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Polygenic risk alters the penetrance of
monogenic kidney disease

Atlas Khan 1, Ning Shang 1, Jordan G. Nestor 1, Chunhua Weng 2,
George Hripcsak2, Peter C. Harris3, Ali G. Gharavi 1 & Krzysztof Kiryluk 1

Chronic kidney disease (CKD) is determined by an interplay of monogenic,
polygenic, and environmental risks. Autosomal dominant polycystic kidney
disease (ADPKD) and COL4A-associated nephropathy (COL4A-AN) represent
the most common forms of monogenic kidney diseases. These disorders have
incomplete penetrance and variable expressivity, and we hypothesize that
polygenic factors explain some of this variability. By combining SNP array,
exome/genome sequence, and electronic health record data from the UK
Biobank and All-of-Us cohorts, we demonstrate that the genome-wide poly-
genic score (GPS) significantly predicts CKDamongADPKDmonogenic variant
carriers. Compared to the middle tertile of the GPS for noncarriers, ADPKD
variant carriers in the top tertile have a 54-fold increased risk of CKD, while
ADPKD variant carriers in the bottom tertile have only a 3-fold increased risk of
CKD. Similarly, the GPS significantly predicts CKD in COL4A-AN carriers. The
carriers in the top tertile of theGPS have a 2.5-fold higher risk of CKD,while the
risk for carriers in the bottom tertile is not different from the average popu-
lation risk. These results suggest that accounting for polygenic risk improves
risk stratification in monogenic kidney disease.

Common complex traits are determined by a combination of genetic
and environmental risk factors. A small subset of common human
diseases is caused by rare monogenic variants with relatively large
effects that cause disease by disrupting a specific disease-related
pathway1,2. However, monogenic disease variants typically have
incomplete penetrance that is often attributable to environmental,
stochastic, or other inherited factors. Genome-wide polygenic scores
(GPS) have emerged as a powerful approach to quantifying the con-
tribution of polygenic effects3–24. Recent studies suggested that such
scores could partially explain the variable penetrance of several
monogenic disorders, including familial hypercholesterolemia, her-
editary breast and ovarian cancer, and Lynch syndrome25. However,
the interplay of monogenic and polygenic risk has not been previously
studied in the context of kidney disease.

Chronic kidney disease (CKD) is a common condition that affects
more than 10% of the population worldwide26. CKD represents a

genetically complex andhighly heterogeneous phenotype.Monogenic
disorders account for up to 9.3% of all-cause CKD27 with autosomal
dominant polycystic kidney disease (ADPKD) and Alport syndrome,
Thin Basement Membrane Disease, and Hereditary Nephritis, collec-
tively known as collagen type IV-alpha-associated nephropathies
(COL4A-AN) representing the most common forms of monogenic
kidney diseases. ADPKD is caused by dominant mutations in the PKD1
gene on chromosome 16 or the PKD2 gene on chromosome 4. The
disease affects all ancestral groups with an overall prevalence of
approximately 1 in 100028,29. The second most common group of
inherited nephropathies, COL4A-AN, are caused by mutations in
COL4A3, COL4A4, or COL4A5 genes. COL4A-AN is characterized by
glomerular basement defects manifesting with hematuria and renal
dysfunction. Biallelic inheritance causes Alport syndrome, a rare and
more severe disease characterized by hematuria, early-onset kidney
failure, and deafness. However, monoallelic carriers of pathogenic
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variants also have a higher risk of CKD. The penetrance of both ADPKD
and COL4A-AN is highly variable, even within the same pedigrees.
Polygenic backgroundmay partially explain the observed variability in
the penetrance of these disorders.

In this work, we hypothesize that monogenic variants exert sub-
stantial effects by disrupting critical disease pathways, while polygenic
risk factors may either mitigate or exacerbate these effects by influ-
encing a broader range of mechanisms associated with CKD. We have
previously developed a GPS for CKD with a validated performance
across diverse ancestries30. Here, we test if this GPS determines the risk
of CKD among carriers of pathogenic ADPKD and COL4A-AN variants
through combined analysis of exome/genome sequence, SNP micro-
array, and electronic health record (EHR) data for 568,457 participants
of the UK Biobank (UKBB) and the All of Us (AoU) study. We demon-
strate that the GPS is significantly associated with a higher risk of renal
dysfunction among ADPKD as well as COL4A-AN monogenic variant
carriers.

Results
The summaryof our analytical approach is provided in Fig. 1. Using our
electronic phenotyping strategy (see Methods), we defined a total of
10,081 CKD cases and 266,724 controls in the UKBB and 11,820 CKD
cases and 22,763 controls in the AoU dataset. All of these participants
met our strict inclusion/exclusion criteria and had both high-quality
sequence and SNP genotype data available for analysis.

