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Knowledge-guided machine learning can
improve carbon cycle quantification in
agroecosystems

Licheng Liu 1,13, Wang Zhou2,3,13, Kaiyu Guan2,3,4,5 , Bin Peng 2,3,
Shaoming Xu6, Jinyun Tang 7, Qing Zhu 7, Jessica Till1, Xiaowei Jia8,
Chongya Jiang2,3, Sheng Wang 2,3,9, Ziqi Qin2,3, Hui Kong10, Robert Grant 11,
Symon Mezbahuddin 11,12, Vipin Kumar6 & Zhenong Jin 1

Accurate and cost-effective quantification of the carbon cycle for agroeco-
systems at decision-relevant scales is critical to mitigating climate change and
ensuring sustainable food production. However, conventional process-based
or data-drivenmodeling approaches alone have large prediction uncertainties
due to the complex biogeochemical processes to model and the lack of
observations to constrainmany key state and flux variables. Herewe propose a
Knowledge-Guided Machine Learning (KGML) framework that addresses the
above challenges by integrating knowledge embedded in a process-based
model, high-resolution remote sensing observations, and machine learning
(ML) techniques. Using the U.S. Corn Belt as a testbed, we demonstrate that
KGML can outperform conventional process-based and black-box ML models
in quantifying carbon cycle dynamics. Our high-resolution approach quanti-
tatively reveals 86% more spatial detail of soil organic carbon changes than
conventional coarse-resolution approaches. Moreover, we outline a protocol
for improving KGML via various paths, which can be generalized to develop
hybrid models to better predict complex earth system dynamics.

Crop production systems and their interactions with the environment,
known as agroecosystems, cover about one-third of the Earth’s land
surface. As soil constitutes the largest single carbon reservoir on land,
agroecosystems play a key role in the global terrestrial carbon cycle
through crop interactions with soils and atmosphere1,2. Globally, agri-
culture is a significant sourceof greenhousegasses (GHGs); yet, carbon

uptake by crops also removes large amounts of carbon dioxide (CO2)
from the atmosphere, some of which can be stabilized in soil3. Because
most intensively cultivated soils are carbon-unsaturated, practices that
increase soil organic carbon (SOC) represent a low-cost, large-scale
strategy for reducing atmospheric GHG concentrations4–6. Thus, it is
essential to accurately quantify carbon fluxes and changes in SOC in
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agroecosystems so that appropriate and effective conservation prac-
tices can be identified for any given location.

Increasing agricultural carbon sequestration is a key strategy for
mitigating climate change. Significant efforts and investments have
beenmade in theU.S. and across the globe to implement programs that
incentivize SOCenrichment7,8. In light of these initiatives, it is important
to develop robust and scalable methods for reliably quantifying field-
level carbon sequestration, both to assess the climate mitigation effect
and to ensure that mitigation actions by individual farmers are com-
pensated fairly and accurately. Traditional carbon quantification
methods that rely on soil sampling, emission factors, andprocess-based
(PB)modeling entail inherent barriers to achieving the required levels of
accuracy, scalability, and cost-effectiveness9–11. In particular, high spatial
heterogeneity and seasonality due to variations in environmental con-
ditions, crop types, and management practices present challenges for
accurately quantifying carbon budgets12. While PB modeling approa-
ches incorporate scientific knowledge, large uncertainties arise in PB
models if local- and crop-specific parameters are not calibrated prop-
erly or if the underlyingmechanisms are oversimplified or incompletely
represented12,13. Additionally, PB models with detailed representations
of existing scientificprinciples canbecomputationally prohibitivewhen
applied to large regions at high spatial-temporal resolution (e.g., 250m
daily). On the other hand, data-driven machine learning (ML) approa-
ches have the potential for high computational efficiency and
accuracy14–17 but suffer from out-of-sample prediction failure in the
absence of large training datasets, which are unavailable for most
agricultural applications. Moreover, the results of ML models are often
uninterpretable due to their black-box nature18. Therefore, new
methods19 are needed to overcome the limitations of PB and ML mod-
els, enabling cost-effective, accurate, and interpretable measurement
and monetization of carbon outcomes at the individual field level. This
will reduce errors in aggregated quantifications and promote more
sustainable land management practices12,20.

The growing field of knowledge-guided machine learning
(KGML)21,22 provides a promising methodology that combines the
advantages of PB models, ML models, and multi-source datasets (e.g.,
in-situ and remote sensing data). Existing KGMLs can successfully
model certain Earth systems for which dynamic processes are well-
represented by established governing equations, such as hydrology
and atmospheric sciences14,22–26. However, complex and crucial eco-
system processes such as biogeochemical cycling are mathematically
non-linear and substantially more complicated. Furthermore, unlike
surficial systems, soil interactions in agroecosystems largely cannot be
directly observed by remote sensing, whereas in-situ direct measure-
ments are often expensive and limited. Therefore new KGML approa-
ches must be developed to incorporate sufficient biogeochemical
knowledge and effectively assimilate indirect measurements (e.g.,
remote sensing and survey data) to capture terrestrial processes that
are less directly observable27,28.

To address the existing gaps in carbon budget modeling cap-
abilities, we developed a novel KGML framework that combines prior
biogeochemical knowledge of carbon dynamics with a deep learning
model to generate reliable predictions of agricultural carbon fluxes,
cropyields, and changes in soil carbon stocks (KGML-ag-Carbon, Fig. 1).
In-situ eddy covariance (EC) flux tower data, regional survey yield data,
remotely-sensed gross primary production (GPP) data, and synthetic
data generated by a PB model were assimilated into KGML-ag-Carbon.
The model effectiveness is demonstrated here for corn and soybean
production in the U.S. Midwest (Fig. S1), with highly accurate outputs
for carbon fluxes, crop yields, and changes in soil carbon at high spatial
(250m) and temporal (daily) resolution, providing usable data for land
managers. We also analyzed the improvement resulting from each
KGML component and certain biogeochemical responses. The model
design presented here exemplifies a solution to challenges in simulat-
ing dynamic heterogeneous systems, which will help advance broader
applications of KGML for understanding Earth processes.
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Fig. 1 | Overview of the method and framework used for KGML-ag-Carbon
development. The development of KGML-ag-Carbon has three main steps: (1)
Developing the architecture of the machine learning model based on the causal
relations derived from an agricultural process-based model; (2) pre-training the
KGML-ag-Carbon using synthetic data generatedby a process-basedmodel; and (3)

fine-tuning KGML-ag-Carbon using observed low-resolution crop yield data and
carbon fluxes from sparsely distributed eddy-covariance sites. The knowledge-
guided losses were designed based on the process-based model to further con-
strain the response of target variables to input variables during both model pre-
training and fine-tuning processes.
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Results
Overview of the KGML-ag-Carbon framework
KGML-ag-Carbon is a novel framework combining process-based
understanding and advanced AI approaches for simulating complex
biogeochemical cycles under intensive management practices for
agroecosystems. KGML-ag-Carbon distinguishes itself from previous
KGML applications in other disciplines by its use of a well-validated PB
model, ecosys29, and its ability to directly assimilate remote sensing
data. The deep learning model based on the gated recurrent unit
(GRU) mechanism30 was used to develop KGML-ag-Carbon’s archi-
techture (Fig. 1). The ecosystem theory of carbon allocation is the basis
for the ecosys model, which was used to design the hierarchical
structure of KGML-ag-Carbon, including submodules related to plants,
soil, atmospheric carbon exchange, and feedback of carbon from
plants to soil (Fig. S2). Importantly, outputs from the ecosys model
provided synthetic data on ecosystem carbon allocation, associated
fluxes, and environmental responses that were used to pre-train the
KGML-ag-Carbon model. This pre-training step confers a major
advantage to the model by improving the predictive ability with a
minimal amount of labeled samples and accelerating the convergence
inmodel tuning using labeled samples. GPP data, which represents the
dominant carbon input to agroecosystems, was retrieved from remote
sensing observations and assimilated into KGML-ag-Carbon as spatial
constraints.

