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vcfdist: accurately benchmarking phased
small variant calls in human genomes

Tim Dunn 1 & Satish Narayanasamy 1

Accurately benchmarking small variant calling accuracy is critical for the
continued improvement of humanwhole genome sequencing. In this work, we
show that current variant calling evaluations are biased towards certain variant
representations and may misrepresent the relative performance of different
variant calling pipelines. We propose solutions, first exploring the affine gap
parameter design space for complex variant representation and suggesting a
standard.Next, we present our tool vcfdist anddemonstrate the importanceof
enforcing local phasing for evaluation accuracy. We then introduce the notion
of partial credit formostly-correct calls andpresent an algorithm for clustering
dependent variants. Lastly, we motivate using alignment distance metrics to
supplement precision-recall curves for understanding variant calling perfor-
mance. We evaluate the performance of 64 phased Truth Challenge V2 sub-
missions and show that vcfdist improves measured insertion and deletion
performance consistency across variant representations from R2 = 0.97243 for
baseline vcfeval to 0.99996 for vcfdist.

The first draft reference of the human genome was assembled with
great difficulty in 2000at anestimated cost of $300million1. Following
this massive effort, it became standard practice for whole genome
sequencing (WGS) analyses to align sequencing reads to this reference
to determine an individual’s genome2. Because there is only around
0.1% difference in the genomic sequence of two individuals when
excluding structural variants (SVs)3,4, the final sequence is stored as a
set of variations from the reference genome and reported in variant
call format (VCF). These small germline variants (under 50 base pairs)
are then classified as either single nucleotide polymorphisms (SNPs) or
insertions/deletions (INDELs). Any variants which cannot be repre-
sented as a single SNP or INDEL are called “complex”.

The past decade has been a time of rapid advancement in
DNA sequencing chemistries, machine learning, and bioinfor-
matics algorithms5,6. In such an environment, the ability to accu-
rately compare the performance of variant calling pipelines is
crucial. Firstly, accurate comparisons are necessary for identify-
ing the current best-performing variant calling pipeline; this
choice will impact real clinical decisions7. Secondly, researchers
must be able to correctly identify promising avenues of
further research. Thirdly, the curation of high-quality databases
of germline mutations is only made possible with accurate

comparison techniques. These databases are later used for linking
genotypes with clinically relevant phenotypes4,8.

The current standard benchmarking tool for variant calling is
vcfeval, introduced by Real Time Genomics (RTG) in 20159 and later
backed by the Global Alliance for Genomics and Health (GA4GH)
Benchmarking Team10. It is now widely accepted as the standard tool
for benchmarking small variant calls10–13. vcfeval uses an innovative
pruned search algorithm to determine the largest possible matching
subsets of query and truth variants. Regardless of the query and truth
variant representations, vcfeval is able to determine equivalency as
long as there is a complete exact match. A noteworthy extension is
VarMatch, which uses a similar algorithm but implements several dif-
ferent optimization criteria and presents an algorithm to partition the
inputs into smaller subproblems without a loss of accuracy14.

Prior works have invested significant effort in defining one
accepted representation for a given variant. The standard process of
VCF variant normalization requires that variants are decomposed,
trimmed, and left-shifted14,15; anexample canbe seen in Supplementary
Fig. 1. Although normalization is sufficient to ensure there is one
possible representation for a single variant, there is not a unique
representation for multiple adjacent (complex) variants. This makes
evaluating variant calling accuracy difficult13.
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It should be noted that competing standards for variant repre-
sentation exist in other domains. For human-readable text-based var-
iant descriptions (e.g. NC_000001.2:g.120_123insAGC), the Human
Genome Variation Society (HGVS) standard16 requires that variants be
right-shifted. When representing variants and their associated meta-
data in databases, the SPDI17 and VRS18 data formats use the variant
overprecision correction algorithm (VOCA). This algorithm specifies
that when representing an INDEL that could be left or right-shifted,
instead of arbitrarily placing this INDEL at the left or right end of this
region, the entire region is reported with and without the INDEL. This
strategy avoids an overly precise placement of an INDEL.

Despite its impressive advancement over previous state-of-the-art
algorithms for variant comparison, vcfeval suffers from several
key limitations which we attempt to address in this paper. Each lim-
itation increases the extent to which vcfeval’s results depend upon the
initial representation of variants in the query and truth VCFs. Firstly,
vcfeval has no notion of partial credit and will not report any true
positives if no subsets of query variants match exactly with truth var-
iants. Figure 1 demonstrates a simplified example of where different
variant representations of the same sequence lead to significantly
different measured accuracies. Refer to Supplementary Fig. 2 for a
realistic example. Secondly, vcfeval outputs precision-recall curves for
SNP and INDEL variants separately. Although precision and recall are
concise metrics for understanding approximate variant calling accu-
racy, they are dependent on both the reference FASTA and query VCF
representation. For complex variants, especially in low-complexity
(repetitive) regions, the same query sequence can be represented in
numerous equally valid ways with a differing total count of SNPs and
INDELs (see Fig. 1a). Thirdly, vcfeval was designed to handle unphased
query variants, and allows arbitrary local phasing of adjacent hetero-
zygous variants. Allowing different phasings leads to different sets of
possible query sequences depending on the original variant repre-
sentation. While vcfeval does contain an experimental option for glo-
bal phasing (–Xobey-phase), enforcing local phase is not currently
supported9.

In combination, these characteristics bias evaluations towards a
particular variant representation thatusesmanySNPs rather than a few
INDELs to represent genomic variation. This bias becomes most evi-
dent in high-quality variant callsets where most remaining variant
calling errors occur in low-complexity or high-variance regions. As
read sequencing technologies have recently improved in termsof both
average read length and quality, we are now able to call variants in
more difficult regions than ever before19. INDELs are orders of mag-
nitudemore likely to occur in low-complexity repetitive regions20, and
so it is important that variant calling evaluation is not biased against
newer tools which are more likely to identify copy number variations.
Lastly, vcfeval suffers from the inability to evaluate large clusters with
many nearby variants due to its exponential complexity9,14. Because
these benchmarking issues occur during VCF evaluation, they are
broadly applicable to all sequencing technologies.