Autosomal dominant polycystic kidney disease (ADPKD)
We first identified all PKD1 and PKD2 variants that were either pLoF or
reported as pathogenic (‘P’) by at least two ClinVar submitters without
conflicts (model M1). A total of 172 and 34 carriers of such variants
were found in the UKBB and AoU, corresponding to the overall pre-
valence of approximately 0.036% and 0.034%, respectively. We per-
formed a Meta-PheWAS analysis of both UKBB and AoU datasets to
assess phenome-wide associations of M1 variants (Fig. 2a). The top
associated phecode was “Cystic Kidney Disease” with OR= 295.7 (95%
CI: 214.3–408.0, P = 9.0E-263), as expected. We also detected

significant associations with a variety of CKD-related phecodes,
including “End-stage renal disease”, OR = 52.8 (95%CI: 31.2–89.3,
P = 2.1E-49) and “Kidney replaced by transplant” OR= 112.1 (95%CI:
71.5–175.7, P = 4.9E-94), as well as multiple other renal and extra-renal
complications of ADPKD (Supplementary Data 3), confirming that M1
variant definitions have robust phenotypic signatures across both
biobanks. Additional sensitivity analyses demonstrated that these
results were not biased by ancestry and were consistent for different
variant models and individual genes (Supplementary Fig. 6). We next
tested the effects of M1 variants on the risk of CKD, as defined by our
phenotyping algorithm, after adjustment for age, sex, diabetes, batch,
and ancestry (Supplementary Table 6). In the meta-analysis of both
cohorts, the risk of CKD was 17-fold higher in the ADPKD M1 variant
carriers compared to noncarriers (OR: 17.1, 95%CI: 11.1–26.4,
P = 1.8E-37).

We next investigated the effect of polygenic background on the
risk of CKD by computing our previously validated GPS for CKD30 in all
UKBBandAoUparticipants.AfterAPOL1 and ancestry adjustments, the
polygenic score was standard normal-distributed across ancestries in
both UKBB and AoU datasets (Supplementary Fig. 2). Because this risk
score has not been previously tested in AoU participants, we first
confirmed that the GPS was indeed associated with increased risk of
CKD in this dataset (OR per SD = 1.39, 95%CI: 1.36–1.43, P = 5.9E-125,
adjusted for age, sex, diabetes, batch, and genetic ancestry). All par-
ticipants were then stratified based on their ADPKD QV carrier status,
and the effects of the GPS were re-examined within each stratum
across both UKBB and AoU datasets combined. In the meta-analysis,
the OR per SD of the GPS was 2.28 (95%CI: 1.55–3.37, P = 2.7E-05) in the
M1 QV carriers and 1.72 (95%CI: 1.69–1.76, P < E-300) in the noncarriers
(Table 1). Despite the trend for a greater effect of the GPS among the
carriers, the GPS-by-carrier interaction test was not statistically sig-
nificant in either cohort or in the combined meta-analysis (Supple-
mentary Table 7).

We next estimated the CKD risk for each tertile of the GPS dis-
tribution among theM1 variant carriers compared to themiddle tertile
of the noncarriers (i.e., reflecting average population risk) across both

Fig. 1 | Overview of the workflow for the analysis of phenotype and
genotype data. The analysis involved genotype and phenotype data from the UK
Biobank (left) andAll of Us Study (right). Electronicphenotyping for chronic kidney
disease (CKD) was performed in both datasets. The All-of Us genotype data were
additionally imputed using 1000 Genomes reference. In both datasets, genome-
wide polygenic scores (GPS) for CKD were calculated using the same method,

corrected for ancestry, and standardized using 1000 Genomes reference. The M1,
M2, and M3 variants were defined using the same definitions based on exome
sequencedata in theUKBiobank and genome sequence in theAll ofUs dataset. The
joint analyses of GPS and M1, M2, M3 variants (see Methods) were performed in
each dataset, and summary statistics were meta-analyzed using the fixed-effects
model across both biobanks.
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AoU and UKBB (Fig. 3 and Supplementary Table 8). Notably, ~34% of
QV carriers had CKD stage 3 or above compared to ~3% of noncarriers
in themiddle GPS quartile. Among theQV carriers, we observed a clear
gradient of CKD risk as a function of GPS, ranging fromOR= 3.03 (95%
CI 1.03–8.95, P = 4.4E-02) for the lowest tertile to OR = 54.4 (95%CI
26.1–113.0, P = 9.6E-27) for the highest tertile of polygenic risk. These
results demonstrate that the GPS partially accounts for the incomplete
penetrance of M1 qualifying variants.

Sensitivity analyses
In the subgroup analyses, we examined QVs in PKD1 and PKD2 sepa-
rately and observed similar patterns of GPS effects within each of the
gene-defined subgroups (Supplementary Fig. 3). Similarly, we exam-
ined QVs by variant type (truncating vs. missense) and observed a
consistent pattern of GPS effects for both subgroups (Supplementary
Fig. 4). Lastly, we investigated the effect of the GPS on the risk of CKD
among ADPKD carriers defined under two alternative QV models (M2
and M3, Supplementary Table 8). Similar results on the penetrance of
CKD were observed, demonstrating that our findings were also robust
to less stringentQVdefinitions.We also tested for the effect of the new
race-free CKD-EPI eGFR formula31 to define cases and controls but
observed similar results despite the smaller number of cases (Sup-
plementary Table 9a). We repeated this analysis, including only UKBB
participants of European ancestry, and the trends remained significant
regardless of the eGFR equation used (Supplementary Table 10a).

Collagen IV alpha-associated nephropathy (COL4A-AN)
Wenext examined the effect of GPSon the riskof CKD in the carriersof
COL4A-AN variants compared to the average risk of noncarriers. In this
analysis, we used a less stringent MAF< 0.001 for variant filtering,
considering that the most severe phenotype of COL4A-AN is observed
under a recessive model. Under M1, we defined a total of 1435 carriers
in the UKBB and 310 carriers in the AoU dataset, corresponding to the
overall prevalence of approximately 0.31% and 0.32%, respectively.