KGML-ag-Carbon resolves the major carbon budget components,
including autotrophic respiration (Ra), heterotrophic respiration (Rh),
total ecosystem respiration (Reco, Ra + Rh), and net ecosystem carbon
exchange (NEE) on a daily scale, and yield on an annual scale. As in
natural ecosystems, changes in agroecosystem soil carbon storage are
determined by the mass balance of input and output carbon fluxes31,32.
Ecosystem carbon inputs originate from plant photosynthesis, i.e.,
gross primary production (GPP), while soil carbon inputs include both
aboveground and belowground litter and root exudates. Carbon out-
puts occur through respiration, including Ra from plant shoots and
roots and Rh from SOC decomposition by microbes and fungi. Dis-
turbances such as harvesting also remove carbon from the ecosystem
periodically. Based on the carbon fluxes and yield estimated from
KGML-ag-Carbon, annual changes in SOC can be determined using the
mass balance equation ΔSOC= -NEE - Yield12,13,33.

We systematically explored multiple paths for improving the
prediction performance of KGML-ag-Carbon, including pre-training
the model with synthetic data and incorporating knowledge-guided
(KG) loss functions, which addresses broader issues about reducing
uncertainty for hybrid modeling. Over 14 million synthetic data and
various KG loss functions were used to pre-train KGML-ag-Carbon to
learn the prior knowledge from the PB model (Fig. 1). Using synthetic
data generated by a PB model is several orders of magnitude cheaper
than the cost of collecting real-world observations. The KG loss func-
tions include biogeochemical/physical constraints such as mass bal-
ance (Ra+Rh-GPP =NEE), prediction thresholds (e.g., 0<yield<GPP),
and responses of outputs to inputs (e.g., Rh should monotonically
increase with SOC content under other fixed conditions).

A subset of the observed yield data from USDA (320 out of 630
counties) along with Reco (Ra + Rh) and NEE data from 11 cropland
EC flux tower sites were then used to fine-tune the pre-trained
KGML-ag-Carbon model to improve its prediction ability for real-
world carbon budgets (Fig. 1). KG loss functions with biogeochem-
ical/physical constraints similar to those used in pre-training were
included in the fine-tuning. However, to preserve sufficient pre-
training knowledge, the synthetic data were merged with observa-
tional data during fine-tuning, while extra constraints were added to
the KG loss functions to maintain the responses of outputs to inputs
(e.g., changes in Ra responses to the environment remain within
10%). Details on the structural development, datasets utilized, and

training strategies for the KGML-ag-Carbon model are provided in
the Methods section.

Model performance in crop yield and carbon flux predictions
We evaluated the performance of KGML-ag-Carbon both before and
after fine-tuning along with the sensitivity of model performance to
the real-world training sample size (Figs. 2, S4, S6, S8). As an initial
check on pre-training effectiveness, the pre-trained KGML-ag-Carbon
model results for the test set of synthetic data (two years out of the
18-year period) were compared with ecosys simulations and found to
be highly consistent, with R2 values of 0.99, 0.99, 0.97, and 0.97 for
yield, Ra, Rh, and NEE, respectively (Fig. S4). R2 values of the ecosys
model for corn and soybean yield predictions were 0.49 and 0.42,
respectively, as benchmarked with observed county-scale crop
yields, while values for daily Reco and NEE predictions were
0.67–0.89 and 0.59–0.88, respectively, compared with measure-
ments from EC sites (green stars/boxes in Fig. 2, derived from Zhou
et al. 13). After fine-tuning, the R2 of KGML-ag-Carbon for corn and
soybean yield predictions on a test set of 210 counties were 0.91 and
0.88, while values for daily Reco and NEE predictions tested on 2
years of out-of-sample data from 11 EC flux tower sites were 0.94 and
0.96, respectively (Fig. S8).

The robustness test (Fig. 2) reveals that compared with a GRU-
based pure ML model using the same inputs, KGML-ag-Carbon both
consistently outperforms the pure ML model and has much lower
sensitivity to the number of real-world training samples. In summary,
themajor differences between KGML-ag-Carbon and pureML lie in the
additional pre-training process and the customized model structure
and loss functions guided by known scientific knowledge. These
advancements enhance the optimization process of theMLmodel and
allow reliable predictions to be made with fewer labeled samples. The
pure ML model performance approached that of KGML-ag-Carbon at
large sample sizes but performed poorly with small training sets,
particularly for crop yield (Fig. 2a, b). The reduced need for training
samples is a central advantage of KGML-ag-Carbon for real-world crop
yield and carbon flux estimates because available training data are
usually limited and collecting data from physical sampling is costly.
The improvements in carbon flux predictions with increasing sample
size mostly arise from capturing the interannual carbon dynamics,
which can be more easily learned from seasonal patterns of GPP and
climate (Fig. 2c, d). Even without fine-tuning (a training sample size
of 0), the KGML-ag-Carbon by assimilating the GPP data as input, can
outperform both ecosys model and pure ML model trained with small
training samples (Fig. 2).

We conducted several additional experiments to evaluate the
performance of KGML-ag-Carbon under different training, validation,
and testing dataset splits, including out-of-sample performance of
yield predictions in the spatial and temporal domains (Fig. S9a-f). For
example, we used data from Illinois for testing and data from other
states for training and validation and used several continuous years of
data for training and validation with other years for testing. We also
examined the effect of using extreme years with exceptionally high or
low yields for testing and other years for training and validation. We
note that the KGML-ag-Carbon model outperforms pure ML and
process-based models in predicting yield in extreme years (Fig. S9e, f)
primarily because it is constrained by both observations and synthetic
data generated from the PB model. Similarly, out-of-sample perfor-
mance for Reco and NEE predictions was investigated on both annual
and daily temporal scales and specifically examined for sites (EC flux
towers US-NE 1–3) with longer-term observations covering 2001–2019
(Fig. S9g–l). The results demonstrate consistently better performance
of KGML-ag-Carbon compared to pure ML in all tested situations. The
details of robustness tests on the KGML-ag-Carbon performance can
be found in the Methods section.
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Pathways to reduce KGML-ag-Carbon uncertainty
To understand the contribution of different strategies to improve-
ments in the performance of KGML-ag-Carbon, we conducted full-
factorial tests to include or exclude different model components and
selected five representative models to use in interpreting the results
(Fig. 3). The results reveal that using GPP data as an input and pre-
training KGML-ag-Carbon with synthetic data contribute most to
improving the performance of KGML-ag-Carbon relative to other
strategies. When using larger real-world observations for model fine-
tuning, the GPP data has the largest contribution to improving KGML-
ag-Carbon performance; while pre-training with synthetic data is more
important when using smaller real-world observation sets for model
fine-tuning (Fig. 3a, b). This indicates that under data-limited situa-
tions, pre-training based on datasets generated by process models
with sufficiently well-represented mechanisms can provide prior
knowledge to significantly help improve the performance of ML. In
contrast, when good-quality observational datasets are available, the
ML model can learn complex relationships directly from the data so
pre-training is less important.

The improvements to KGML-ag-Carbon provided by the hier-
archical structure and KG loss functions are relatively small compared
to those from GPP inputs and pre-training processes. One potential
reason is that the model performance metrics (R2 here) were already
very high after adding GPP inputs and pre-training (Fig. 3a, b). How-
ever, including the hierarchical structure and KG loss functions sig-
nificantly increases the ability of KGML-ag-Carbon to capture complex
carbon flux dynamics and the interpretability of the predictions.