In this work we present vcfdist, an alignment-based small variant
calling evaluator that standardizes query and truth VCF variants to a
consistent representation, requires local phasing of both input VCFs,
and gives partial credit to variant calls which are mostly (but not
exactly) correct. We show that the SNP and INDEL precision-recall
curves reported by vcfdist are stable across variant representations.
Furthermore, we introduce alignment distance based metrics for
evaluation which are entirely independent of variant representation,
and only measure the distance between the final diploid truth and
query sequences. We then introduce a variant clustering algorithm
which reduces downstream computation while also discovering long-
range variant dependencies. We evaluate all 64 submissions from the
precisionFDA’s 2020 variant calling Truth Challenge V2 using both
vcfeval and vcfdist on two high-quality ground truth datasets: the NIST
v4.2.1 WGS benchmark, and the ChallengingMedically Relevant Genes
(CMRG) dataset. We find that vcfdist improves measured SNP and
INDEL performance consistency across variant representations from
vcfeval’s R2 = 0.14542 and 0.97243 to R2 = 0.99999 and 0.99996,
respectively. We note that vcfeval’s SNP R2 value is only so poor
(0.14542) because one of our selected representations (design pointA)

Fig. 1 | A simple vcfdist partial credit example. A simple example of vcfeval and
vcfdist evaluations, demonstrating vcfeval’s dependence on variant representation
and the usefulness of partial credit. aReference, query, and truth sequences, aswell
as the query and truth variant call files (VCFs). b vcfeval and c vcfdist count of true
positive, false positive, false negative, and partial positive variants, as well as the
calculated precision, recall, and F1 quality scores. Note that although both query

VCF variant calls result in the exact same query sequence, the summary statistics
differ. Partial credit alleviates this problem for vcfdist. d Distance-based summary
statistics reported by vcfdist: edit distance, distinct edits, and alignment distance,
which are independent of variant representation. An explanation of these summary
statistics can be found in the Methods section.
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never uses SNPs to represent variants. Excluding design point A,
vcfeval’s SNPR2 value is 0.96888; however, webelieve this design point
is important to include in our analyses for reasons discussed later.
In summary, vcfdist ensures consistent and accurate benchmarking
of phased small variant calls regardless of the original variant
representations.

Results
Theaffinegapdesign space for selecting variant representations
As demonstrated in Fig. 1, the main issue with a difference-based for-
mat such as VCF is that often there are multiple reasonable sets of
variant calls that can be used to represent the same final sequence
relative to a reference FASTA. Since DNA sequencing only measures
the final sequence, there is no way of knowing which set of variants
physically occurred. We can only select a representation which con-
tains themost likely set of variants, based on the relative likelihoods of
various mutations occurring.

This problem of variant representation can be viewed as a query-
to-reference pairwise global alignment problem, and the path of the
alignment with the minimum penalty score can be used to derive an
edit path, representing the most likely set of variants. This approach
was first explored in21 and termed “Best Alignment Normalization”.
Here, we present a more thorough exploration of the design space for
normalized variant representation. During alignment, allowed

operations include matching, substituting, inserting and deleting
bases with corresponding penaltiesm, x, g(n), and g(n). Under the gap-
affine model originally proposed in ref. 22, g(n) = o + ne, where n is the
length of the gap, o is a gap-opening penalty, and e is a gap-extension
penalty. The relative value of substitution, insertion, and deletion
penalties is critical, as it determines which variant representation is
selected in the VCF.

Recent efforts such as refs. 23, 24 have demonstrated how to
transform gap cost models into other equivalent representations.
In Fig. 2a we normalize penalties such that m = 0 and then explore
the design space for a general-purpose aligner with an affine-
gap cost model. Black shaded areas represent the invalid areas
where o < 0 or e < 0; opening and extending gaps should be
penalized, not preferred over matching bases. We have also
marked 2(o + e) < x. Left of this line, a substitution will instead
always be represented as a single-base insertion and a single-
base deletion. Although this is clearly not ideal for a general-
purpose aligner, it may make sense in repetitive regions of the
genome where copy number variants are likely.

Figure 2a plots the default parameter configurations for the
most commonly used aligners in the 2020 pFDA variant calling
challenge. This plot also includes the default parameters for a wider
range of tools, such as those used for structural variant (SV) detec-
tion (verkko, NGMLR)25,26, copy number variant (CNV) detection

Fig. 2 | The affine gap design space for alignment and variant representation.
a The design space for an affine-gap aligner with match, mismatch, gap opening,
and gap extension penaltiesm, x, o, and e. All parameters have been normalized so
thatm =0 (see Supplementary Fig. 3 for details), and the penalties for starting
(o + e) and extending (e) a gap are plotted relative to substitutions (x). This plot
includes the aligners used in the precisionFDA’s Truth Challenge V2, as well as
assembly, edit distance, and copy number/structural variant (CNV/SV) aligners for
comparison. Each aligner is plotted in a unique color, except for when multiple
aligners use identical parameters. For dual affine gap aligners, two points are

plotted with an arrow indicating the transition to a lower extension penalty e2.
NGMLR26 uses a logarithmic gap penalty, and so there is a continuous lowering of e.
nPoRe20 uses different gap penalties for simple tandem repeats (STRs) based on
their measured likelihoods, resulting in many plotted points. b Aligning the same
query and reference sequence using different gap parameters (design points A, B,
C, and D) results in different sets of reported variants. Each variant call file (VCF)
shows the variant positions (POS) in addition to the reference (REF) and alternate
(ALT) alleles.
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(nPoRe)20, edit distance calculation (edlib)27, and assembly alignment
(minimap2’s asm5 and asm10 configurations)28. The original and
normalized affine-gap parameters for each tool configuration are
included in Supplementary Fig. 3.

The various configurations for minimap2 are depicted with two
data points and a transition, since minimap2 uses double affine gap
alignment28. Under double affine gap alignment, there are two separate
gap-opening (o1, o2) and gap-extension (e1, e2) penalties, and the mini-
mumof g1(n) = o1 + ne1 and g2(n) = o2 + ne2 is preferred. Typically, o2 > o1
and e2 < e1. As a result, the penalties will be equal at n= o2�o1

e1�e2
; prior to

this point, g1 < g2 and afterwards g2 < g1. Thus g1 determines the penalty
for a short gap and g2 determines the penalty for a long gap.

