN equivalent, the TNBM (see

Sec. IV B), we study two distinct datasets of bitstrings of length N = 12.
The first is the cardinality dataset that is the set of all strings having a
cardinality (i.e., Hamming weight, or number of 1s) of N/2. The second
QCBM dataset is the dataset of bars and stripes (BAS) images4,41 con-
taining horizontal or vertical lines on a 2D pixel layout. The Cardinality
dataset is a dataset with moderately low correlations between neigh-
boring bits, whereas the BAS dataset is a dataset which exhibits strong
correlations between bits within the same row or column, and thus
makes it a 2d-correlated dataset. The VQE optimization problem uses
N = 9 qubits and minimizes the energy of the 2D Heisenberg model
Hamiltonian on a 3 × 3 rectangular lattice:

H =
1
4

X
hi,ji

σðiÞ
X σðjÞ

X + σðiÞ
Y σðjÞ

Y + σðiÞ
Z σðjÞ

Z : ð1Þ

〈i, j〉 indexes all nearest-neighbor spins in a 2D rectangular grid with
open boundary conditions, and σðiÞ

μ , μ = X, Y, Z denote the Pauli
operators acting on the i’th spin. We measure the energy error
ΔE(θ) = E(θ) − E0 relative to the exact ground state energy E0

In all cases, we compare the performance of PQCs initialized with
random SU(4) or near-identity unitaries to those initialized with pre-
viously foundMPS solutions. Transferring theMPS state is done via the
decomposition protocol described in ref. 33. As described in Sec. IV C,
the topologies utilized here contain k layers of gates, which are
arranged linearly in the first k − 1 layers and in an all-to-all topology in
the last layer. For the cardinality dataset we utilize k = 3 layers, and for
the BAS dataset, as well as for the 2D Heisenberg Hamiltonian, k = 4
layers. The parameters of the quantumcircuits are optimized using the
CMA-ES algorithm42,43, a gradient-free optimizer that is based on an
adaptive evolutionary strategy.

Our optimization results in Fig. 2 depict the best optimization
runs out of 6 repetitions, i.e. the runs that reach the lowest loss after
the prescribed training iterations. It becomes evident that the models
without the MPS initialization do not converge to high-quality solu-
tions. In fact, we have observed that, while all-to-all layers clearly
increase the expressive capabilities of a PQC as compared to linear
layers, the presence of a single all-to-all entangling layer has detri-
mental effect on their trainability (see also Supplementary Note 2). By
choosing an initialization which makes use of the parameters of a
classically trained MPS model however, all models exhibit a drastic
increase in performance on all the tasks we considered. This behavior

Fig. 2 | Optimization results for QCBM and VQE training, where each curve
represents the best performance among 6 independently initialized runs of
the model. The QCBMs are trained to minimize KL divergence relative to datasets
of length N = 12 strings of fixed cardinality N/2 (a) or 4 × 3 bars and stripes images
(b), whereas the VQE optimization (c) aims to minimize the energy of a 2D Hei-
senberg Hamiltonian with 9 qubits, and with size 3 × 3. The quantum circuits for
each case consist of three, four, and four layers, respectively, with the SU(4) gates
of each layer arranged in a linear topology, except for the final layerwhose gates are

connected in an all-to-all manner. In each case, quantum circuits whose parameters
are initialized randomly or close to the identity exhibitworse final losses than those
initialized with a classically trained MPS model. Additionally, the use of increased
classical resources (as quantified by the bond dimension χ) leads to improved
performance of the trained quantum circuits. All optimization runs compared
inside individualplots share exactly the samecircuit layout andnumber of trainable
parameters. Differences in training performance are only due to different initial
parameters.
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is enhanced even more by the use of MPS with larger bond dimension
χ. We emphasize that all PQC models compared inside one plot have
precisely the same circuit layout and number of parameters. Differ-
ences in performance are only due to different choices of parameter
initialization.

Onemay expect that the informed initializationmerely affects the
number of quantum circuit evaluations needed to achieve a target
training loss, however, we show that it can also qualitatively change
convergence behavior. For example, in the case of the cardinality
dataset in Fig. 2a, QCBMs initialized with χ = 4 or χ = 5 TNBMs begin
training at approximately the same KL values, but the PQC initialized
with the larger χTNBM rapidly achieves better loss values shortly after.
Similar behavior can be seen in the case of the more challenging BAS
dataset. In this case, the MPS solutions achieve relatively high KL
divergence values, which consequently leads to high initial KL values
for the MPS-initialized QCBMs. While the randomly initialized circuits
generally reach the KLs at which the MPS initialized models start out,
the latter are able to converge fully, while the former appear to plateau
at much higher KL values.