The pre-training process significantly reduces the residual mass bal-
ance of carbon fluxes (i.e., GPP-Reco-NEE), while the hierarchical
structure and KG loss functions further reduce the mass balance resi-
dual to near-zero (Fig. 3c), indicating that the inclusion of hierarchical
structure and KG loss functions constrain themodel to follow physical
rules. AlthoughKGML-ag-Carbonhas anoverall performance similar to
the ML +GPP and ML+GPP + pretrain models, significant improve-
ments in NEE predictions are achieved in winter and summer, espe-
cially over periods with complex dynamics (Fig. 3d). The advantage of
KGML-ag-Carbon over other models for various time periods ismainly
attributed to the incorporated knowledge of distinct temporal pat-
terns in Ra andRh, such as Rh equals Reco inwinter when plant growth
is absent, which canbe utilized to separately improve the performance
of the Ra and Rh submodels in KGML-ag-Carbon. Other results from
full-factorial tests and mass balance tests can be found in Fig. S11 and
Fig. S12, respectively. The details outlining how the contributions of
KGML-ag-Carbon components were identified can be found in the
“Methods” section.

High-resolution carbon flux estimates across the U.S. Midwest
Using the fine-tuned KGML-ag-Carbon, we predicted regional daily
carbon fluxes and annual crop yields across the U.S. Midwest at a
250-m spatial resolution (smaller than a typical U.S. Midwest field,
Fig. 4a–c). Inputs that drive KGML-ag-Carbon include daily climate
data from NLDAS-2, topsoil properties from gSSURGO, remotely
sensed daily GPP from the SLOPE product34, and crop rotation infor-
mation. The high spatial resolution is facilitated by high-resolution soil

Fig. 2 | The comparative performance of the pure ML model (blue boxes) and
KGML-ag-Carbon (red boxes) when using different sizes of observed
data samples formodel training. a, b The yield prediction performance over 210
counties. n = 1, 50, 20, 10, 10, 5, 4, 2, 1, and 1 independent experiments for model
ensembles with a training sample size of 0, 2, 5, 10, 20, 40, 80, 160, 240, and 320,
respectively. Each training sample has a 21-year period of annual yield observa-
tions in one county. c, d The Reco and NEE prediction performance across 11 EC
flux towers. n = 48 independent experiments for training sample size from 1 to 7.
n = 7 and 6 independent experiments for the ecosys model and KGML-ag-Carbon
model ensembles with a training sample size of 0, respectively. Each training
sample has daily observations during the observation period in one site (varying

by site, ranging from 5 to 19 years). Each box plot illustrates the first and third
quartiles (lower and upper box edges), median (central line), and minimum and
maximum (lower and upper whiskers), with outliers as round circles. The green
stars represent the performance of ecosys in crop yield simulations across the U.S.
states of Illinois, Iowa, and Indiana constrained with remotely sensed GPP and
observed yield, and the green boxes represent the performance of ecosys in
carbon flux simulations at 7 EC flux tower sites across the U.S. Midwest from Zhou
et al.13, which is a subset of the dataset used in this study. Only out-of-sample test
results from cross-validation ensembles are depicted here. Details of the
experiments can be found in the “Methods” section. Source data are provided as a
Source Data file.
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information, crop rotation maps, and the GPP product. The high
temporal resolution comes from the climate and GPP product data,
which provide daily information on environmental conditions and
ecosystem carbon inputs. The procedures for generating high-
resolution predictions across the U.S. Midwest are given in the
“Methods” section.

The multi-year-averaged SLOPE GPP data and the carbon fluxes
generated by KGML-ag-Carbon are closer to the EC flux tower obser-
vations (same dataset used in Fig. 2) than estimates from Trendy35, a
widely used carbon flux ensemble product generated by a suite of
dynamic global vegetation models (Fig. 4). Although methods for
evaluating KGML-ag-Carbon are somewhat limited at the regional
scale, EC flux tower data and Trendy are suitable datasets for com-
parison in the absence of ideal benchmarks for this large region.

The distributions of GPP values are similar across SLOPE, EC flux tower
observations, and the Trendy ensemble (Fig. 4d). The distributions of
Reco andNEE estimated by KGML-ag-Carbon are similar to those of EC
flux tower observations, but the ensemble of Trendy models over-
estimated both Reco and NEE in the U.S. Midwest compared with flux
tower observations (Fig. 4e, f). In addition, the estimated distributions
of GPP, Reco, and NEE vary widely among individual Trendy models,
which may arise from differences in structure and parameters among
models. This reflects the large uncertainties remaining in current state-
of-the-art PB models for carbon budgets, especially for regional-scale
estimates. To summarize these comparisons, the carbon fluxes esti-
mated by KGML-ag-Carbon demonstrate high spatial-temporal reso-
lution and accuracy, providing a novel product for precise regional-
scale carbon budget quantification down to a single field.

a

b

c

d

Small
Training data

Large
Training data

Small
Training data

Large
Training data

Fig. 3 | The contributions of model structure and training strategies to
improving KGML-ag-Carbon performance. a The contributions from different
components of KGML-ag-Carbon in improving the annual corn yield prediction
accuracyby sequentially addingone component to thepureMLmodel.n = 20and 5
independent experiments for model ensembles with small and large training data,
respectively. b The contributions to improving the annual cumulative NEE flux
prediction accuracy. n = 48 independent experiments for model ensembles with
both small and large training data. Data in a and b are presented as mean
values ± standard deviation. Values below each bar represent the mean perfor-
mance increase from the previous step. ML w/o GPP indicates the pure ML model
without GPP input; GPP Data indicates the ML model with GPP inputs; Pretrain
indicates the GPPDatamodel pre-trainedusing the synthetic data generated by the
process-based model; Structure indicates the model that contains hierarchical
architecture, is pre-trained with synthetic data, and includes GPP inputs; KG Loss
indicates the Structuremodel that considers knowledge-guided loss terms; KGML-

ag-Carbon indicates the final model that considers both knowledge-guided archi-
tecture and loss terms, contains GPP inputs and is pre-trained using synthetic data.
c The benefits of knowledge-guided components (pretrain, structure, and KG Loss)
on reducing the residual mass balance (GPP-Reco-NEE). n = 48 independent
experiments. Each box plot illustrates the first and third quartiles (lower and upper
box edges), median (central line), mean (solid red dot), and minimum and max-
imum (lower and upperwhiskers). d An example (2016 of US-NE1) of predictedNEE
fluxes from models with different knowledge-guided components. n = 8 indepen-
dent experiments for model ensembles at this site. Shaded areas represent the
region within the max and min of the simulation ensembles, while the solid lines
represent the mean values. Data in inset plots are presented as mean values (solid
dots) andminimums andmaximums (whiskers) of R2/RMSE.ML+GPP indicates the
pure ML model with GPP inputs; ML +GPP + pretrain indicates the pure ML model
pre-trainedwith synthetic data andwith GPP inputs; KGML-ag-Carbon indicates the
final model. Source data are provided as a Source Data file.
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Discussion
The benefits of high-resolution carbon budgets
The field-level quantificationof carbonbudgets, crop yields, andΔSOC
produced using KGML-ag-Carbon (as demonstrated for the U.S. Mid-
west) provides anaccurate, cost-effective, andhigh-resolutionproduct
for potentially improving carbon sequestration assessments. To
underscore the necessity of a high-resolution carbon budget and crop
yield quantification, we generated 0.0025-degree and 0.5-degree
resolution ΔSOC estimates from 2000 to 2020 using themass balance
approachwithKGML-ag-Carbon.Wecreated ahigh-resolutionproduct
using 250-m-resolution NEE and crop yield data predicted by KGML-
ag-Carbon (Fig. 5a–c). These results were compared with ΔSOC esti-
mates using a similar approach by implementing KGML-ag-Carbon at a
0.5-degree resolution (Fig. 5d–f). The high-resolution ΔSOC estimates
reveal that themajority of changes fall within the range of -0.5% to0.5%
C/year (86%), which aligns well with the ranges observed in experi-
mental studies36–41 (Fig. 5c). Notable patterns include a decline in SOC
across southern Minnesota, northern Iowa, and northeastern Illinois,
as well as an increase in the southern U.S. Midwest. These patterns are
primarily influenced by soil factors (explaining 43% variance) and cli-
mate factors (explaining 11% variance). Relatively colder, drier condi-
tions, fewer carbon inputs into the soil, and higher SOC stock levels
(larger Rh) contribute to greater carbon losses in northern regions
(Fig. S14). Amore detailed assessment of the ΔSOC patterns is given in
the supplementary discussion. A comparison of the coarse and high-
resolution ΔSOC estimations reveals notable differences (overall
NRMSE = 86%) due to loss of detail (e.g., hot/cold spots) and relatively
stronger mixed pixel effects in the 0.5-degree pixels (Fig. 5d, e). The
histogramdistribution (Fig. 5f) indicates a difference ranging from−0.1
(10% quantiles) to 0.9 (90% quantile) %/year between coarse- and high-
resolution estimates. This difference cannot be neglected when com-
pared with the high-resolution ΔSOC histogram distributions (Fig. 5c).