Any tools using homopolymer (HP) compression or simple tan-
dem repeat (STR) compression such as verkko25 are plotted at (0, 0) in
Fig. 2a, since compressed gaps are not penalized in repetitive regions
during alignment. Repetitive sequence compression is common
practice for long-read de novo assemblers25,29,30, since incorrect esti-
mation of homopolymer run length is the dominant error mode of
nanopore sequencing31. nPoRe penalizes copy number variation in
these repetitive regions only slightly, depending on the copy number
and repeat unit length20. This results in many different points on the
left side of Fig. 2a. NGMLR, an aligner for structural variant detection,
also does not heavily penalize INDELs26. In contrast to minimap2,
NGMLR uses a smoother convex gap cost model, decreasing the
penalty for each additional gap extension as the length of the gap
grows. As a result, NGMLR’s gap model is represented in Fig. 2a as a
smooth gap extension penalty decrease.

In Fig. 2a, design point A was selected as the approximate
centroid of the CNV/SV aligners. Likewise, point C was selected as
the approximate centroid of common short and long read align-
ment parameter configurations, and point D was selected for
assembly aligners. Lastly, point B was selected because this
design point will simultaneously minimize the edit distance (ED)
and number of distinct edits (DE) in the variant representation,
weighting DE twice as heavily as ED. It is also the approximate
midpoint of design points A and C. All selected points were
additionally chosen such that their substitution and gap penalties
can be represented by small positive integer constants
(see Fig. 2b).

A standard complex variant representation: design point C
As Fig. 2b shows, for complex variants there are many reasonable
representations which depend upon the selected affine gap alignment
parameters. By varying alignment penaltiesm, x, o, and e, Fig. 2b shows
that aligning the same query and reference sequence will result in a
different VCF representation at each of the four selected design points
A, B, C, and D. If we define a standard set of affine gap parameters,
however, then there is usually just one possible representation for
complex variants such as this.

We propose using design point C, where (m, x, o, e) = (0, 5, 6, 2), as
the standard set of affine gap parameters for reporting variants. When
normalized to m =0 and x = 1, C = (0, 1, 1.2, 0.4). Design point C was
selected because it is the approximate centroid of widely accepted
parameters used to align reads of three different popular sequencing
technologies (Illumina short reads, PacBio HiFi reads, and Oxford
Nanopore long reads). For Illumina short reads, DRAGEN, BWA, GRAF,
and minimap2 sr use the same normalized alignment parameters
(0, 1, 1.3, 0.3) (Supplementary Fig. 3). For ONT long reads, minimap2
map-ont and winnowmap use (0, 1, 0.833, 0.5). For PacBio HiFi reads,
minimap2 map-pb uses (0, 1, 1.3, 0.5) and pbmm2 uses
(0, 1, 0.857, 0.714). Of the 53 submission methodologies documented
from the pFDATruth Challenge V2, 52 aligned reads using one of these
above-mentioned gap parameter configurations, all of which are rela-
tively similar. The other aligner used was NovoAlign, whose relative
alignment penalties depend upon base quality32.

INDEL/SNP precision and recall depend on variant
representation
Variant calling accuracy is currently evaluated by measuring separately
the SNP and INDEL precision-recall curves, and then reporting the
precision and recall where the F1 score is maximized9–12. This metric is
useful because it gives an intuitive overview of what percentage of
variants were called correctly and incorrectly for SNPs and INDELs
separately. Figure 3a, b, however, shows that precision-recall curves can
change significantly depending on variant representation, even when
the evaluated query and truth sequences are the exact same. This is
partially because the total number of SNP and INDEL variants reported
in a VCF will vary depending on the selected variant representation.

This issue is highlighted in Fig. 3b by design point A, which
represents all SNPs as a 1-base insertion and 1-base deletion (because
2(o + e) < x; see Fig. 2a). Since VCFs represented using pointA report no
SNPs, any false positiveswill be categorized as INDEL FPs. True positive
variants will be SNP TPs when the truth VCF contains a SNP, and INDEL
TPswhen the truthVCFcontains an INDEL. This results in queryVCFs at
point A having perfect SNP precision, but a lower INDEL precision than
other representations. Similar problems exist for other variant repre-
sentations, although to a lesser extent. The stabilized precision-recall
curves following vcfdist’s variant standardization can be seen in
Figs. 3c, 4d.

INDELs are common in repetitive regions: design point A
Demonstrating that standardizing query VCFs using design point A
changes the resulting evaluation may initially appear to be a contrived
argument, since point A is not similar to any aligners used in the pFDA
Truth Challenge V2. Figure 3a shows little difference in the perfor-
mance of VCFs represented using common aligner parameters such as
BWA, minimap2 map-ont, minimap2 map-pb, and pbmm228,33,34. This
is because all of these general-purpose read alignerswere designed for
aligning reads in non-repetitive regions, to which most bioinformatics
analyses have been restricted until recent years35,36. As such, their
parameters are clustered in a small region of the affine gap penalty
design space in Fig. 2a.We selecteddesign pointAprecisely because of
its low gap penaltiesmodel how alignment occurs in repetitive regions
by dedicated copy number variant (CNV) aligners or any aligners
performing homopolymer (HP) or simple tandem repeat (STR)
compression.

As the field shifts towards true whole-genome evaluation, we
expect variant callsets to frequently include merged results from
general-purpose aligners/callers in non-repetitive regions and CNV/SV
aligners/callers in more repetitive regions. In low-complexity regions,
CNVs and other small gaps are orders of magnitude more likely than
elsewhere20, necessitating the inclusion of variants whose representa-
tion falls on the left-hand side of Fig. 2a near design point A. As can be
seen from Fig. 2a, several existing SV and CNV callers already occupy
this space. When these repetitive INDEL callsets are merged with call-
sets fromnon-repetitive regions,wemust ensure that our evaluationof
variant calling accuracy remains unbiased.