Crucially, for the VQE optimization example in Fig. 2c we observe
that initializingwith χ = 2MPS does not suffice to reliably improve over
a naive near-identity initialization of the circuit unitaries. Only MPS
with larger bond dimension χ, facilitated by the layer-efficient
decomposition in ref. 33, enable significant enhancements. This is
also highlighted by the depicted loss values achieved by the MPS
solutions with highest χ that were used to initialize the respective PQC
models. In the VQE simulation, initializing the PQC with χ = 2 is not
sufficient for the PQC to outperform what the MPS on classical hard-
ware may have been capable of. The particular case of χ = 2, where the
MPS readily maps to two-qubit gates, was studied in ref. 32, and does
not require the layer-efficient decomposition schemeused in thiswork
which enables arbitrary χ. However, the final MPS losses (indicated by
thedashed lines) also showcasehow thePQC solutions can improve on
solutions attained on classical hardware by leveraging the more flex-
ible capabilities of quantum hardware and initializing with strong
classical models. The gaps between the final MPS losses and the
respective PQC initializations stem from imperfect decomposition of
theMPS into a lownumber of two-qubit gate layers, aswell as the close-
to-identity extension of the quantum circuits into the all-to-all topol-
ogies, and the initial exploration step size of the CMA-ES optimizer.

While initializing of the QCBMwith a χ = 8 TNBM on the BAS dataset in
Fig. 2b here achieves the best result, we note that it does not clearly
outperform χ = 4 on average (see Supplementary Fig. 3). The likely
reason is that the BAS dataset is 2D-correlated and thus the MPS with
growing bond dimension χ increasingly biases the quantum circuit to a
1d-correlated solution. In other words, there is a bias mismatch
between the TN architecture used and the task at hand. Depending on
the number of additional free parameters that the PQC is given access
to, this can lead to saddle points and local minima, because the PQC
needs to correct the unsuitable bias. In such cases, onemay try to train
another TN model which is adapted for more general correlation
structures44, and then, if needed, map this TN to a quantum circuit44,45.
Futureworkwill need to study how to best extendpretrainedquantum
circuits with additional gates, i.e., where to most efficiently place
additional gates such that the PQC can improve on the TN solution and
potentially escape its bias.

To assess whether the synergistic framework is expected to be
effective at improving the trainability of PQCs as the number of qubits
increases, we now assess the variance of parameter gradients, i.e. the
barrenness, of QCBMs training on the cardinality dataset. The results
are shown in Fig. 3. We probe the gradient of the KL divergence loss
with respect to the parameter controlling the YY-entangling compo-
nent (according to the KAK-decomposition46) of the first SU(4) gate
between qubits 1 and 2 (see Supplementary Note 4.B for details).
Gradient magnitudes for that parameter are recorded 1000 times per
data point in the case of random parameters, and 100 times per data
point in the case of the TNBM initialization with χ = 2. The latter case
contains the training of the MPS, as well as the mapping to a quantum
circuit, and the (potential) extension of the linear layers to all-to-all
topologies. We note that our results are robust to different choices of
the parameter for which the gradients are estimated.

In the case of randomly initialized parameters (θ∈ [0, 2π]), we
observe a clear exponential decay in gradient varianceswith increasing
circuit depth and number of qubits. The nature of this decay depends
on the quantum circuit topology used, with a single all-to-all layer
being sufficient to saturate the barrenness for a specific number of
qubits up until N = 18 − 20. In contrast, we observe that QCBMs initi-
alized with a classically trained MPS avoid this exponential decay –

something which likely contributes to the increased trainability
observed in Fig. 2. Fascinatingly, the gradients in this initialization can