More detailed results regarding the differences between high-
resolution and coarse-resolution GPP inputs, as well as Ra, Rh, NEE,
and crop yield qualifications are provided in Fig. S15.

KGML-ag-Carbon employs a mass balance approach to estimate
ΔSOC from NEE and yield, which are estimated by integrating all
available data, including weather forcing, soil properties (which
include static SOC), crop type, and remotely sensed GPP. These inputs
and predicted NEE and yield are well-validated by observations. This
approach allows us to make the best use of existing data to estimate
the regionalΔSOC at low cost and high resolution, even in the absence
of field-level measurements. We have undertaken validation efforts,
focusing on sites within the U.S. Midwest with SOC measurements in
multiple years post-2000 (Fig. S16, Table S1). These validations
demonstrate that our model’s ΔSOC estimates fall within observed
ranges inmost cases.However, performance is constrainedby four key
factors: (1) while all ΔSOC data was collected at the plot level (~10-m
scale), the absence of localized forcing data required us to employ
field-level inputs, namely 250-m GPP and weather data, to drive the
model; (2) our estimated ΔSOC represents a combination of crop
residue and humus, while the majority of measurements typically
focus on humus content; (3) variations in management practices
between each plot, such as tillage, fertilizer application, and crop
rotation, further complicate field-level estimation, and (4) uncertainty
in field-level SOC arises from lab measurement errors (up to 12%),
spatial sampling errors (up to 50%), and resampling errors (up to
45%)42,43, and can be exacerbated over extended time periods. Despite
these challenges, our approach is valuable for mitigating carbon
budget quantification errors, driven by its high resolution (250m) and
accuracy (Figs. 2–4), all while maintaining a low computational cost. It
is also worth noting that while the NEE, Reco, and crop yield values in
KGML-ag-Carbon are well-constrained, intermediate variables such as
Ra, Rh, and crop residue still contain high uncertainties due to a lack of

Fig. 4 | The spatial pattern of averaged (2000–2019) annual accumulated car-
bon fluxes from KGML-ag-Carbon and their distributions compared with the
Trendy-v9 product. a The multi-year averaged remotely sensed GPP product
based onMODIS near-infrared reflectance (SLOPE GPP), which is one of the KGML-
ag-Carbon inputs. b Themulti-year averaged annual accumulated Ra and Rh fluxes
predicted by KGML-ag-Carbon. c Themulti-year averaged annual accumulated NEE
predicted by KGML-ag-Carbon. d–f The distributions of annual accumulated GPP,

Reco, and NEE, respectively, from KGML-ag-Carbon predictions and Trendy-v9
during 2000–2019 and selected cropland eddy-covariance sites in the U.S. Mid-
west. The Trendy product used in this comparison is an ensemble product from
multiple process-based models simulated carbon budget (a single gray line in
d–f represents one model in Trendy, and black lines are the average outputs of all
the models). The SLOPE GPP and KGML-ag-Carbon fluxes were averaged from
250m to 0.05° in a–c for display. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43860-5

Nature Communications |          (2024) 15:357 6



direct observational data constraints. These variables, however, are
fundamental to understanding the underlyingmechanisms. Therefore,
this study also highlights the need for accurate field-level ΔSOC mea-
surements to improve the reliability of ΔSOC quantification and the
need for accurate measurements of Ra, Rh, and crop residues to
constrain the underlying processes.

Insights gained from the development of KGML-ag-Carbon
Choosing a proper PB model as the scientific foundation for KGML
development is critical. Although a largenumber of PBmodels exist for
ecosystem carbon cycle modeling, models that incorporate suffi-
ciently explicit representations of processes and are well-validated
have more potential to benefit AI models, especially where no or few
real-world samples are available to train the models. The PB model
used in this study, ecosys, contains comprehensive first-principles
descriptions of carbon transformation and translocation processes in
plants and soil, and has been well-validated for different crop types
and regions13,44–47. It provides valuable basic knowledge to guide the
structural design and training of the KGML model. The benefits of
ecosys in improving KGML-ag-Carbon’s crop yield and carbon flux
predictionswere reflected in contribution tests as increasedprediction
accuracy (Fig. 3a, b), and reduced mass balance residuals (Fig. 3c).
Future work may involve testing different PB ecosystem models (e.g.,
well-validated models in Asseng et al. 44 and Sitch et al. 35) to explore
the uncertainties arising from model selection for pre-training. How-
ever, this would require a significant collaborative effort.

KGML provides a promising way to use limited observations
properly and efficiently by integrating themwith other sources of data.
In this study, we used three types of data from different sources and
scales to train KGML-ag-Carbon. (1) The synthetic data generated by
ecosys aremuch cheaper than real-world observations and can be used

for KGMLmodel pre-training and designing KGML loss functions. Our
results indicate that the prior knowledge learned from the synthetic
data strongly contributes to improving the performance of KGML-ag-
Carbon, especially in data-sparse situations (Figs. 2 and 4). (2) In-situ
observations (e.g., EC flux towers, chambers) may include some
important intermediate variables and can be temporally dense (long-
term, frequent observations), but are often spatially sparse due to
installation and labor expenses. They can be used to fine-tune the
KGML model to capture temporal dynamics and intermediate pro-
cesses, but it is necessary to control the responses to certain tempo-
rally static but spatially diverse factors (such as soil properties) learned
from the PB model (Fig. S7). (3) Regional-scale observations at coarse
resolution (e.g., county-level crop yield survey data) may have scale
mismatches with the KGML input/output variables. Simply using those
data to train the KGML by upscaling (or averaging) the model outputs
to a coarse scale to calculate loss may force predictions of the fine-
scale model to the average status of the coarse-scale observations. To
overcome these shortcomings, the responses of target variables to
diverse spatial and temporal factors must be guided by domain
knowledge while using observations at coarse resolution to constrain
the model (Fig. S5).