Correct local phasing of dependent variants is critical
Incorrect local phasing of heterozygous variants leads to an entirely
different sequence of bases for both haplotypes, which may impact
clinical decisions37. Despite the relative ease of local phasing given new
long-read sequencing technologies, vcfeval does not enforce that
evaluated VCFs contain phasing information. In fact, vcfeval discards
this information when available, considering any possible local phas-
ing to be correct9. To illustratewhy this is a problem, the original query
VCF representation shown in Fig. 3d unnecessarily fragments a single
heterozygous variant into five heterozygous variants. For these 5 var-
iants, there are now 25 = 32 possible local phasings, each resulting in a
different pair of sequences. Perhaps unsurprisingly, one of these 32
phasings (andnot thephasing initially reported) results in amatchwith
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the ground truth, and all variants are considered true positives. This
serves to heavily bias evaluations towards fragmented query variant
representations.

In contrast, vcfdist requires locally phased truth and query input
VCFs, and requires local phasing to be correct in order to consider
variants true positives. This results in a lower precision-recall curve in
Fig. 4d than Fig. 4a, which we believe more accurately represents the
true performance. It also makes evaluation of the original fragmented
representation (black) more consistent with the other representations
(Fig. 4b vs Fig. 3b). Importantly, vcfdist does not require correct global
phasing of variants, and allows for arbitrary switch errors to occur
between clusters of dependent variants. Figure 5 shows an overview of
our tool, vcfdist.

A standard variant representation stabilizes precision-
recall curves
The precision-recall curve stabilization gained by using a stan-
dard variant representation (point C) is clearly demonstrated in

Figs. 3, 4. In fact, standardizing variant representation is sufficient
for prior work vcfeval to obtain consistent results across variant
representations (Fig. 3c). Researchers could use vcfdist as a pre-
processing step for variant standardization, and then perform
evaluations as usual through vcfeval. It is important to note,
however, that consistency does not imply accuracy. The
precision-recall curve for vcfdist in Fig. 4d is not the same curve
as for vcfeval in Fig. 4a. The other improvements presented in
this paper in regards to clustering, phasing, and partial credit
have a large impact on the final results.

As canbe seen in Fig. 6a, b, thefinal F1 scores reportedonboth the
NISTandCMRGdatasets aremoreconsistent for vcfdist than vcfeval as
variant representation changes. For each graph, the coefficient of
determination (R2) is greater and the AMRC is lower for vcfdist in
comparison to vcfeval. We define AMRC (Average Maximum Rank
Change) in theMethods section. It is an averagemeasure of howmuch
a particular submission’s rank (in performance relative to the other
63 submissions) would change when using the best versus the worst

Fig. 3 | vcfeval baseline precision and recall. vcfeval precision-recall plots for
Truth Challenge V2 submission K4GT3 on the NISTwhole genome and Challenging
Medically Relevant Genes (CMRG) datasets for single nucleotide polymorphisms
(SNPs) and insertions/deletions (INDELs) separately. a Evaluating the original query
variant call file (VCF) and after changing the query variant representation using the
alignment parameters of common aligners (see Fig. 2). b Evaluating the original
query VCF and after changing the query variant representation to design points A,
B, C, and D (see Fig. 2). c Standardizing the five representations from (b) using
vcfdist prior to evaluating with vcfeval improves consistency. d A real example

demonstrating why the original K4GT3 query VCF appears to significantly outper-
form other representations in (a) and (b). Each VCF shows the variant chromo-
somes (CHROM) and positions (POS) in addition to the reference (REF) and alternate
(ALT) alleles and their genotypes (GT). Because vcfeval discards query phasing
information and allows any possible local phasing, the original fractured variant
representation is considered entirely correct (all true positives) whereas the more
succinct standardized representation atC is not (it contains false positives and false
negatives). Source data are provided as a Source Data file.
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possible variant representation for that particular submission. Ideally,
values of R2 = 1 and AMRC=0 would indicate that our evaluation is
entirely independent of variant representation.

Partial credit more accurately reflects variant calling
performance
As demonstrated in Fig. 1, variant calls which are nearly but not exactly
correct are penalized under current evaluation methods. Figure 4c
shows a slight improvement in variant recall over Fig. 4b for the CMRG
dataset after vcfdist assigns partial credit to mostly correct variants.

Importantly, we note that whether or not to use partial credit
when calculating summary metrics depends on the application. For
general variant call benchmarking, we recommend partial credit
because INDELs less than 50 base pairs can be called mostly correct
and partial credit better reflects the variant calling performance. Par-
tial creditmay also be useful when calling STR repeat lengths. It should
not, however, be used for clinical evaluation of small INDELs in regions
of coding DNA where a slightly incorrect call will result in a frame shift
mutation.

Distance-based performance metrics provide additional insight
As mentioned earlier, precision-recall curves are dependent upon
query and truth VCF variant representations, as well as the reference
FASTA. In contrast, distance-based performance metrics such as
the edit distance, the number of distinct edits, and alignment score are
determined solely by the query and truth sequences and are unchan-
ged by different variant representations or references. Figure 6c
demonstrates this. The minor remaining differences in distance-based
metrics are caused by false-positive variant dependencies during
clustering. Since slightly different clusters are created, depending on
the original variant representations, enforcing consistent local phasing
within a cluster may lead to different results.

Although a similar level of evaluation consistency can be
gained by using a standard variant representation with vcfdist
(Fig. 6b), distance-based summary metrics are useful to gain a
better understanding of overall performance. Supplementary
Fig. 5b shows that of the three multi-technology pFDA submis-
sions which tied for the winning performance on the NIST data-
set, Sentieon’s solution performed best on SNPs, but Roche’s

Fig. 4 | vcfdist precision and recall. a Standardized vcfeval and (b–d) vcfdist
precision-recall plots for Truth Challenge V2 submission K4GT3 on the NIST whole
genome and Challenging Medically Relevant Genes (CMRG) datasets, for single
nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) separately.
For all plots, the original query VCF is evaluated before and after changing its
variant representation to design points A, B, C, and D (see Fig. 2). a This plot is
identical to Fig. 3c, but using axes consistent with the remainder of this figure.
b Evaluation with vcfdist, turning the options for standardization and partial credit

off; this can be directly compared to vcfeval’s performance in Fig. 3b. Note that the
original representation no longer outperforms other representations, since local
phasing is enforced. c Evaluation with vcfdist, allowing partial credit but not stan-
dardization, resulting in minor CMRG recall improvements. d Evaluation with
vcfdist, allowing partial credit and standardizing variant representation. This
results in the most consistent results, and is the recommended usage. Source data
are provided as a Source Data file.
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solution performed best on INDELs. Using precision-recall curves
for SNPs and INDELs separately, it is hard to get a clear picture of
which submission has the best overall performance. This is
because SNPs are much more common than INDELs, and the two
variant types do not always have similar accuracy characteristics

(performance on INDELs is usually worse). Supplementary Fig. 5c
clearly demonstrates that Roche’s solution performs better
overall on the NIST dataset, as it has lower edit distance, distinct
edits, and alignment distance. Interestingly, Sentieon’s solution
achieves better performance on the CMRG dataset.