Fig. 3 | Numerical evidence for the prevention of barren plateaus in QCBMs
inside our synergistic optimization framework as demonstrated by the gra-
dient variances with respect to the KL divergence loss in Eq. (4). The gray lines
indicate the gradient variances of linear topology circuits, whereas the blue lines
indicate the gradient variances of all-to-all topology circuits. The numbers at the
beginning or the end of the lines denote the number of qubits. We record the
median gradient variances over 1000 repetitions for the randomly initialized cir-
cuits (a), and 100 repetitions for the MPS initialized circuits with bond dimension
χ = 2 (b), as well as bootstrapped 25-75 percentile confidence intervals of the

median inside the shaded areas. We study the Cardinality N/2 dataset for the
respective number of qubits N. The gradients are measured with respect to the YY-
entangling gate contribution of the first SU(4) gate in the circuit between qubit 1
and 2. For random parameter initializations, the gradient variance decays expo-
nentially in the number of qubits, and also the circuit depth up until a certain limit.
This is clear indication for the existence of barren plateaus. One all-to-all layer of
SU(4) gates appears to fully maximize the degree of barrenness. In contrast, the
gradient variances of MPS-initialized circuits neither decay significantly in the
number of qubits nor with increasing circuit depth.
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actually exhibit an increase in variance with circuit depth, a trend
which is more visible in the all-to-all extended circuit. Overall, the
gradients of the all-to-all topologies have a larger gradient variance,
indicating that the circuit extension after transferring theMPS solution
is crucial to the success of the PQC. Thesefindings suggest that the use
of trained MPS places the quantum circuit model in a region of the
parameter space without evident barren plateaus, but where the
additional flexibility provided by increased connectivity in the quan-
tum circuit enables it to effectively improve on the classical MPS
solution. With a more sparse set of measurements, we identify a very
similar trend when utilizing χ = 4 MPS solutions.

Several potential criticisms may be raised about the scenario
studied above and presented in Fig. 3. First, while statevector simula-
tion allows us to generate valuable statistics for deep circuits, it only
permits us to consider system sizes and datasets up to 20 qubits. This
limitation is particularly restrictive when attempting to highlight the
scalability of our method since trainability issues induced by barren
plateaus are expected tomanifest themselvesmoreprominently as the
qubit count increases. Consequently, we had to extend the decom-
posed circuits into an all-to-all topology to showcase the utility of our
methodmorediscernibly at such a limitedqubit count. This is a second
potential criticism because the study of all-to-all topologies is unlikely
to be highly relevant in practice given the sheer number of noisy gates
and possibly restricted hardware connectivity. Finally, the correlation
structure in the Cardinality dataset is such that an MPS with bond
dimension χ linear in the number of qubits can exactly represent the
target distribution. Consequently, one might expect pretraining using
an MPS to be abnormally successful. This fear is only partially sup-
ported by our findings in Fig. 2 because, while initial losses after pre-
training on the BAS dataset are high, the resulting QCBM optimization
is most dramatically improved.

We aim to address all these potential concerns with a com-
plementary gradient scaling result using MPS-based quantum circuit
simulation and a generative modeling task on the BAS dataset in a
square arrangement. The 2D correlations in the BAS dataset suggest
that a favorable circuit ansatz for a QCBM is one comprised of SU(4)
gates in a 2D next-neighbor topology. Notably, this resembles a prac-
tical circuit topology for which quantum devices could exhibit an
advantage, given the hardness ofmany 2D problems and the hardware
connectivities in various modern quantum devices.

For the benchmarks, we train N-qubit TNBMs with χ = 2 and χ = 4
on all Oð2

ffiffi
n

p
Þ samples from the

ffiffiffi
n

p
×

ffiffiffi
n

p
BAS dataset. We then

decompose the correspondingMPS into one linear layer of SU(4) gates
and extend that layer into a 2D topology using identity-initialized
SU(4) gates. For the randomquantum circuit reference case, the linear
part of the topology is randomly initialized, but the extension to the 2D
topology is again done using identity operations. The gradients are
computed via automatic differentiation of the MPS-based quantum
circuit simulator. The identity initialization of the additional gates
helps us simultaneously keep the gradient computations both feasible
and exact by avoiding the need for the truncation of the simu-
lator MPS.