Potential paths to improve agricultural GHG estimations
by KGML
Developing a KGML model with acceptable performance for GHG
estimation is extremely challenging because emissions have large
variations over space (hot spots) and time (hot moments), especially
for intensively managed agroecosystems12,13,33. To further accurately
quantify the high spatiotemporal variability ofGHGs,KGML-ag-Carbon
can be adapted to explore the use of internal network structures in
recurrent neural networks (RNN), which take into account the

Fig. 5 | The distribution of estimated ΔSOC during 2000–2020 and the
demonstration of the impact of coarse resolution on ΔSOC. a The ΔSOC esti-
mation derived from the mass balance approach using KGML-ag-Carbon with
0.0025-degree-resolution carbon budgets. b The percentage fraction of the esti-
mated ΔSOC in (a) compared to the SoilGrids SOC stock, limited to regions with
over 50% corn or soybean planting; c The histogram distribution of percentage

fractions in (b). d The ΔSOC estimation derived from the mass balance approach
using KGML-ag-Carbon with 0.5-degree-resolution carbon budgets. e The spatial
distribution of differences between coarse-resolution (0.5°) and fine-resolution
(0.0025 degrees)ΔSOC estimations, relative to the SoilGrids SOC stock and limited
to regions with over 50% corn or soybean planting; f shows the histogram dis-
tribution of the differences in e. Source data are provided as a Source Data file.
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temporal correlations of states, and convolutional neural networks
(CNN), which incorporate the spatial correlations of states. The mul-
titask learning framework of KGML-ag-Carbon, along with the hier-
archical structure, can be further enhanced by incorporating more
representative processes and simulating key intermediate variables28.
Since different GHGs are related to some common environmental
states (e.g., soilmoisture and soil temperature), one potential effective
solution can be developing portable modules to predict shareable
states, which can be used as inputs for different submodules. In the
current KGML-ag-Carbon framework, some important management
practices such as fertilization, irrigation, and tillage have not been
explicitly considered in the model due to a lack of location-specific
management information. It is currently assumed that the incorpora-
tion of remotely sensed GPP data in the KGML-ag-Carbon model can
largely capture local variations in carbon fluxes due to management
practices. Remote sensing data has shown potential for assessing local
management practices such as cover cropping48, tillage49, and
irrigation50. Recent advances in AI-based inverse modeling, such as
Knowledge-Guided Self-Supervised Learning51, may further improve
estimates where management information is unknown. However, it
should be noted that such methods are still in the early stages of
development. Additionally, it is important to consider that manage-
ment practices aimed at enhancing carbon storage in upland agroe-
cosystems may inadvertently lead to an increase in other GHG
emissions. For instance, while increasing the use of N fertilizers can
improve carbon sequestration, it can also contribute to higher N2O
emissions, partially offsetting the climate mitigation effect. Therefore,
to conduct a comprehensive assessment of management impacts on
GHG emissions (mostly CO2 and N2O) from upland agroecosystems,
the N cycle needs to be incorporated into the framework due to the
non-trivial impacts of N2O on the climate and the interactions between
C and N12. However, incorporating C-N interactions is challenging
because comprehensivemeasurements of both C- andN-related fluxes
and soil states, which are needed to validate any new model, are
lacking, and vital inputs such as fertilizer applications and crop win-
dows needed for regional-scale extrapolation of the model are una-
vailable. Moreover, although KGML-ag-Carbon can accurately predict
yield in extreme years (Fig. S9e, f), the impact of extreme weather
conditions such as heat waves or flash droughts on agroecosystems
remains unclear. Enriching KGML-ag-Carbon with simulations of
intermediate environmental variables, such as canopy temperature
and soil moisture, alongside the carbon budget quantification could
potentially help dissect and elucidate the effects of extremeweather. If
a reliable KGML tool was available to quantify the influences of dif-
ferent management practices and extreme weather on GHG emissions
and productivity, it would be possible to develop reinforcement
learning approaches52,53 for optimizing management practices to
maximize environmental and economic rewards.

Transferability of the KGML-ag-Carbon to other applications
The KGML-ag-Carbon framework can be used for numerous other
tasks, including predicting other target variables (e.g., N and P cycles),
estimating C outcomes over larger regions (e.g., the entire U.S.),
simulating carbon dynamics in different ecosystems (e.g., natural
forests), and assessing impacts of management practices (e.g., cover
cropping, tillage) and extreme weather (e.g., extreme heat or flash
droughts). Three main aspects factor into the wide transferability of
our framework. First, the ecosys model, which provides the scientific
foundation for KGML-ag-Carbon, is a well-validated advanced agroe-
cosystem model with detailed process representation for simulating
complex interactions among carbon, nutrients, water, and energy
cycles13,29,54,55. Various studies have demonstrated its global capability
for simulating crop ecosystems13, natural ecosystems54, and manage-
ment practice impacts56–59. Thus, ecosys can continue to generate
abundant synthetic data for pre-training the model to adapt specific

pathways from input variables to target variables. Second, assimilating
multi-source data can extend the framework to larger regions and
more ecosystem types15,25,27,60. For example, the remotely sensed GPP
data used in our study is available for the U.S. region, while other
remotely sensed data (e.g., from MODIS, Landsat, WorldView, Legion,
Sentinel-1, Sentinel-2, OCO-2, Planet Dove, SMAP satellites) may be
available over larger areas and beused to estimate leaf area index, land
surface temperature, evapotranspiration, soilmoisture, tillage, fertility
deficiencies, cover crop emergence, soil carbon sequestration, GHG
emissions, and residuemanagement practices. In addition, FLUXNET61

has a total of 212 EC flux tower sites worldwide located in different
ecosystems, providing carbon flux data and corresponding variables
available for KGML model fine-tuning/validating. Third, KGML-ag-
Carbon was tested to be over 1,000,000× faster than ecosys, com-
pleting the 21-year daily field-scale carbon budget quantification for
theU.S.Midwestwithin 1.6 days using oneGPU, while the ecosysmodel
would require 5.9 years using 1000 CPUs.While process-basedmodels
can now be accelerated using GPUs, this typically requires significant
code redesign and rewriting62. Unfortunately, ecosys is currently
unable to run on GPUs. This high efficiency, together with the high
fidelity of KGML-ag-Carbon to observational data, may facilitate the
large-scale high-resolution multi-scenario assessment of management
practices and spatially explicit parameter optimization, with some
modifications to including the responses from carbon cycles to certain
management practices or ecosys parameters.

Methods
Synthetic pre-training data for the KGML model
We used the agroecosystem model ecosys to generate synthetic data
for crop yield, ecosystem autotrophic respiration (Ra), ecosystem
heterotrophic respiration (Rh), net ecosystem exchange (NEE), and
gross primary production (GPP). This synthetic data was used to pre-
train the Knowledge-Guided Machine Learning for the Agricultural
Carbon budget model (KGML-ag-Carbon). Ecosys simultaneously
simulates carbon, water, and nutrient cycles within the soil and plant
system based on biophysical and biochemical principles29. Its ability to
simulate carbon fluxes and crop yields has been extensively validated
across midwestern U.S. cropping systems13. We conducted county-
level simulations using ecosys for 293 counties in the states of Illinois,
Iowa, and Indiana using climate data from the North American Land
Data Assimilation System (NLDAS-2 and soil data from theGridded Soil
Survey Geographic Database (gSSURGO). The synthetic database
contains 10,335 simulations whose inputs include soil information,
planting and harvest dates, crop parameters, and crop rotation infor-
mation randomly selected from among predefined ranges to ensure a
representative synthetic database. Within each county, the soil infor-
mation was randomly selected from among the top 10 dominant
cropland soil types in each county. The predefined range of planting
dates is from April 15 to June 10, and the harvest date is from October
31 to November 20, which represents the general crop calendar in this
region. In the database, one-third of the total simulations have corn-
soybean rotations, one-third are soybean-corn rotations, and the
remaining had corn and soybean planted randomly from 2001 to 2018
to represent common rotation strategies within this region.