Fig. 6 | Evaluation stability results for vcfeval and vcfdist. a vcfeval and b vcfdist
F1 Q-score plots for all Truth Challenge V2 submissions on both the NIST whole
genome and Challenging Medically Relevant Genes (CMRG) datasets, for single
nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) separately.
c The same information, using sequence distance-based summary metrics (edit

distance, distinct edits, and alignment distance; see the Methods section for a full
explanation of each). On each graph, averageQ-score is plotted against the Q-score
for the original representation and at points A, B, C, and D (see Fig. 2). Clearly,
vcfdist results in (b) and (c) are more stable in regards to variant representation
than vcfeval in (a). Source data are provided as a Source Data file.

Fig. 5 | Overview of vcfdist. aDiagram of vcfdist workflow; more details regarding
each step can be found in the Methods section. b Visual summary of vcfdist results
for submission K4GT3; a textual summary is given in Supplementary Fig. 4. (i)

Precision-Recall curve (ii) Single nucleotide polymorphism (SNP) and (iii) Insertion/
deletion (INDEL) edit distance (ED) and distinct edit (DE) error curves, sweeping
possible quality thresholds. Source data are provided as a Source Data file.
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Computational phasing errors do not impact our conclusions
Because the majority of pFDA VCF submissions were unphased, we
employed computational phasing (see Methods) in order to evaluate
vcfdist on phased VCFs. There are twopossible types of phasing errors
that could arise: flip errors (in which a single variant is assigned the
incorrect haplotype) and switch errors (in which many adjacent var-
iants are assigned to the incorrect haplotype).

vcfdist is able to measure the switch error rate directly using the
phasing analysis algorithm depicted in Supplementary Fig. 9. vcfdist
detected 1337 switch errors for submission K4GT3, evaluated on the
NIST dataset, which includes 5,423,813 variants. This amounts to one
switch error every 4,057 variants (0.025%), or every 2.3 Mb. Unfortu-
nately, vcfdist is unable to directly measure the flip error rate. How-
ever, we can use the accuracy of the best-performing submissions to
get an upper bound. Since the maximum SNP F1 score measured by
vcfdist on the top few pFDA submissions is above Q35 (99.97% accu-
racy), the phasing error rate of individual variants is at most 0.03%.

Because vcfdist only enforces local and not global phasing, switch
errors are allowed to occur between superclusters without affecting
vcfdist’s analysiswhatsoever. Switch errors aremeasured and reported
later, but do not affect the total counts of true positive, false positive,
and false negative variants.

Although flip errors impact the measured accuracy, they do not
meaningfully impact the conclusion that vcfdist is less sensitive to
variant representation than vcfeval as a result of our methodological
contributions (Fig. 6). Since phasing occurs upstream to evaluation
with vcfdist, flip errors could reduce the measured performance
of each variant caller (with the same impact as if the original variant
caller had phased variants incorrectly), but this does not impact any
of our results in regard to evaluation stability. In other words, flip
errors will slightly lower the values of the precision-recall curves in
Fig. 4d for each representation uniformly. The curves will remain
similarly clustered, much closer together than when evaluated with
vcfeval (Fig. 3b).

Runtime and efficiency
We evaluated the runtime of submission K4GT3 on the CMRG and NIST
datasets for eachof thefive representations in Fig. 4 (original,A,B,C,D).
On the relatively small CMRG dataset, the baseline vcfeval’s single-
threaded runtime was 153.6s. In comparison, vcfdist’s average single-
threaded runtime was 441.2s and its maximum memory usage was
4.99G. If, however, vcfdist skips VCF realignment and uses the simpler
gap-based clustering method, its average runtime decreases to 25.9s
and RAM usage is only 3.27GB. For smaller datasets, loading the refer-
ence FASTA accounts for the vast majority of memory usage (≈3GB).

On the much larger NIST dataset, vcfdist’s maximum RAM usage
only increases to 5.86GB. Its single-threaded runtime (2648.2s)
remains approximately 2 × slower than vcfeval’s (1489.6s), unless rea-
lignment and Smith–Waterman clustering are disabled (663.8s). The
baseline, vcfeval, additionally supports multi-threading with contig-
level granularity. We plan to add multi-threading support to vcfdist
with supercluster granularity (allowing core usage to scale beyond 23
for human genomes) once development of other features has ceased.
Since other steps in the whole genome sequencing pipeline are the
computational bottleneck (basecalling, alignment, and variant
calling)12,20, this has not yet been a priority.

Discussion
The firstmajor step towards affordable whole genome sequencingwas
the development of second-generation sequencing methods, which
enabled massively parallel sequencing of short reads of 100–1000
bases38.With such short reads, resolving phasing and calling variants in
repetitive genomic regions was incredibly difficult. It was in this con-
text that vcfeval was developed. With the introduction of third-
generation sequencingmethods in recent years, however, the scope of

genomic regions under active analysis has expanded. The 2019 NIST
v4.2.1 benchmarking dataset used in this paper includes 17% more
SNVs, 176% more INDELs and 12% larger benchmarking regions than
the 2016 NIST v3.3.2 dataset39. Additionally, now that datasets often
have average read lengths of 10-100Kb, some recent genome assem-
blies contain phase block N50s of more than 20Mb40. As a result, local
phasing information is highly accurate.