Fig. 4 depicts the scaling of the gradient magnitude of the KL
divergence loss functionwith respect to the circuit parameters, i.e., the
2-norm of the gradient vector, up to 10 × 10 = 100 qubits. Even in this
new numerical setup, we observe results that are exactly consistent
with the results in Fig. 3 for the χ = 2 case, but we are now able to see
that pretraining using a χ = 4 MPS eventually outperforms and keeps
up the favorable scaling. This supports the intuition that increasing
classical resources are required as the problem size increases, and that
high-performance schemes to convert tensor network states into
quantumcircuitswill beneeded in the future. However, it also suggests
that moderate classical resources are sufficient in order to continue to
provide value for the following quantumcircuit optimization. Onemay
have expected that drastic increases in classical compute would be

required to escape barrenplateaus, but ourfindings suggest that this is
in fact not exponentially demanding using a synergistic framework
jointly leveraging TNs and PQCs.

The avoidance of barren plateaus, as indicated in Figs. 3 and 4, is
vital to ensuring the trainability of PQCs and their viability on quantum
hardware. Vanishing gradient variances imply that gradient magni-
tudes also vanish19, which leads the estimation of parameter gradients
on quantum hardware to require a number of measurements which
grows exponentially in the number of qubits. Additionally, barren
plateaus have been linked to the phenomena of cost concentration and
narrow gorges25, which hinder the ability of gradient-based and
gradient-free optimizers to find high-quality solutions, as well as the
existence of large numbers of low-quality local minima24, which pre-
sent further difficulties in learning. Aside from improving the training
performance in practice (as seen in Fig. 2), stable gradient variances
(such as those in Figs. 3 and 4) hint that a finite (or at worst, non-
exponential) number of quantum circuit evaluations may be sufficient
to estimate parameter gradients and perform PQC optimization on
quantum hardware in a scalable manner.

Discussion
This work introduces a synergistic training framework for quantum
algorithms, which employs classical tensor network simulations
towards boosting the performance of PQCs. Our framework allows a
problem of interest to be attacked first with the aid of abundant clas-
sical resources (e.g. GPUs and TPUs), before being transitioned onto
quantum hardware to find a solution with further improved perfor-
mance. By moving the work of quantum computers to improve on
promising classical solutions, rather than finding such solutions de
novo, we ensure that scarce quantum resources are allocated where
they are most effective, setting up parametrized quantum algorithms
for success.

Assessing the performance of our methods on generative mod-
eling and Hamiltonian minimization problems, we found that PQCs
initialized with this synergistic training framework not only obtained
better training losses using identical quantum resources, but also

Fig. 4 | Gradient magnitude scaling for a QCBM with the KL divergence loss
function and the BAS dataset. For the pretrained cases, we train MPS with bond
dimensions χ = 2 or χ = 4, decompose them into one layer of SU(4) gates while
optimizing the fidelity, and extend that layer to a 2D topology using identity gates.
The gradientmagnitude, i.e., the 2-normof the gradient vector, is then evaluatedon
anMPS-based quantum circuit simulator for practical feasibility.While the gradient
magnitudeof the randomly initialized circuits decayexponentiallywith the number
of qubits, the pretrained cases exhibit significantly more stable behavior. After
9 × 9 = 81 qubits, the gradients for the χ = 2 pretraining start to decay and are sur-
passed by the χ = 4 case.
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exhibited qualitatively improved optimization behavior, with deep
quantum circuits transformed from being practically untrainable to
reliably converging on high-quality solutions. A study of gradient
variances and magnitudes shows the promise of this method for
avoiding barren plateaus and related worst-case guarantees, which for
randomly initialized PQCs lead to gradients which decay exponentially
in both the number of qubits and the depth of the circuit. For PQCs
initialized using classically obtained TN solutions however, we
observed gradient variances and magnitudes which remain essentially
constant with respect to size, even showing a slight increase in deeper
circuits. At system sizes up to 100 qubits, we witnessed a change of
trends that favored pretraining with larger bond dimensions in order
to keepup the favorable scaling. Thus, our results suggest that classical
computing resources do not need to drastically increase in order to
keepmitigating barren plateaus in PQCs to a very strong degree. These
results point towards the promise of this framework for enabling PQCs
to scale to large number of qubits, thereby unlocking the latent cap-
abilities of quantum computers for optimization and learning pro-
blems which remain out of reach for purely classical methods.