In the Meta-PheWAS analysis for M1 carriers across both UKBB
and AoU datasets (Fig. 2b), the top associated phecode was “Hema-
turia” with OR = 2.3 (95% CI: 2.0–9.6, P = 4.8E-48). Other phenome-
wide-significant associations included “Kidney replaced by transplant”
(OR = 3.1, 95%CI: 2.0–23.8, P = 3.8E-07), “Nephritis, nephrosis, renal
sclerosis” (OR = 2.34, 95%CI: 1.81–10.39, P = 4.1E-11), “Proteinuria”
(OR = 3.94, 95%CI: 2.77–51.6, P = 1.6E-14) and “Chronic glomerulone-
phritis, NOS” (OR = 2.98, 95%CI: 1.92–19.7, P = 9.0E-07). The complete
list of phenotypic associations is provided in Supplementary Data 4.
Sensitivity analyses demonstrated that these resultswere not biasedby
ancestry and were consistent for different variant models and indivi-
dual genes (Supplementary Fig. 7). Compared to noncarriers, the M1
QV carriers had a 37% increased risk of CKD as defined by our
e-phenotype (OR = 1.37, 95%CI: 1.13–1.64, P = 8.5E-04), M2 carriers had
25% increased risk (OR = 1.25, 95%CI: 1.00–1.56, P = 4.9E-02), and M3
carriers had 48% increased risk (OR = 1.48, 95%CI: 1.23–1.77, P = 2.6E-
05) in the combined meta-analysis under a dominant model (Supple-
mentary Table 11). In comparison, the M3 recessive genotype was
associated with a 3.38-fold higher risk (OR = 3.38, 95%CI: 1.88–6.08,
P = 4.7E-05).

We next investigated the effect of polygenic background on the
risk of CKD amongM1QV carriers compared to noncarriers. Similar to
ADPKD, the GPS had a significant effect on the risk of CKD among both
COL4A-AN carriers (OR per SD of GPS = 1.78, 95%CI: 1.22–2.58, P = 2.4E-
03) and noncarriers (OR per SD of GPS = 1.70, 95%CI: 1.68–1.73, P < E-
300) in the meta-analysis (Table 1). There was no significant GPS-by-
carrier interaction (P = 8.1E-01) (Supplementary Table 12). Approxi-
mately 8%ofM1 variant carriers hadCKDstage 3or above compared to
only 3%of noncarriers in themiddleGPSquartile. Similar toADPKD,we
observed a gradient of CKD risk as a function of the GPS among M1
carriers, from no increased risk (OR = 1.01, 95%CI 0.63–1.86, P = 7.8E-
01) for the lowest GPS tertile to a 2.5-fold higher risk (OR = 2.53, 95%CI
1.66–3.85, P = 1.4E-05) for the top GPS tertile when compared to the
middle tertile of noncarriers (Fig. 4).

Fig. 2 | Phenome-widemeta-analysis (Meta-PheWAS) forADPKDandCOL4A-AN
M1 carriers.Meta-PheWAS for a ADPKD M1 variant carriers and b COL4A-AN M1
variant carriers. The analysis includes combined data from 460,360 UKBB and
74,350 AoU participants, with both genotype and phenotype data available. Both
analyses were conducted under a dominant inheritance using logistic regression
adjusted for age, sex, batch, and ancestry. The effect estimates and two-sided P-

values were generated using fixed-effects meta-analysis of individual cohorts. The
red horizontal lines indicate a phenome-wide significance level after accounting for
the number of phecodes tested (P = 2.8E-05). Y-axis: -log10(P-value) from fixed-
effects meta-analysis (two-sided and not adjusted for multiple testing). X-axis:
system-based phecode groupings. An upward-pointing triangle indicates increased
odds for a givenphecode, and adownward-pointing triangle indicates reduced risk.
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We also explored the recessive model by testing for GPS effects
among individuals with the M3 risk genotype (QV homozygotes,
compound heterozygotes, or COL4A5 hemizygous males). For indivi-
dualswith the riskgenotype, the top tertile of theGPS conveyed a 6.73-
fold higher risk of CKD (OR =6.73, 95%CI: 2.59–17.5, P = 8.8E-05), while
the bottom tertile conveyed a 2.29-fold higher risk of CKD (OR = 2.29,
95%CI 0.64–8.12, P = 2.0E-01) compared to the middle tertile of indi-
viduals without the risk genotype (Supplementary Fig. 5).

Sensitivity analyses
Our sensitivity analyses included alternative variant models (Sup-
plementary Table 13) and separate analyses of autosomal (COL4A3
and COL4A4) and sex-linked (COL4A5) genes (Supplementary
Table 14). These analyses confirmed the direction-consistent effect of
the GPS across all different subgroups. We note that recessive ana-
lyses for M1 and M2 models were underpowered due to the low
overall frequency of recessive genotypes defined under these mod-
els. We also tested for the effect of the new CKD-EPI eGFR equation31

but observed no changes in the GPS performance (Supplementary
Table 9b), and our results were consistent when the analysis was

limited to the UKBB participants of European ancestry (Supplemen-
tary Table 10b).