As the state of the field and technology shifts, so too must the
standards for evaluation. The accuracy of third-generation sequencing
has improved tremendously in the past few years5,6, and most small
variant calling errors are now limited to low-complexity regions and
complex variants. This work aims to ensure that evaluation is con-
sistent in low-complexity regions and for complex variants where
many representations are possible. We do so by proposing a standard
variant representation, enforcing consistent local phasing, improving
variant clustering, attributing partial credit, and motivating the use of
alignment distance metrics for evaluation.

Despite the widespread availability of accurate phasing informa-
tion in research-based variant calling pipelines that use the latest long-
read sequencing technologies, it would be remiss to ignore the fact
that thebulk of sequencing that happens today is short-readbased. For
clinical applications, short-read sequencing is preferred due to the
stability of the technology, its well-understood performance char-
acteristics, and lower cost41. Nevertheless, we believe that long-read
sequencing will ultimately dominate clinical practice due to its unique
ability to phase variants, detect larger INDELs and SVs, and resolve
repetitive or repeated genomic regions12,13 We additionally expect
the cost to lower as the technology matures. Because we intend for
vcfdist to be used in evaluating long-read pipelines in the research and
development phase, we have intentionally designed vcfdist so that
phasing information is required.

As genome sequencing becomes cheaper andmore accurate, and
as reads lengthen, a gradual shift is also beginning from reference-
based variant calling to de-novo diploid assembly25,40. Even if the most
common format for storing a human genome progresses from a hap-
loid reference FASTA and an accompanying VCF to a diploid FASTA,
there will always be the need to compare human genomes to one
another. Whether this comparison is stored using a VCF or graph-
based format, the same challenge of multiple possible alignments
remains. As a result, we expect this work to remain relevant for the
foreseeable future.

Methods
Datasets
All datasets used in this manuscript have beenmade publicly available
in prior work, and were for human genome HG002 using reference
genome assembly GRCh38. This includes precisionFDA Truth Chal-
lenge V2 variant callsets13, in addition to the NIST v4.2.119 and CMRG
v1.0035 ground truth callsets from the Genome in a Bottle Consortium
(GIAB). For the NIST v4.2.1 dataset, we used the phased truth VCF
HG002_GRCh38_1_22_v4.2.1_benchmark_hifiasm_v11_phase-
transfer.vcf.gz instead of the unphased HG002_GRCh38_
1_22_v4.2.1_benchmark.vcf.gz VCF. For more information,
please refer to the Data Availability section at the end of this
manuscript.

Preprocessing
Running our pipeline required two modifications to the phased NIST
ground truth VCF. The CMRG ground truth VCF was used unchanged.
Firstly, there were erroneously two additional blank FORMAT field
values in theMajorHistocompatibility Complex (MHC) regiononchr6
that were removed. Secondly, WhatsHap v1.7 only accepts integer
phase set values, whereas the NIST truth VCF contained phase sets
named with strings. The phase set (PS) tags in the NIST ground truth
VCF were removed using bcftools annotate (samtools v1.16.1)42.
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This does not affect our downstream evaluation because vcfdist only
assumes variants are phased locally, and not globally.

Several of the pFDA Truth Challenge V2 query VCFs required
modification as well. Submissions 0GOOR and BARQS reported some
reference or ungenotyped variants as haploid, which were filtered.
Chromosomes were renamed (i.e. 1 to chr1) for the same two query
VCFs. Submissions 0GOOR, BARQS, and HB8P3 reported variants on
decoy contigs, which were filtered. Additionally, the VCF header for
HB8P3didnot store the lengthsof eachdecoycontig. SubmissionY8QR8
did not report any contig lengths, which were added manually. Sub-
missions WGQ43 and YGOTK did not contain variant quality scores. Sub-
missions WX8VK and CZA1Y contained an erroneous variant where ALT
was the same as REF at position chr6:28,719,765. This was removed.

Phasing input query and truth callsets
vcfdist requires input query and truth VCFs to be locally phased.
However, most VCFs submitted to precisionFDA’s Truth Challenge V2
were unphased. In order to phase these VCFs prior to evaluation, we
downloaded all the original HG002 sequencing read FASTAs provided
toparticipants of the competition. Thisdataset contained 35 × genome
coverage of Illumina short paired-end reads, 35 × coverage of PacBio
HiFi reads, and 50 × coverage of Oxford Nanopore reads, sequenced
on a PromethION and basecalled with Guppy v3.6.0. All reads were
aligned to GRCh38 with minimap2 v2.24-r1122 using the default para-
meters corresponding to each sequencing technology (sr, map-pb,
and map-ont)28. Supplementary and secondary alignments were fil-
tered. The aligned reads were then phased using whatshap haplotag
v1.743. Lastly, all variants in the 64 Truth Challenge V2 submission
callsets were phased using whatshap phase v1.7 and the phased reads
from all three technologies.

Although the CMRG truth VCF was entirely phased, only 99.3% of
variants in the NIST truth VCF were phased. For this work, we con-
sidered all truth variants to be phased even when they were not.
Importantly, although this impacts the measured absolute perfor-
mance of each query VCF, it does not impact any conclusions this
study makes regarding evaluation stability. Due to recent improve-
ments in read lengths and accuracies, most future benchmarking truth
VCFs will likely be fully phased.

Clustering dependent variants
When multiple variants occur at the same locus, there are often mul-
tiple ways that differences between the draft reference FASTA and the
resulting sequence could be represented in a VCF. This is still true after
performing standard variant normalization techniques. For an exam-
ple, see Fig. 2b. In order to fairly evaluate the differences between two
VCFs, wemust evaluate an entire set of nearby variants (or “cluster”) in
such regions simultaneously. VarMatch proposes a clustering algo-
rithm that can be used to identify separator regions (long and non-
repetitive sections of the reference genome that contain no variants),
which can be used to divide variants into independent clusters14.

Using a similar approach, we note that two clusters of variants can
be considered independent of one another for a given set of affine-gap
parameters if all optimal alignment paths return to the main diagonal
between the two clusters. This “main diagonal” is the reference region
between the two clusters which contains no variants. In order to
determine whether two adjacent clusters are dependent, we begin
extending from the start of the first cluster and note the rightmost
reference position to which we can extend while avoiding the main
diagonal and having an alignment penalty of lesser or equal value to
that of the original representation of variants within the first cluster.