Datasets for fine-tuning, validation, and extrapolations
We fine-tuned and validated KGML-ag-Carbon for crop yield estima-
tion over 637 counties and carbon fluxes estimation (i.e., Ra, Rh, NEE)
at 11 cropland EC flux tower sites located within major U.S. corn and
soybean production regions (Fig. S1). For fine-tuning and validation of
the regional crop yield submodule, the 250-m daily GPP product
derived from machine learning models based on Soil-Adjusted Near-
Infrared Reflectance of vegetation (SANIRv)34, 0-30 cm gSSURGO soil
properties, NLDAS-2 climate data, and crop type information (CDL and
CSDL63 were used after and prior to 2008, respectively) were used as
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KGML-ag-Carbon inputs. County-scale corn and soybean yields from
NASS, and USDA (https://quickstats.nass.usda.gov/) were used as a
benchmark. For fine-tuning and validation of the carbon flux sub-
modules, the KGML-ag-Carbon inputs included the GPP data decom-
posed from observed NEE at EC flux tower sites using the ONEFlux
tool61, observed climate data from EC flux towers, gSSURGO soil
information, andCDL crop type,while observedNEE andReco fromEC
flux tower data were used as benchmarks. Because the daily GPP data
we used is an average of GPP decomposed from NEE using different
daytime and nighttime partition methods, it may not preserve the
mass balance among NEE, Reco, and GPP; thus, we corrected the EC
flux tower daily GPP by replacing it with observed Reco plus NEE in the
following analysis. For estimating carbon fluxes at the regional scale,
we used SANIRv-based GPP, NLDAS-2 climate data, and gSSURGO soil
information as the model inputs.

The structure of KGML-ag-Carbon
KGML-ag-Carbon uses a hierarchical structure64 to incorporate the
causal relations between different variables and processes with eco-
systemknowledge for guidance, as presented in Fig. S2. It contains five
submodules, including (1) aGRU_Ramodule for dailyRa estimation, (2)
a GRU_Rh module for daily Rh estimation, (3) a GRU_NEE module for
dailyNEE estimation, (4) anattentionmodule for crop yield estimation,
and (5) a GRU_Basis module to connect and support the other four
modules. We used a type of recurrent neural network called a Gated
Recurrent Unit (GRU) as the basicmachine learningmodule to develop
our model structure. GRU has been proven to perform similarly to
Long short-term memory (LSTM65) in using cell states as internal
memories to preserve historical information; however, GRU uses a
simpler structure with fewer hidden states compared to LSTM and
thus often remains more stable with a small number of training
samples28,30,66.

The recursive representations of GRU can be presented as:

ht = zt � nt + ð1� ztÞ � ht�1 ð1Þ

zt =gðWxzxt +bxz +Whzht�1 +bhzÞ ð2Þ

nt = tanhðWxnxt +bxn + rt � ðWhnht�1 +bhnÞÞ ð3Þ

rt =gðWxrxt +bxr +Whrht�1 +bhrÞ ð4Þ

whereht is the hidden state at time t,xt is the input at time t, andht�1 is
the hidden state at time t − 1 or the initial hidden state at time 0. zt , nt ,
and rt are the update, reset, and new gates, respectively. g is the sig-
moid function and � is the Hadamard product. Wxz, Whz, Wxn, Whn,
Wxr, andWhr are learnable linear transformationmatrices.bxz,bhz,bxn,
bhn, bxr , and bhr are corresponding learnable bias vectors.

Each GRU cell in KGML-ag-Carbon represents a GRU with 64
hidden units (ht vector dimension = 64), and each dense cell is a linear
transformation layer, which can be presented as:

yflux,t =Whyht +bhy ð5Þ

whereyflux,t is the predictedflux target variables at time t, includingRa,
Rh, and NEE. Why and bhy are the learnable weight and bias, respec-
tively. The GRU_basic, GRU_Ra, and GRU_NEE submodules have one
layer of GRU cells while GRU_Rh has two layers of GRU cells. 20% of the
output hidden states from GRU cells are randomly dropped by repla-
cing them with zero values (the so-called 20% dropout) to avoid
overfitting.

The attentionmodule in KGML-ag-Carbon is amodified version of
the traditional LSTM attention model67, containing two layers:

ATTN_Weight and ATTN_Densor. ATTN_weight can be represented as:

αt =
expðetÞ

Pt = 365
t = 1 expðetÞ

ð6Þ

et = tanhðWhe,4ReLUðWhe,3ReLUðWhe,2ReLUðWhe,1ht +bhe,1Þ
+bhe,2Þ+bhe,3Þ+bhe,4Þ

ð7Þ

where αt is the probability attention score calculated from a softmax
function, representing the importance of time t over the whole year. et
is the weight score of ht at time t calculated from a 4-layer feedforward
neural network (FNN) with a Rectified Linear Unit (ReLU) as the
activation function for the first three layers and a hyperbolic tangent
function (tanh) for the last layer.Whe,i and bhe,i are the learnable weight
and bias for the ith layer in the FNN, respectively (i = 1, 2, 3, and 4).
αt and ht are thenmultiplied in the ATTN_Densor layer to calculate the
annual yield:

yyield =Wcy,4ReLUðWcy,3ReLUðWcy,2ReLUðWcy,1c+bcy,1Þ
+bcy,2Þ+bcy,3Þ+bcy,4

ð8Þ

c=
X365

t = 1
αtht ð9Þ

where yyield is the predicted yield for the input year, calculated from a
4-layer FNN with ReLU as the activation function for the first three
layers. c is the self-weighted context vector, which has the same
dimensions as the hidden state. Wcy,i and bcy,i are the learnable weight
and bias for the ith layer in the FNN, respectively (i = 1, 2, 3, and 4). The
attention module for yield collects simulated information of each day
from the GRU_basis submodule as input and weighs the contribution
of each day’s information to the final yield prediction.

Crop annual residue yres can be expressed as:

yres = ReLU
XTx

t = 1
ðGPPtÞ �

XTx

t = 1
ðyRa,tÞ � yyield

� �
ð10Þ

whereGPPt and yRa,t are the GPP input and predicted Ra at time step t;
yyield is the annual predicted yield; and Tx is the number of days in the
input time series (in this study Tx = 365). The ReLU function is used to
prevent a situation inwhich the sumof predicted annual yield andRa is
bigger than the annual GPP.

The KGML-ag-Carbon inputs (Xt) include seven daily climate
variables: surfacedownward shortwave radiation (RADN,MJm−2 day−1),
maximumair temperature (TMAX_AIR, °C), the difference between the
maximum and minimum air temperature (TDIF_AIR, °C), maximum
humidity (HMAX_AIR, kPa), the difference between the maximum and
minimumhumidity (HDIF_AIR, kPa), wind speed (WIND, kmday−1), and
precipitation (PRECN, mmday−1). Additional inputs are daily GPP
(g Cm−2 day−1), year, crop type (corn/soybean), andnine soil properties
averaged from 0 to 30 cm soil depth: bulk density (TBKDS, Mgm−3),
sand content (TCSAND, g kg−1), silt content (TCSILT, g kg−1), water
content at field capacity (TFC, m3m−3), water content at wilting point
(TWP, m3m−3), saturated hydraulic conductivity (TKSat, mmh−1), soil
organic carbon (TSOC, g C kg−1), pH (TPH), and cation exchange
capacity (TCEC, cmol+ kg−1). To increase the efficiency of the training
process, we used the Z-normalization method to normalize each
variable separately on synthetic data. The Z-normalizationmethod can
be expressed as:

Z=
ðx� μÞ

σ
ð11Þ

where Z is the normalized variable; x is the vector of a particular
variable over all the data samples in the data set; μ is themean value of
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x; and σ is the standard deviation (STD) of x. The scaling factors
derived from the ecosys synthetic data for each variable were used to
normalize observed data into the same ranges as synthetic data. TDI-
F_AIR and HDIF_AIR were used instead of absolute minimums of tem-
perature (TMIN_AIR) and humidity (HMIN_AIR) because TMIN_AIR and
HMIN_AIR follow similar trends as TMAX_AIR and HMAX_AIR, causing
Z-normalization to be poorly defined numerically. Using the difference
between maximum andminimum values provides clearer information
about daily air temperature and humidity variations.