These findings naturally open up several related questions. We
have employedMPS as our classical TN ansatz, whose bond dimension
χ determines the classical resources allocated for PQC initialization,
but have yet to characterize the performance of our method on pro-
blem sizes requiring very large values of χ. While we consistently find
larger bond dimensions to yield increased PQC performance in our
synergistic framework, we also anticipate an eventual need to employ
more sophisticated TN models whose topology is better adapted to
the connectivity of the circuit architecture at hand. To this end, initi-
alizing PQCs using tree tensor networks is a natural next area of study,
as the simple canonical forms available to such models permit a
straightforward extension of the decomposition procedure used
here33. We anticipate the use of more flexible TN models to lead to
further improvements in the performance of quantum algorithms,
complementary to those identified for the use of larger values of χ.

Despite our evidence suggesting that the influence of barren pla-
teaus can be alleviatedwithmoderate classical resources, there remain
significant challenges to overcome before PQCs can find practical
application and tackle problems that are currently out of reach for
purely classical methods. While further algorithmic improvements are
beneficial and perhaps required, the success of sufficiently powerful
PQCs with dozens or hundreds of qubits ultimately hinges on the
ability to engineer quantumcomputerswith sufficiently lowerror rates.

As a final remark, we note that our synergistic framework high-
lights the benefits of moving beyond the adversarial mindset of
“classical vs. quantum” which is typical of discussions surrounding so-
called “quantum supremacy”. By embracing the rich connections
between classical TN algorithms and PQCs, we show that good use can
bemade of the complementary strengths of both. Moving forward, we
believe that the existence of powerful classical simulation methods
should not be seen as an obstacle on the path to demonstrating
practical quantum advantage, but rather as a guide to help quantum
methods find their way12.

Methods
Parametrized quantum circuits
Parametrized quantum circuits (PQCs), and in particular the so-called
variational quantumalgorithms (VQAs), are the centerpiece of a family
of quantum algorithms that aim to solve practical problems on near-
term quantum devices with a limited number of qubits and noisy
operations. The parameters θ of PQCs are usually optimized (or
“trained”, in the context of learning from data) according to a loss
function

LðθÞ=L ψθ

� �
, ð2Þ

where ψθ is the wavefunction of the quantum state prepared by the
PQC. Unlike on classical hardware, one does not have explicit access to
the prepared state. Therefore, the loss LðθÞ needs to be estimated
using quantum circuit measurements. PQCs are commonly trained via
gradient descent methods, such as finite distance gradients or the
parameter shift rule47–49, or via gradient-free optimizers such as CMA-
ES42. For an in-depth introduction to PQCs and VQAs, aswell as a broad
overview of their potential applications, we refer to ref. 5.

Quantum circuit Born machines (QCBMs)14 are quantum models
for solving generative learning tasks, and without loss of generality,
encode probability distributions over binary data as measurement
probabilities of a wavefunction prepared by a PQC. The probability
assigned to a binary string x by a QCBM with circuit parameters θ is
given by the Born rule,

qθðxÞ= j xjψθ

� �j2, ð3Þ

where the parametrized wavefunction ψθ encodes the distribution
qθ(x). QCBMs are capable of representing complicated probability
distributions50–54, while still permitting a direct means of generating
samples from any learned distribution by measuring the associated
wavefunction ψθ. However, much is still unknown about the perfor-
mance of QCBMs on near- to mid-term quantum devices, especially
when modeling complex real-world datasets55–57.

Many methods exist for training a QCBM to minimize a problem-
specific loss function, which depends on a dataset D of size jDj and
circuit parameters θ. The loss function we use here is the Kullback-
Leibler (KL) divergence between the QCBM distribution qθ and the
evenly weighted empirical distribution pD associated to D, given by

L θð Þ= KL pDjjqθ
� �

=Ex∼pDðxÞ log
pDðxÞ
qθðxÞ

� �

= � log jDjð Þ � 1
jDj

X
x2D

log qθðxÞ
� �

:

ð4Þ

For non-uniform weighting, the last line of Eq. (4) must be replaced by
the appropriate expectation Ex∼pDðxÞ.

The variational quantum eigensolver (VQE)58 is a prototypical
example of a variational quantum algorithm. The goal in VQE is to find
the ground state ψ0 or the ground state energy E0 of a Hamiltonian H,
which can be found by minimizing the variational energy function

LðθÞ= EðθÞ= hψθjHjψθi ð5Þ

of the parametrized trial wavefunction ψθ on a quantum computer.
This is done by sampling ψθ in multiple bases to estimate the expec-
tation values of each operator in the Hamiltonian H with finite preci-
sion. The VQE algorithm can be used to calculate important properties
of Hamiltonians in domains of significant practical interest, for
example computing the energy of amolecule in the settingof quantum
chemistry. In this setting, the qubit Hamiltonian is obtained from the
fermionic Hamiltonian of the participating electrons using, for exam-
ple, the Jordan-Wigner transformation59. Given the practical nature of
the problem, and the decades of classical computational techniques
towards solving such high-value problems, gave rise to highly specific
quantum circuit ansätze and parameter initialization26,27.