Discussion
Our large-scale analyses of UKBB and AoU datasets demonstrated
that polygenic background has an effect on the risk of kidney dis-
ease among individuals with themost common forms of monogenic
kidney disorders. Among the individuals with known pathogenic or
rare pLOF variants in PKD1 or PKD2, the bottom tertile of the GPS
was associated with a 3-fold increased risk compared to the middle
tertile of noncarriers (average risk). In contrast, the top tertile was
associated with a 54-fold increased risk of CKD compared to the
average risk. Similar but less extreme patterns were also observed
for COL4A-AN. The carriers of known pathogenic or rare pLOF
variants in COL4A-AN genes in the bottom tertile of the GPS had no
increased risk of CKD, while the individuals in the top GPS tertile
had a 3-fold higher risk of CKD compared to noncarriers. Under the
recessive model, the risk was 2-fold higher and nearly 6-fold higher
for the bottom and top tertile of the GPS, respectively, compared to
the average risk of noncarriers.

Table 1 | Performance metrics for the genome-wide polygenic score (GPS) in ADPKD and COL4A-ANM1, M2, and M3 carriers
and noncarriers

Model Cohort Cases/controls CKD GPS OR per SD (95% CI), P AUC full model (95%CI) AUC crude (95%CI) Variance explained

ADPKD

Noncarrier

UKBB 9565/252,870 1.80 (1.76–1.84), P < E-300

AoU 11,830/22,773 1.40 (1.36–1.44), P = 8.5E-211

Meta 21,395/275,643 1.72 (1.69–1.76), P < E-300 0.78 (0.78–0.78) 0.62 (0.62–0.62) 0.039

M1 Carrier

UKBB 36/79 2.45 (1.37–4.38), P = 2.6E-03

AoU 5/2 3.49 (0.22–54.30), P = 3.7E-01

Meta 41/81 2.28 (1.55–3.37), P = 2.6E-05 0.96 (0.92–1.00) 0.69 (0.59–0.79) 0.128

M2 Carrier

UKBB 39/86 2.19 (1.31–3.64), P = 2.6E-03

AoU 5/9 2.47 (0.58–10.50), P = 2.2E-01

Meta 44/95 2.21 (1.37–3.58), P = 3.3E-05 0.97 (0.93–1.00) 0.70 (0.60–0.80) 0.103

M3 Carrier

UKBB 45/211 5.10 (2.10–12.40), P = 3.2E-04

AoU 7/4 1.18 (0.34–4.13), P = 7.9E-01

Meta 52/215 5.25 (2.31–11.9), P = 7.4E-05 0.97 (0.94–1.00) 0.69 (0.60–0.78) 0.076

COL4A-AN

M1 Carrier

UKBB 62/1152 1.93 (1.26–2.95), P = 2.3E-03

AoU 37/41 1.35 (0.62–2.94), P = 4.5E-01

Meta 99/1193 1.78 (1.22–2.58), P = 2.4E-03 0.94 (0.91–0.97) 0.59 (0.52–0.65) 0.019

M2 Carrier

UKBB 65/1285 2.37 (1.48–3.80), P = 3.2E-04

AoU 47/59 3.09 (1.13–8.46), P = 2.7E-02

Meta 112/1344 2.47 (1.56–3.94), P = 1.3E-04 0.93 (0.90–0.96) 0.62 (0.56–0.68) 0.014

M3 Carrier

UKBB 100/1730 1.66 (1.29–2.13), P = 8.9E-05

AoU 72/154 1.48 (1.13–1.94), P = 4.3E-03

Meta 172/1884 1.57 (1.31–1.89), P = 1.5E-06 0.89 (0.86–0.92) 0.60 (0.55–0.65) 0.019

Odds ratios (OR) per standard deviation (SD) of the GPS were estimated using logistic regression adjusted for age, sex, diabetes, batch, and genetic ancestry. Meta ORwere estimated using fixed-
effects meta-analysis of adjusted effect estimates derived from individual cohorts. For individual cohorts, the P-values correspond to the Wald test from logistic regression, and Meta P-values
correspond to fixed-effects meta-analyses. All P-values are two-sided and not corrected for multiple testing. AUC was calculated for the full model (GPS and covariates) and for GPS alone without
covariates (crude); variance explainedwas calculated for theGPS alone by estimating variance explained by the fullmodel (GPS and covariates) minus the variance explained by the covariates-only
model.
CI confidence intervals.
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While our analyses suggest that the GPS alters the penetrance of
renal dysfunction in ADPKD and COL4A-AN, we recognize that our
study has limitations. First, significant demographic differences exist
between the UKBB and the AoU participants. The UKBB participants
are older (mean age 56.5 years, range 40–69 years) and predominantly
(94%) of European ancestry, while the AoU participants are younger
(mean age 54.9 years, range 18–89 years) and have more diverse
ancestral backgrounds (57% non-European). Although our GPS has
improved cross-ancestry portability, the performance is still lower in
individuals of African compared to European ancestry. This may
explain the observation of lower GPS effects in the AoU dataset com-
pared to the UKBB, but the demographic differences and other
unmeasured exposures may also be contributing. Moreover, current
catalogs of “P” and “LP” variants aremorecomprehensive for European
compared to non-European genomes. Thus, we are also more likely to
misclassify pathogenic variants in the AoU dataset compared to the
UKBB dataset, and such misclassification could have reduced the
observed effect sizes.

Second, we were able to investigate only the two most common
forms of monogenic kidney diseases, ADPKD and COL4A-AN. Similar
patterns of GPS effects observed in these very different disorders
suggest that our findings may be generalizable to other less frequent
monogenic kidney diseases. However, much larger datasets would be
needed to validate this hypothesis.Moreover, we are underpowered in
our tests for interactions betweenmonogenic and polygenic risks, and
this issue would also be addressed by larger datasets.