We mirror this process for the second cluster, extending from its
end to the leftmost reference position possible while avoiding the
main diagonal and limiting the alignment penalty. If the latter position
is less than or equal to the first, then these two paths are able to meet
off themain diagonal, and these twoclusters are dependent.We use an

iterative algorithm, initializing each cluster to a single variant. If two
adjacent clusters are dependent, we merge them into a single larger
cluster. We repeat this process until all clusters have not grown from
the previous iteration or the maximum iteration count is reached. An
overviewof this clustering algorithm,whichwas also partly inspired by
theuni- andbi-directionalWave Front Alignment (WFA) algorithms44,45,
can be seen in Supplementary Fig. 6.

A standard variant representation
As shown in Fig. 2a, point C was selected to be the Smith-Waterman
design point for a standard variant representation, since it is the
approximate centroid of widely accepted parameters used to align
reads of three different popular sequencing technologies (Illumina
short reads, PacBio HiFi reads, and Oxford Nanopore long reads). The
integer affine-gap parameters corresponding to point C are (m, x, o,
e) = (0, 5, 6, 2). Each haplotype was standardized independently, for
both the truth and query VCFs. After clustering variants, within each
cluster all variants are applied to the draft reference FASTA and the
resulting sequence is realigned using the standard affine-gap para-
meters for point C. A new set of variant calls is then defined from the
resulting alignment string, now in the standard representation.

Superclustering variants
After clustering and realigning the truth and query variants separately,
we need some means of associating query variants with their corre-
sponding truth variants and vice-versa. In order to do so, we group
together clusters on both the truth and query haplotypes that reach
within 50 base pairs of one another. An example is shown in Supple-
mentary Fig. 7. This resulting “supercluster” may be composed of
several variant clusters on any of the four haplotypes (two each for the
variant and query). All subsequent analyses take place within a
supercluster, which are considered fully independent of one another.

Alignment and local phasing
Since vcfdist assumes variants have been locally phased, we do not
consider the possibility of genotype or switch errors within a super-
cluster. However, because vcfdist makes no assumptions regarding
global phasing of the truth and query VCFs, we consider the relative
phasing of each supercluster to be unknown and allow phase switches
in between superclusters. In order to phase superclusters, we first
perform each of the four possible alignments of truth and query
haplotypes: Truth1 to Query1, Truth1 to Query2, Truth2 to Query1, and
Truth2 to Query2.

During this alignment, we represent each query haplotype as a
graph (merged with the reference sequence) to allow skipping query
variants without penalty, since theremaybe false positive variant calls.
Note that although this algorithm is similar to ordinary sequence-to-
graph alignment, it is not equivalent since reference-to-query transi-
tions (and vice versa) are not allowedwithin truth variants. An example
of this alignment is shown in Supplementary Fig. 8. The minimum edit
distance is calculated for each of the four alignments, and the phasing
which minimizes total edit distance is selected: (X) Truth1 to Query1
and Truth2 to Query2, or (Y) Truth1 to Query2 and Truth2 to Query1.
This represents the best possible phasing for the supercluster.

Partial credit
Once a phasing has been selected, summary statistics (e.g. counting
true positive (TP) and false positive (FP) variants) for each supercluster
can be calculated using the resulting alignments. Unlike prior work,
vcfdist attributes partial credit to variant calls which are not entirely
correct yet still reduce the overall edit distance. We call these “partial
positives” (PP). These partial positives can be used to more accurately
represent the true performance of a variant caller, since it is common to
report the nearly correct length of INDEL variants (such as in Fig. 1). The
first step is identifying “sync points”, where the optimal alignment path
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passes through a reference base on themain diagonal (i.e. a base that is
not within either a truth or query variant). Such sync points aremarked
in red in Supplementary Fig. 8d. Between each sync point, query and
truth variants are considered to be true positives if the new alignment’s
edit distance is zero, false positives (or false negatives for the truth VCF)
where the edit distance is unchanged, and partial positives where the
edit distance is reduced. For the purposes of precision and recall cal-
culation, partial positives are converted to a fractional positive plus a
fractional negative using the old and new edit distances. For example,
the partial positive query variant call in Fig. 1 reduces the edit distance
from 3 to 1 and is counted as 2

3TP + 1
3FP. All statistics are calculated

separately for eachhaplotype, and then summed. As a result, we count a
false positive homozygous variant (1∣1) as two false positives.

Distance calculations
Whenmeasuring the distance between two sequences, we find it useful
to define two metrics: “edit distance” (ED) and “distinct edits” (DE). For
example, an insertion of length 5 has an edit distance of 5, but is 1
distinct edit.Wewould like tominimize bothDE andED simultaneously,
placing greater importance on distinct edits than edit distance, since
erroneously lengthening a gap is less detrimental than introducing new
edits. If we aim to globally minimize 2DE + ED, this minimization pro-
blem is equivalent to Smith-Waterman global alignment with the affine-
gap parameters (m, x, o, e) = (0, 3, 2, 1). This is because opening a gap (o)
increases DE, extending a gap (e) increases ED, and a substitution (x)
increases both ED and DE. This affine-gap design point, which is point B
in Fig. 2a, is first used to align the query and truth sequences. After-
wards, the resulting alignment path is used to derive the edit distance
and number of distinct edits. Note that although in other contexts “edit
distance” colloquially refers to minimum edit distance, that is not the
case here because design point B attempts to simultaneously minimize
DE and may do so at the expense of ED.

New summary metrics
For each complex variant or INDEL,we allowpartial positive variants to
receive partial credit by comparing the reference sequence edit dis-
tance (EDref) and the query sequence edit distance (EDquery). This query
sequence is derived by applying query VCF variants to the reference
sequence.

Partial positives:

PPquery = 1� EDquery

EDref

� �
TPquery +

EDquery

EDref
FPquery ð1Þ

PPtruth = 1� EDquery

EDref

� �
TPtruth +

EDquery

EDref
FNtruth ð2Þ

In order to increase stability of precision calculations, vcfdist uses the
number of true positives from the truth VCF rather than the query VCF.