Xt are the inputs to the submodules of GRU_Basis, GRU_Ra,
GRU_Rh, and GRU_NEE. Additionally, the output hidden states from
GRU_Basis are inputs to GRU_Ra, GRU_Rh, and the attention module.
The predicted annual yield, daily GPP, and daily Ra are then used to
calculate the carbon in crop annual residue after harvest in Residue_-
layer. The annual residue is fed back to the soil for Rh calculation by
inputting it on the 300th day of the year to GRU_Rh to assess the
relationship between soil and plant carbon pools. Finally, the GRU_NEE
takes predicted daily Ra and Rh together with Xt as input to predict
daily NEE to assess the contribution of different carbon fluxes to NEE.

Training strategies for KGML-ag-carbon
We used a five-step training method to train KGML-ag-Carbon with
ecosys-generated synthetic data and observed data, including (1) pre-
training yield and Ra submodules using synthetic data, (2) pre-training
Ra, Rh, and NEE submodules using synthetic data, (3) fine-tuning the
yield submodule using observed data, (4) retraining Ra, Rh, and NEE
submodules using synthetic data, and (5) fine-tuning Ra, Rh, and NEE
submodules using observed data (Table 1). We utilized an enhanced
mini-batch learning strategy68 to effectively capture andmaintain long-
term temporal dependencies in the model. The best-performing sub-
modules in the validation set at each step are saved for training in the
next step.

Specifically, the KGML-ag-Carbon model was pre-trained using
synthetic data to gain prior knowledge in steps 1-2, with two years of
data randomly selected from the 18-year period of synthetic data for
model validation, while the remaining 16 years of data were used for
model training. In step 1, we trained the yield and Ra submodules
together since they are crop-related variables and are used together
for crop residue calculations (Eq. (10)), with the GRU_Rh and GRU_NEE
submodules “frozen” by setting the learning gradient to zero. We used
amean-square-error (MSE)-based self-paced learning (SPL)method69,70

to build our training losses to train themodel from “easier” samples to
“harder” samples (Note S1).

In step 2, we further pretrained the submodules for Ra, Rh, and
NEE prediction together with the knowledge-based losses and
responses by freezing the attention module and GRU_Basis module,
considering the relationship of carbonfluxes. Besides theMSE loss, the
loss function for step 2 also involves (1) the knowledge ofmass balance
(GPP - Ra -Rh = -NEE, considering the positive NEE direction to be from
soil to atmosphere) to control the relationship between the input GPP
and predicted Ra, Rh, and NEE, (2) the partial dependence plot (PDP,
Fig. S3) to control the response of Rh to TSOC (Note S2). After two
steps of pre-training, the KGML-ag-Carbon can successfully imitate
ecosys for simulating yield, Ra, Rh, and NEE (Fig. S4).

In step 3, we fine-tuned the yield submodule with county-level
crop yield data. The GRU_Ra, GRU_Rh, and GRU_NEE submodules were
fully frozen and the GRU_Basis submodule was partially frozen by
setting the learning rate to 20% of the original one. We included the
knowledge-guided constraints in the loss function to control the range
of yield (bigger than 0 and less than 0.5 times annual GPP) and main-
tain three key responses (i.e., yield responses to TSOC, GPP, and year)
learned from the PB model (Note S3, Fig. S5). Detailed information on
using coarse resolution (county-level) yield data to fine-tune our high-
resolution model (250m) is described in supplementary Note S3.
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Step 4 is similar to step 2 in terms of using synthetic data to train
the Ra, Rh, and NEE submodules to avoid too much prior knowledge
loss after fine-tuning the yield submodule. An experiment comparing
Ra, Rh, and NEE prediction performance after step 4 and models with
and without step 2 demonstrated the effectiveness of step 2 (Fig. S6).
We attempted to remove step 2 and trained the model only in step 4
for carbon fluxes with 80 maximum epochs. The results showed a
performance drop for Ra, Rh, and NEE pre-training, especially at the
annual scale (Fig. S6; with step 2: annual RMSE = 13.9, 24.4, and
28.9 gCm−2 day−1 for Ra, Rh, and NEE, respectively; without step 2:
annual RMSE = 17.0, 29.3, and 34.4 gCm−2 day−1).

Finally, we fine-tuned KGML-ag-Carbon using the daily observed
Reco (Ra + Rh), NEE, and GPP data from 11 EC flux tower sites
throughout the U.S. Midwest, with the GRU_Basis and Attention
modules frozen (Fig. S2). The learning rates of the GRU_Ra, GRU_Rh,
and GRU_NEE submodules were set to 50%, 20%, and 50% of the ori-
ginal one at the fine-tuning stage, respectively, to avoid overfitting and
losing toomuch prior knowledge. The loss function for step 5 involves
a similar mass balance constraint as step 2 but contains a different
response constraint to preserveRa andRh responses to environmental
variables learned from the processes-based model in data-sparse
regions (Note S4, Fig. S7). Additionally, we introduced a method to
separate the Ra and Rh during winter by assuming that most Reco
during winter is from Rh since the selected EC flux tower sites were
fallow during winter (Note S4). At each site, two years of data were
randomly selected from the whole observed period as validation data,
and the remaining data were used as training data. The final fine-tuned
out-of-sample testing results are presented in Fig. S8.

Robustness test for the performance of KGML-ag-Carbon
To investigate the robustness of KGML-ag-Carbon for yield, Reco, and
NEE predictions, we conducted several experiments with different
training sample sizes to compare the performanceofKGML-ag-Carbon
with a pure ML model under different conditions (Fig. 2, Fig. S9).

For yield predictions, we first randomly sampled 210 counties out
of all 637 counties in the U.S. Midwest from NASS data for testing and
kept 100 counties from the remainder for validation (Fig. 2a, b). Spe-
cifically, to conduct the yield robustness test, different sample sizes of
2, 5, 10, 20, 40, 80, 160, 240, and 320 counties were randomly selected
from the remaining data, with ensemble times of 50, 20, 10, 10, 5, 4, 2,
1, and 1, respectively. The KGML-ag-Carbon model was trained fol-
lowing the 5-step training strategy described above, with a varying
training sample size for fine-tuning in step 3. A sample size of zero for
fine-tuning was also considered by skipping step 3 for the KGML-ag-
Carbon training. The pure ML model for yield prediction is a 2-layer
GRU model with attention, which is similar to GRU_Basis combined
with the attention module presented in Fig. S2, with the same input
features as KGML-ag-Carbon (including GPP). The pure ML models
were trained with a similar method as KGML-ag-Carbon in step 3 with
doubled maximum training epochs but without a knowledge-guided
loss (only MSE loss) and pre-training (all other steps). In addition, we
conducted further experiments with different training/testing split
methods such as (1) using counties except for Illinois for training and
Illinois for testing to detect spatial transferability, (2) training on the
prior few years of data and testing on latter years to detect temporal
transferability, and (3) training on the normal years and testing on
extreme years (Fig. S9a–f). We used counties from Illinois (100) for
testing and randomly sampled 100 counties from the remaining states
for validation to test the KGML-ag-Carbon model in an independent
out-of-sample testing data set (Fig. S9a, b). The training sample
selection method was the same as the random sampling method. For
detecting temporal transferability, we trained the model with all
counties but split the 21-year data into training/validation/testing
periods (Fig. S9c, d). We selected the front 2, 4, 6, 8, 10, 12, 14, 16, 18,
and 20 years for training and validation, with the last 1, 1, 1, 2, 2, 2, 3, 3,

3, and 3 years of the selected periods as the validation sets, respec-
tively. The remaining years of the 21-year period were used for testing
the model. The prediction performance of each testing year was cal-
culated separately and presented in Fig. S9c, d. To test the perfor-
mance in extreme years, we trained the KGML-ag-Carbon model and
pure ML model with data from all counties but excluded the selected
extreme years of 2002, 2003, and 2012 (Fig. S9e, f). The extreme years
were selected by detecting the outliers (outside the range of mean ±
two times the STD) for each year based on a yield distribution calcu-
lated from the detrended yield for all counties and all years (Fig. S10).
2002, 2003, and 2012 have the top three numbers of outliers, with 98,
89, and 349 counties.