Third, we are aggregating qualifying variants across all known
genes for ADPKD or COL4-AN. However, the penetrance of kidney

disease is known to vary according to a specific gene (e.g., PKD2 vs.
PKD1) or a specific mutation type (e.g., missense vs. truncating var-
iants). We performed sensitivity analyses to address this issue, and our
analyses by gene and variant type demonstrated consistent patterns of
GPS effects across all subgroups. At the same time, we note that some
of our subgroup analyses were underpowered. For example, PKD2
mutations account for only ~15–20% of ADPKD cases and lead to a less
severe disease compared toPKD132, impacting our power for individual
analysis of this gene. Similarly, we do not have adequate power to
define GPS effects under recessive inheritance using our most strin-
gent (M1 andM2)models in COL4A-AN. Thus, our biallelic analysis was
performed only for the M3 model.

Fourth, there are notable limitations regarding kidney disease
phenotyping in large biobanks related to ascertainment biases, the
cross-sectional nature of data, the non-random missingness of EHR
diagnoses, and the inability to perform manual chart reviews to con-
firm the diagnosis. These and other limitations of our e-phenotyping
strategy have been discussed elsewhere33. We utilized the 2009 CKD-
EPI equation in our primary analysis for consistency with our earlier
work30,34. However, our sensitivity analysis confirmed the results when
cases and controls were re-defined using the new 2021 CKD-EPI
equation31, demonstrating that our conclusions are robust to the
equation choice. Moreover, complete albuminuria and hematuria data
were not uniformly available for all individuals included in our ana-
lyses, precludingGPS testing against thesediseasemanifestations. This
is particularly relevant to COL4A-AN, which most commonly presents
only with hematuria and proteinuria, and could partially explain why
theGPSeffectwas less pronounced inCOL4A-ANcompared toADPKD.

Fig. 3 | Polygenic effects on the risk of CKD among ADPKDM1 variant carriers
(dominant model). a M1 qualifying variant filtering strategy; b CKD risk for each
polygenic risk score tertile compared to the middle tertile of noncarriers (average
population risk). The analysis includesN = 262,435 UKBBparticipants (Ncases = 9565
and Ncontrols = 252,870) and N = 34,603 AoU participants (Ncases = 11,830 and
Ncontrols = 22,773). The noncarriers with intermediate polygenic scores (middle
tertile) served as the reference group for all calculations. The X-axis shows odds

ratios (OR); the dotted vertical line corresponds to the OR= 1.0 (no change in risk
compared to the reference). The odds ratios were estimated by the fixed-effects
meta-analysis of individual cohort (UKBB and AoU) estimates obtained using
logistic regression with adjustment for age, sex, batch, and ancestry. The circles
correspond to adjusted OR, and horizontal lines correspond to 95% confidence
intervals (CI). Two-sided P-values were derived using fixed-effects meta-analysis
and are not corrected for multiple testing. GPS genome-wide polygenic score.
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The notable strength of our phenotyping approach, however, is the
fact that we are able to combine structured billing code data with the
available laboratory tests to not only define CKD cases but also to
uniformly stage the degree of renal dysfunction with a high degree of
confidence.

Lastly, we recognize several important limitations of the GPS for
CKD that was used here as a proxy for polygenic effects. Even though
the performance of our GPS has been previously optimized for cross-
ancestry prediction, the portability could be further improved using
larger and more diverse GWAS for renal function and newer statistical
methods35,36. These and other limitations of our GPS have previously
been discussed in depth elsewhere30. The effects of monogenic kidney
disease demonstrated here will need to be re-assessed once more
powerful polygenic scores for CKD become available.

In summary, in our combined analysis of exome/genome
sequencing, SNP microarray, and EHR data, we observed significant
independent and additive effects of monogenic and polygenic factors
on the risk of kidney disease across two large-scale biobanks. We
conclude that polygenic risk scores could potentially improve current
clinical risk stratification in ADPKD and COL4-AN. Testing the gen-
eralizability of these findings to other forms of inherited kidney dis-
orders will require further studies.

Methods
Ethics statement
This research study involves the analysis of fully de-identified data and
complies with all relevant ethical regulations as reviewed and
approved by the Columbia University Institutional Review Board
(Protocol # IRB-AAAC7385).

Study design
This cross-sectional study involves a combined analysis of the UKBB
and AoU cohorts. All participants provided informed consent to par-
ticipate in genetic studies. Each cohort was first analyzed separately,
and cohort-specific results were combined using fixed-effects meta-
analysis.

UK Biobank (UKBB)
The UKBB is a longitudinal cohort of individuals ages 40–69 years at
enrollment, recruited between 2006 and 2010 across the United
Kingdom37. The individuals recruited to UKBB signed an electronic
consent to allow the broad sharing of their anonymized data for
health-related research. UKBBgenerated and released SNPmicroarray,
exome sequence, and structured EHR data for 469,835 participants.
The cohort is 54% female, with a mean age of 57 years, and the com-
position is 94% Europeans, 2% West or Southeast Asians, and 2% Afri-
can ancestry by self-report37 (Supplementary Table 1).