Tensor networks
Tensor networks (TNs) are linear-algebraic models first developed for
representing and classically simulating statistical models and complex
many-body quantum systems60, but they havemore recently also been
employed as machine learning models31,61–63. Tensors are general-
izations of vectors and matrices to higher dimensions. The number of
axes in a tensor is often called its order, where order-1 and order-2
tensors represent vectors and matrices, respectively. A N-qubit wave
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function is arguably most naturally represented by an order-N tensor
where every axis has dimension 2. One approach to reduce the com-
plexity of handling these large tensorswith exponentiallymany entries
is to factorize them into a network of lower-order tensors,which, when
multiplied together (commonly called contracted), recover the original
wave function. Depending on the dimension of the axis resulting from
the factorization, the tensors can be efficiently stored and used for
computation.

The manner in which the tensors are contracted together is
determined by an undirected graph, with different graphs determining
different TN architectures. The nodes of each such graph correspond
to cores of the TN, while the edges correspond to indices or links of the
TN, describing tensor contractions to be carried out between pairs of
tensor cores along one or more links. For applications to quantum
simulation, the number of nodes N in a TN can, for example, be equal
to the number of qubits in the quantumcomputer, and the topologyof
theN-node graph determines the forms of entanglement which can be
faithfully reproduced in the classical TN simulation.

In this work, we utilize matrix product states (MPS), computa-
tionally tractable TNmodels whose tensors are connected along a line
graph (Fig. 1). The tensors are order-3 tensors in the bulk and order-2
tensors at the boundary. Each tensor contains a physical index repre-
senting the qubit, and so-called virtual link that connect to neighbor-
ing tensor cores. MPS have a long history in the ground state
computation of quantum 1D spin chains64,65 via the density matrix
renormalization group (DMRG) algorithm66, as well as for the efficient
simulation of quantum computers with limited entanglement67.
Despite their simplicity, MPS with sufficient bond dimension can
simulate any N-qubit wavefunction, making them a natural first model
formany TN applications. The expressivity of anMPS is determined by
its bond dimension χ (i.e., the dimension of the shared link between
neighboring tensors), a quantity associated to the edges of an MPS
which sets an upper bound on the amount of entanglement achievable
in a simulated quantum state68. In cases where the entanglement of a
quantum state is greater than an MPS is able to exactly reproduce, the
singular value decomposition (SVD)may be used to find a low-rankMPS
approximation of the state with near-optimal fidelity.

Although we focus on MPS, our results can be straightforwardly
extended tomore complicated TN architectures, allowing for different
tradeoffs between expressivity and classical computational
complexity69.

One application of MPS here is as tensor network Born machines
(TNBMs)63, generative models which represent a probability distribu-
tion using a simulated quantum wavefunction parametrized by a TN.
As such, they form the tensor network analog to QCBMs described in
Sec. IV A, and we utilize TNBMs to provide the classical solutions
to them.

While QCBMs and TNBMs are similar mathematically, with both
model families using the Born rule to parametrize classical probability
distributions, they nonetheless have distinct complementary benefits
in real-world applications. QCBMs are fully quantummodels which are
able to leverage advances in quantum hardware to better reproduce
the correlations present in complex datasets, but are limited by the
state of current noisy intermediate-scale quantum (NISQ) devices. By
contrast, TNBMs can take full advantage of recent developments in
classical computing hardware, notably the development of powerful
graphical/tensor processing units (GPUs/TPUs), but are fundamentally
limited in their expressivity by the extent of entanglement they are
able to simulate efficiently. Additionally, the analytically explicit con-
structionof TNBMsenables exact calculationof probabilitiesqθ(x) (see
Eq. (3)) and gradients of a loss function L with respect to the model
parameters θ. The complementary strengths of both models naturally
motivate the development of hybrid quantum-classical Born machine
models, but this is complicated in practice by the difficulty of con-
verting between these models. Throughout this work, we specifically

consider TNBMs implemented by 1d MPS, as opposed to general TN
structures that this model allows.