GA4GH precision definition:

Precision =
TPquery

TPquery + FPquery
ð3Þ

vcfdist precision definition:

Precision=
TPtruth

TPtruth + FPquery
ð4Þ

In order to evaluate approximate genome variant calling quality,
we define the F1 Q-score metric as follows:

F1Qscore = �10 log10ð1� F1scoreÞ ð5Þ

We make similar definitions for ED Q-score, DE Q-score, and ALN
Q-score. These metrics are Q-score estimates of overall variant calling
quality, based on the remaining edit distance, distinct edits, and
alignment score of the query to truth sequences, relative to the dif-
ference between the reference and truth sequences:

EDQscore = �10 log10

EDquery

EDref

� �
ð6Þ

DEQscore = �10 log10

DEquery
DEref

� �
ð7Þ

ALNQscore = �10 log10

Alignment Scorequery
Alignment Scoreref

� �
ð8Þ

Lastly, we define the Average Maximum Rank Change (AMRC) to
evaluate the stability of a dataset’s relative performance with different
variant representations. Stable VCF comparison methodologies are
critical for determining promising directions for future research in
variant calling, for curating clinical mutation databases, and for
selecting current state-of-the-art variant calling pipelines. In this work,
we evaluate the Q-score performance of pFDA Truth Challenge
V2 submissions S = {S(1),…, S(i),…, S(n)}. For each submission S(i), we use
both the original (O) variant representations and when normalized to
points A, B, C, and D.

SðiÞ = fSðiÞO ,SðiÞA ,SðiÞB ,SðiÞC ,SðiÞD g ð9Þ

First, we note the Q-score performance metrics for each submis-
sion S(i):

QðiÞ =QscoreðSðiÞÞ=
fQscoreðSðiÞO Þ,QscoreðSðiÞA Þ,QscoreðSðiÞB Þ,QscoreðSðiÞC Þ,QscoreðSðiÞD Þg

ð10Þ

Next, we create a sorted sequence (in increasing order) of the
median Q-score for each submission, our best guess at each submis-
sion’s true performance.

M = sortðfmðiÞjmðiÞ =medðQðiÞÞgÞ ð11Þ

Then we find the Q-scores for the worst- and best-performing
representations of each submission.

W = fwðiÞjwðiÞ = minðQðiÞÞg ð12Þ

B= fbðiÞjbðiÞ = maxðQðiÞÞg ð13Þ

Lastly, we find the average change in rank for submission S(i) when
ranking submissions in order of Q-score if we use the best versus the
worst possible representation. Note that we must omit the median of
the current submission,med(Q(i)), when calculating the rank.Wedefine
pos(x, Y) as the first position that value x could be inserted into sorted
sequence Y such that it remains sorted.

AMRC=
Xn
i = 1

posðBðiÞ,M �medðQðiÞÞÞ � posðW ðiÞ,M �medðQðiÞÞÞ=n

ð14Þ

Global phasing calculation
To phase superclusters, we use a simple dynamic programming
algorithm which minimizes the total number of switch errors and
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supercluster phasing errors. A detailed example is shown in
Supplementary Fig. 9. Firstly, superclusters are first categorized
as type X or Y depending on the best mapping of query to truth
haplotypes (X: Truth1 to Query1 and Truth2 to Query2, or Y:
Truth1 to Query2 and Truth2 to Query1). It is also possible for
both mappings result in the same minimum edit distance, in
which case the supercluster is not categorized. During the for-
wards pass, switch errors and supercluster phasing errors are
minimized, as the global phase state switches back and forth
between X and Y. During the backwards pass, phase blocks are
recovered and the total number of switch errors and supercluster
phasing errors is reported.

Output
In addition to a concise summary output (shown in Supplemen-
tary Fig. 4), vcfdist v1.0.046 outputs multiple verbose TSV files to
aid in further analysis of variant calling performance. vcfdist also
outputs both the original and new standard representations of
the query and truth VCFs, as well as a GA4GH-compatible sum-
mary VCF that can be further analyzed using the helper script
qfy.py from hap.py v0.3.1547. Lastly, several Python analysis
scripts are provided which can be used to conveniently display
the output of vcfdist.

Evaluation
To evaluate the phased variant callsets, vcfdist v1.0.046 and the
baseline rtg-tools vcfeval v3.12.19 were used. The full set of command-
line parameters used for all analysis scripts can be found in the
analysis/ directory of the Github repository (https://github.com/
TimD1/vcfdist).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this manuscript were previously released by other
researchers and are publicly available online. The unphased pre-
cisionFDA Truth Challenge V2 VCF submissions and corresponding
readFASTAsused tophase theVCFs are hostedon theNISTpublic data
repository at https://data.nist.gov/od/id/mds2-2336(https://doi.org/
10.18434/mds2-2336)13. The phased ground truth VCF and BED files
for the HG002 whole-genome and challenging medically relevant
genes datasets are available in the NISTv4.2.1 and CMRG_v1.00
directories of the Genome In A Bottle Consortium’s FTP release folder,
respectively: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/
giab/release/AshkenazimTrio/HG002_NA24385_son19,35. The GRCh38
reference FASTA is likewise available at https://ftp-trace.ncbi.nlm.nih.
gov/ReferenceSamples/giab/release/references/. Source data are pro-
videdwith thispaper, andhave beendeposited in Zenodo in thedata/
folder under https://doi.org/10.5281/zenodo.836828246. The file
Source Data.xlsx is an Excel document of 16 sheets in total, with
each sheet containing the raw data for each subfigure plot (Figs. 3a, b,
c, 4a, b, c, d, 5bi, bii, biii, 6a, b, c, and Supplementary Fig. 5a–c). Each
sheet contains a table listing the evaluation dataset, variant type and
representation, submission ID, and evaluation metrics (precision,
recall, edit distance, distinct edits, or F1 score) for each data point in
the corresponding plot. Source data are provided with this paper.

Code availability
All code for vcfdist and the benchmarking pipelines developed for this
manuscript are available in a public Github repository (https://github.
com/TimD1/vcfdist) under a permissive GNU GPLv3 license. It has also
been deposited in Zenodo, under https://doi.org/10.5281/zenodo.
836828246.
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