SNPmicroarray data. The details of the UKBBmicroarray genotyping,
imputation, and quality control are available elsewhere37. Briefly, using
the UKBB Axiom Array (N = 438,427) and UK BiLEVE Axiom Array
(N = 49,950), a total of 488,377 participants have been genotyped for
805,426 overlapping markers. The 1000 Genomes, UK10K, and Hap-
lotype Reference Consortium (HRC) reference panels were used to
perform genome-wide imputation using IMPUTE2 software38,39. We
performed post-imputation quality control analyses as described in
our previousworkbasedon thisdataset30 retaining 9,233,643 common
(i.e., Minor Allele Frequency (MAF) > 0.01), high-quality (imputation
R2 > 0.80) variants for the purpose of GPS calculation. To eliminate any

Fig. 4 | Polygenic effects on the risk of CKD among M1 carriers of COL4A-AN
variants (dominant model). a M1 qualifying variant filtering strategy; b CKD risk
for each polygenic score tertile compared to the middle tertile in noncarriers
(average population risk). The analysis includes N = 262,435 UKBB participants
(Ncases = 9565 and Ncontrols = 252,870) and N = 34,603 AoU participants
(Ncases = 11,830 and Ncontrols = 22,773). The noncarriers with intermediate polygenic
risk (middle tertile) served as the reference group for all calculations. The X-axis
shows odds ratios (OR); the dotted vertical line corresponds to the OR= 1.0 (no

change in risk compared to the reference). The odds ratios were estimated by the
fixed-effectsmeta-analysisof individual cohort (UKBBandAoU)estimates obtained
using logistic regression with adjustment for age, sex, batch, and ancestry. The
circles correspond to adjusted OR, and horizontal lines correspond to 95% con-
fidence intervals (CI). Two-sided P-values were derived using fixed-effects meta-
analysis and are not corrected for multiple testing. GPS genome-wide poly-
genic score.
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potential confounding by close familial relationships, we excluded
cryptically related individuals (kinship coefficient > 0.0442)40 from
downstream analyses.

Exome sequencing. The exome sequencing (ES) dataset was gener-
ated for N = 469,835 UKBB participants as previously described41,42.
Briefly, ES was performed at the Regeneron Genetics Center using 75
base pair (bp) paired-end reads with 10 bp index reads on the Illumina
NovaSeq 6000; the reads were mapped to the Genome Reference
Consortium Human ref. 38 (GRCh38) using the BWA-MEM command
for each sample. WeCall was used to identify variants in gVCFs, which
were then aggregated with GLnexus into a joint-genotyped and multi-
sample project-level VCF (pVCF). SNV and indel genotypes called
threshold read depth (DP) were less than 7 and 10, respectively. Sub-
sequent variant-level filters include at least one homozygous variant
carrier or at least one heterozygous variant carrier with an allele bal-
ance greater than 0.15 for SNVs and 0.20 for indels41,42. We accessed
and analyzed the latest data through the UKBB Research Analysis
Platform (RAP) onDNAnexus. For thepurpose of this study,we applied
additional variant-level filters that included genotype quality (GQ) >
90, depth of coverage (DP) > 10, and MAF less than or equal to
0.00001 for ADPKD and 0.001 for COL4A-AN variants in the UKBB and
GNOMAD database for each ancestry43.

Genetic ancestry analysis. We used the UKBB genotype array data to
perform principal component analysis (PCA). We first pruned the
genotype data using the plink command ‘--indep-pairwise 500 50
0.05’. We then used FlashPCA44 based on 35,091 pruned variants. We
merged the UKBB samples with 2504 participants of the 1000 Gen-
omes Project (1KG phase 3)45 and kept only shared variants between
the two datasets. Then, we used a random forest machine learning
based on 10 principal components to train ancestry classifiers using
1KG labeled data. Finally, we used the trained model to predict the
genetic ancestry of the UKBB samples (Supplementary Fig. 1a, b).

All of Us (AoU)
The AoU research program launched recruitment in 2018 across
340 sites across the United States, and over 372,380 participants were
enrolledby 2022. AoUcombines participant-deriveddata fromsurveys
such as self-reported health information, physical measurements,
electronic health records, and biospecimens. We analyzed the AoU
data on Workbench, a cloud-based environment46. The first data
release included N = 98,622 participants with complete SNP micro-
array and genome sequencing data as well as phenotype information.
The participants included 60% female, the mean age was 55 years and
consisted of 53% European, 4% Asian, and 21% Black/African American
race by self-report. In addition, 17% of the cohort self-reported His-
panic/Latinx ethnicity (Supplementary Table 1).

SNPmicroarray genotype data. All participants were genotyped with
the Illumina Global Diversity Array (GDA). This microarray contains
1,904,679 SNVs and 44,172 indels. First, we performed genome-wide
imputation analysis on the Workbench platform. Before imputation,
we excluded all variants with MAF ≤0.005 (671,685 variants) or gen-
otypemissingness rate ≥0.05 (41,526 variants). The genomic positions
were lifted over fromhumanGRCh38 to hg19 for 96%of SNPs.We then
adopted the TopMed pre-imputation quality control (QC) pipeline to
correct allele designations and additionally remove poorly mapping
variants47. After QC, we used 1,191,468 variants for imputation. To
reduce RAM usage and increase speed, we split the 165,208 subjects
with microarray data into 8 equal batches and then imputed each
batch separately. After pre-phasing with EAGLE v.248, we imputed
missing genotypes using Minimac438 and 1KG phase 3v545 reference
panel. A total of 43,371,225 autosomal variants were imputed in
165,208 individuals (Supplementary Table 2). We then merged the

eight batches based on position using VCFtools software with the
command ‘vcftools --gzvcf --positions --recode --recode-INFO-all
–stdout’. MAFs for the imputed markers were closely correlated (cor-
relation coefficient (r) = 0.96) with the MAFs for the 1KG dataset.