MPS to PQC mapping
The parameters of PQCs and TNs can in principle be interconverted
freely, with the circuit topology of a PQCs itself forming a TN via
classical simulation, and with TN canonical forms68,70 facilitating the
representation of a TN as a PQC. In practice though, there are several
issues that arise with the latter conversion. The quantum circuits
associatedwith a direct conversion fromTNs to PQCs are composedof
unitary gates acting on multi-level qudits of varying size, whose com-
pilation into gate sets of real-world quantum computers is itself a non-
trivial problem (e.g., see37). In the general case of bond dimension of χ,
an MPS will be mapped to a quantum circuit containing multi-qubit
gates acting on dlog2ðχÞe+ 1 qubits per gate. Much preferred however
is a decomposition into two-qubit gates. This is practical for a variety of
reasons. For instance, many quantum hardware realizations natively
implement two-qubit gates, removing computational overhead in
applying multi-qubit operations. Additionally, two-qubit gates can be
more sparingly parametrized, in contrast to the exponentially
increasing number of parameters needed to fully control multi-qubit
gates. Despite these challenges, in the following, we find strong evi-
dence that the use of an efficient and high-performance conversion
method permits MPS of increasing size and complexity to boost the
performance of PQCs within several real-world applications.

We use the MPS decomposition protocol developed in ref. 33,
which augments the analytical decomposition method of ref. 37 with
intertwined constrained classical optimization steps on the circuit
unitaries.Using thisprotocol, transferring theMPS to a PQC results in k
layers of SU(4) unitaries with a next-neighbor topology, also called
linear or staircase layers. We note that this decomposition is per-
formed fully on classical hardware. The choice of an appropriate value
for k is a hyperparameter of the decomposition, and the quality of the
decomposition for a fixed k is limited by the entanglement present in
the MPS. Fortunately, the decomposition protocol used in this work
allows for sequential growing of the circuit up to a desired fidelity. We
refer to Supplementary Note 4 for a more detailed description of the
decomposition protocol used throughout this work.

One may wonder how this process is efficient on classical hard-
ware. This is the case because the created linear quantum circuit layers
tend to result in the MPS having a lower bond dimension than before.
Generally speaking, if the MPS was computationally feasible before-
hand, it should also be feasible to decompose it via this technique. This
is opposed to alternative approaches of brute-force optimization of
the linear layers. In such cases, the intermediate states reached during
optimization are not guaranteed to represent an MPS with χmax equal
to or less than that of the original MPS.

To have a chance at improving the previously found MPS results,
one needs to extend the linear layers with additional gates that would
have been infeasible to simulate classically, i.e., the bond dimension χ
of theMPSwould need to be increased, which is likely not possible at a
point where one is planning to continue optimization on a quantum
computer. Extending the quantum circuit can either come in the form
of increased circuit depth, more flexible entangling topologies, or
both. In our work, from the k linear layers, we extend only the final
layer of SU(4) gates to an all-to-all topology, that is, a layer containing
SU(4) gates between all pairs of qubits. The free parameters of those
additional gates are drawn from a normal distribution with zero mean
and small standard deviation to not significantly alter the mapped
quantum state. Notably, we then train all existing gates in the circuit,
and not just the additional gates. We refer to Supplementary Note 4.B
for details on the SU(4) gate circuit ansatz as well as the possible
decomposition of such gates into Pauli-gates, as well as to Supple-
mentaryNote 2 for a brief studyof the effect of adding additional gates
to the mapped MPS quantum circuits.
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Data availability
The data generated in this study have been deposited in the following
GitHub repository: https://github.com/MSRudolph/Synergy-PQC-TN.

Code availability
The code used to generate the data in this study has been deposited in
the following GitHub repository: https://github.com/MSRudolph/
Synergy-PQC-TN. Your access to and use of the downloadable code
(the “Code”) contained in this Section is subject to a non-exclusive,
revocable, non-transferable, and limited right to use the Code for the
exclusive purpose of undertaking academic, governmental, or not-for-
profit research. Use of the Code or any part thereof for commercial or
clinical purposes is strictly prohibited in the absence of a Commercial
License Agreement from Zapata AI (https://zapata.ai/contact/).
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