Genetic ancestry analysis. Similar to the UKBB data, we first pruned
the genetic data using the command ‘--indep-pairwise 500 50 0.05’ in
PLINK49 and used N = 36,358 pruned variants for kinship and ancestry
analysis. Using KING software40, we removed 270 samples with pair-
wise kinship coefficients>0.35. We thenmerged our AoU samples with
1KG samples, kept only SNPs in common between the two datasets,
calculated PCs for the 1KG samples, and projected each of our samples
onto those PCs.We then used a random forest-basedmachine learning
approach to assign a continental ancestry group to each AoU sample.
Briefly, we trained and tested the random forest algorithm on 1KG
subjects with known labels. We trained the random forestmodel using
10 PCs as a labeled feature matrix. Then, we used our trained random
forest model to predict the genetic ancestries for the AoU dataset
(Supplementary Table 3 and Supplementary Fig. 1c, d).

Whole genome sequencing. We utilized 98,622 whole genome
sequencing (GS) data released on March 15, 2020. A detailed descrip-
tion of GS is available elsewhere50. Briefly, the GS data were generated
with NovaSeq 6000. DRAGEN v3.4.12 (Illumina) was used for genome
alignment and calling, providing 702,668,125 SNVs for 98,622 samples
with mean coverage greater or equal to 30x and >90% of bases at 20x
coverage. TheGSdata is available in the All ofUsworkbench in theHail
matrix. We extracted all variants in PKD1, PKD2, COL4A3, COL4A4, and
COL4A5 genes in VCF format using the following hail command in
Jupyter Notebook:

Gene_intervals = [‘chr16:2.10M-2.15M’, ‘chr4:87M-89M’,‘chr2:220M-
235M’,‘chrX:107M-109M’]

mt = hl.filter_intervals
(mt, [hl.parse_locus_interval(x,)
for x in Gene_intervals])
hl.export_vcf(mt, output_location, tabix=True)’
We then converted the vcf format data to the bed/bim/fam format

using PLINK software49.

Rare variant quality control, filtering, and classification
We analyzed genetic variants in protein-coding regions of two ADPKD
genes (PKD1 and PKD2) and three COL4A-AN genes (COL4A3, COL4A3,
and COL4A5) in the UKBB and AoU datasets. We first removed variants
with low genotype quality (GQ< 90), depth of coverage (DP < 10), and
synonymous variants. Next, we filtered variants based on frequency,
excluding variants with MAF >0.00001 for PKD1 and PKD2 (consider-
ing autosomal dominant inheritance of ADPKD) and MAF >0.001 for
COL4A3, COL4A4, and COL4A5 (considering recessive inheritance of
the most severe COL4A-AN phenotypes) in any ancestral group across
the UKBB, AoU, and gnomAD datasets51. We next used a range of
prediction scores to define qualifying variants (QV), as recently
proposed41. First, we identified all rare predicted loss of function
(pLOF) variants, including stop-gain, frameshift, stop-lost, start-lost,
and essential splice variants. Second, we classified rare missense var-
iants as deleterious if they met the following strict criteria: (1) Revel
score > 0.7052 and (2) variants predicted as damaging by the consensus
of five predictors: Sorting Intolerant from Tolerant (SIFT)53, Poly-
morphism Phenotyping v2 (PolyPhen2) HDIV and PolyPhen2 HVAR54;
likelihood ratio test (LRT)55; and MutationTaster56. After defining the
lists of pLOFs and predicted deleterious missense variants, we inter-
sected these variants with ClinVar and Varsome databases and exclu-
ded all variants previously reported as ‘Benign’ (B) or ‘Likely Benign’
(LB) by at least one of these databases57,58. Third, we identified all
additional rare variants reported as ‘Pathogenic’ (P) or ‘Likely Patho-
genic’ (LP) by at least two independent ClinVar submitters (accessed
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on 11/13/22). To increase the specificity, we excluded any variants with
a conflict of reported pathogenicity or those submitted to ClinVar by
only a single submitter. Based on these annotations, we then analyzed
the data defining carrier status by three distinct variant classification
models: the most stringent model (M1) included only pLOF and
reported ‘P’ variants asdefined above;model 2 (M2)was relaxed also to
include pLOF, ‘P’, and ‘LP’ variants; and model 3 (M3) was further
relaxed to include pLOF, and all deleterious missense variants pre-
dicted as deleterious by all 5 algorithms, with revel score >0.7, and not
previously classified as ‘B’ or ‘LB’ by ClinVar. We defined the pene-
trance of M1, M2, and M3 models as the probability of CKD condi-
tioned on the QV carrier status. Notably, while M2 contains all M1
variants, the definition of M3 does not necessarily encompass all M1
and M2 variants. The list of observed qualifying variants included
under eachmodel is provided in Supplementary Data 1 and 2. Because
the biallelic inheritance of pathogenic variants in COL4A genes causes
Alport syndrome (themost severe formof COL4A-AN),we additionally
analyzed recessive inheritance by defining homozygous or compound
heterozygous (COL4A3 and COL4A4) or hemizygous (for COL4A5 in
males) genotypes for the qualifying variants.

Genome-wide polygenic score (GPS)
We used the GPS for CKD previously validated across diverse
ancestries30. This GPS is based on the P-value thresholding (P+T)
method and involves 41,426 common autosomal markers with non-
zero weights selected based on r2 ≤0.2 and P ≤0.03 from the original
GWAS for renal function. The GWAS used for the development of this
GPS was based on different cohorts than the ones used for optimiza-
tion and testing. The score was calculated using the PLINK command
‘--bfile --score sum --out’ based on imputed genotype data. The GPS
distribution was ancestry-adjusted for mean and variance based on
1KG reference, normal standardized, and additionally adjusted for
APOL1 risk genotype as previously proposed (Supplementary Fig. 2)30.
The APOL1 risk alleles were imputed for all subjects, and the risk
genotype was defined under a recessivemodel as G1G1, G2G2, or G1G2
risk allele combinations across all datasets (Supplementary Table 4).
Because the original GPS model was selected based on the optimiza-
tion step involving 70% of UKBB participants and including ADPKD/
COL4A-AN QV carriers, in our sensitivity analyses, we excluded all QV
carriers from this dataset (N = 1373) and re-optimized the score using
exactly the samemethods and models as in our original publication30.
We note that for the P+T method, the optimization step affects only
SNP selection and not SNP weights since the weights are based on the
original discovery GWAS and remain fixed for all P+T models. This
analysis confirmed that the same GPS model as originally proposed
had superior performance over all other models and, in fact, showed
slightly better performance when compared to the original analysis
(Supplementary Table 5). These analyses provide assurance that our
GPS effect estimates among QV carriers are not biased by our original
risk score design.

CKD phenotyping and case-control definitions
We used our validated CKD e-phenotyping algorithm to define CKD
cases and controls33. All cases had either estimated glomerular filtra-
tion rate (eGFR) below 60ml/min/1.73m2 (by 2009 CKD-EPI
equation34) or received a renal replacement therapy (dialysis or kid-
ney transplant). All controls had eGFR greater than 90ml/min/1.73m2

and no evidence of CKD based on diagnostic or procedure billing
codes. Similar to our prior studies, we excluded individuals with eGFR
60–90ml/min/1.73m² from case-control cohorts in order tominimize
potential case-control misclassification due to age-related decline in
eGFR30. The covariates included age, sex, diabetes (type I or type II)
defined based on ICD codes6, and significant principal components of
ancestry, similar to our prior validation studies30.

Predictive performance
The predictive performance of the GPS was assessed using standar-
dized metrics as recently proposed by ClinGen59, including area under
the receiver operating characteristics curve (AUROC), variance
explained (R2), and effect size (OR) per standard deviation of the GPS
distribution in controls. We used the pROC R package to calculate
AUROC. For effect size estimation, we used logistic regression (glm
function in R) with CKD status as an outcome and standardized GPS as
a predictor with adjustment for age, sex, diabetes mellitus (type I or
type II), genotype/imputation batch, and four PCs of ancestry, similar
to prior studies30. Similarly, the association of a carrier status with CKD
was tested using a logistic regression with CKD case status as an out-
come and carrier status as a predictor, controlling for age, sex, dia-
betes, batch, and ancestry PCs. The same logistic model with the
included GPS and carrier status terms was used to test the GPS-by-
carrier status interaction. To compare GPS effect sizes between car-
riers andnoncarriers, wederivedORs (and95%CIs) of CKD, comparing
each tertile of the GPS distribution in the carriers to the reference
middle (2nd) tertile of the GPS for noncarriers in each cohort. For all
analyses, we used R version 4.2.2 (2022-10-31).

Meta-PheWAS
We performed a phenome-wide association analysis for ADPKD and
COL4A-AN variant carriers in both AoU and UKBB datasets. The
165,208 genotyped and imputed AoU participants had 12,945 ICD-9
codes thatwerefirstmapped to 1817 distinct phecodes. Similarly, there
were 10,221 ICD-9 codes for UK Biobank participants (N = 460,363)
with imputed genotype data that mapped to 1817 distinct phecodes.
Phenome-wide associations were performed using the PheWAS R
package60. The package uses two ICD-9 codes occurrences within a
given phecode grouping to define a case and pre-defined “control”
groups for each phecode. All 1817 phecodes were tested using logistic
regression with case-control status as the outcome and genotype, sex,
age, batch, and five principal components of ancestry as predictors.
We then performed fixed-effects Meta-PheWAS of AoU and UKBB
datasets using the PheWASRpackage.We set the Bonferroni corrected
statistical significance threshold for phenome-wide significance at
2.75E-05 (0.05/1817 phecodes tested).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The UKBB genotype and phenotype data are available through the
UKBBwebportal at https://www.ukbiobank.ac.uk/. All researcherswho
wish to access the research resource must register with the UK Bio-
bank. The AoU genotype, WGS, and phenotype data are available
through the AoU researcher workbench at https://www.
researchallofus.org/data-tools/workbench/. The researchers inter-
ested in accessing these data must complete registration with the AoU
study. Both biobanks require institutional data use agreements as part
of the registration process. The variants included in the analyses under
various models are provided in Supplementary Data 1 and 2; meta-
PheWAS summary statistics are provided in Supplementary Data 3 and
4. Any additional results and data supporting the findings described in
this manuscript are available in the article and its Supplementary
Information files and from the corresponding author upon request.
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