ForRecoandNEEpredictions, wedivided the 11 ECflux tower sites
into 6 testing groups based on the spatial distribution to detect the
spatial transferability of the KGML-ag-Carbon at different temporal
scales (Fig. 2c, d, Fig. S9g–l).We conducted the ensemble experiments,
and each time, we selected one group on which to test KGML-ag-
Carbon and the pure ML model, which were trained and validated by
randomly selected sites from the remaining groups. Specifically, we
first divided the 11 eddy-covariance sites into 6 testing groups basedon
the spatial distribution, with US-Bo1 and 2 as group 1, US-Br1 and 3 as
group 2, US-IB1 as group 3, US-KL1 asgroup4, US-NE 1, 2 and 3 as group
5, and US-Ro1 and 5 as group 6 (Fig. S1). We selected one site as the
validation data for each group and selected different sample sizes of 1,
2, 3, 4, 5, 6, and 7 sites as the training data from the remaining sites. The
validation data traversed each of the remaining sites and training data
of the same size would be forced to be different from each other. For
example, group 1 has 2 sites for testing. If we would like to choose a
training/validation sample for sample size 5, we would first select one
site from the remaining 9 sites (excluding 2 test sites) and randomly
sample 5 sites from the remaining 8 sites (excluding 2 test sites and 1
validation site). The 5 sampled sites would be compared with the
previously selected 5-site training data and if they are the same, the
sampling would be applied again. This process was conducted 9 times
to cover all of the remaining sites so that the ensemble count for each
sample size in group 1 was 9. Similarly, the ensemble times for each
sample size in groups 2, 3, 4, 5, and6 are 9, 10, 10, 8, and9, respectively.
The KGML-ag-Carbon model was trained following the 5-step training
strategy described abovewith the training sample size varying for fine-
tuning in step 5. A sample size of zero for fine-tuning was also exam-
ined by skipping step 5 in the KGML-ag-Carbon training. The pure ML
model is amultitask 2-layer 64-unitGRU for Ra, Rh, andNEE simulation
with the same input as the KGML-ag-Carbon model. The pure ML
models were trained by a similar method as KGML-ag-Carbon in step 5
with doubled maximum training epochs but without a knowledge-
guided loss (only MSE loss) and pre-training (all other steps). Finally,
we investigated the overall performance of Reco and NEE prediction
by combining results from all ensemble experiments at daily and
annual scales (Fig. 2c, d, Fig. S9g, h), and investigated the performance
at one representative location (the area containing US-NE1, 2, and 3
with 19-year data at each site) at daily and annual scales (Fig. S9i–l).

Detecting the contributions of KGML-ag-Carbon components
To investigate the contributions of different KGML-ag-Carbon com-
ponents to the final ready-to-go KGML-ag-Carbon performance, we
conducted full-factorial tests for each component in the model and
tested the model performance on an out-of-sample dataset (Fig. S11).
Specifically, we included or excluded four components: (1) using GPP
data as an input (GPP for short), (2) pre-training the model with syn-
thetic data, (3) incorporating the KGML-ag-Carbon structure, and (4)
implementing KG loss functions and the 5-step training strategy (if
structure is applicable). In total, 16 individualmodels were trained. The
training and testing data are similar to the robustness experiment
described above. Specifically, to determine the contributions to the
yield (flux) predictions, we used training sets of 5 and 40 counties
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(1 and7 sites) to train themodels, referred to as small and large training
sample sets, respectively. Theoptimizedmodelswere testedonout-of-
sample data sets, which are NASS yields from 210 randomly selected
counties and Reco and NEE from 6 groups of EC flux tower sites (the
models tested on one groupwere trained and validatedwith data from
sites chosen from other groups). We calculated the mean and STD of
the prediction accuracy for all themodels from ensemble experiments
and detected the performance changes by comparing themodels with
and without each KGML-ag-Carbon component (Fig. S11). To illustrate
the factors that contribute to the KGML-ag-Carbon model perfor-
mance, we selected five representative models from the 16 trained
models to showcase the direction of performance improvement.
Thesemodels include (1)ML, (2)ML +GPP, (3)ML +GPP + pre-training,
(4) ML +GPP + pre-training + KG structure, and (5) ML+GPP + pre-
training + KG structure + KG loss (Fig. 3a, b). To further detect the
influences of knowledge-guided components (i.e., pre-training, hier-
archical structure, and KG loss functions) on improving the prediction
performances, we compared three kinds of models, including an ML
model with GPP data, an ML model with GPP and pre-training, and
KGML-ag-Carbon, regarding the mass balance residues of predictions
and the performance in capturing complex daily fluxes for a repre-
sentative site-year (US-NE1-year 2016; Fig. 3c, d; Fig. S12).

High-resolution predictions across the U.S. Midwest
After fine-tuning KGML-ag-Carbon with county-scale corn and soy-
bean yield as well as EC flux tower observations from agroecosystem
sites (Table 1, Step 5), themodel was used to simulate regional annual
crop yields and daily carbon fluxes (i.e., NEE, Ra, Rh, Reco) with a
spatial resolution of 250m over the main corn- and soybean-
producing region of the U.S. Midwest (Fig. S1) from 2000 to 2020.
To evaluate the performance of regional-scale carbon flux estimates,
we compared the model results with Trendy35, which was generated
by a suite of dynamic global vegetation models at a monthly scale
with spatial resolutions of 0.5° × 0.5° or coarser. The carbon flux
values from this study were regridded to 0.5° by averaging the value
of pixels within a 0.5° grid for comparison. The distribution of annual
accumulated GPP, NEE, and Reco from these two datasets and the
observations from the selected EC flux tower sites were used for the
comparison (Fig. 4). The wide range of variation observed in the
Trendy models ensemble can be attributed to the inclusion of
diverse processes and alternative parameterizations adopted by
models from different research communities, as described by Sitch
et al. 35.

Investigating the benefits of high-resolution quantification
To generate 0.0025-degree-resolution ΔSOC estimates for the U.S.
Midwest (Fig. 5a–c), we employed themass balance equation ΔSOC= -
NEE - crop yield12,13,33 over the period 2000–2020. Specifically, we
regridded the 250-m-resolution NEE and crop yield estimations from
KGML-ag-Carbon into 0.0025° estimations for use in the mass balance
equation. To minimize the influence of undecomposed surface crop
residues, which do not contribute to ΔSOC but are counted as part of
our ΔSOC estimations through the mass balance approach, we selec-
ted the 21-year averaged value of ΔSOC. We then focused on regions
where more than 50% of the area was planted with corn or soybean
crops (Fig. S13a). The ΔSOC values were converted to percentage
fractions (Fig. 5b) using ML-based SOC stocks derived from SoilGrids71

(Fig. S13b). Specifically, we used corn and soybean fractions from CDL
and CSDL data (Fig. S13a) to exclusively identify corn and soybean
agroecosystems (total fraction >0.5). This alignment with our model’s
current training scope helped reduce the mixed pixel effect resulting
from inputing remotely sensed GPP data from other ecosystems. The
SoilGrids SOC stock (Fig. S13b) was derived from organic carbon
density (OCD) in each layer of the 200-cm soil depth at a 250-m
resolution71.

To attribute the spatial patterns of estimated ΔSOC, we con-
ducted Pearson correlation analyses between the input variables
(including seven climate variables and nine soil variables) and the
target variables (including GPP, NEE, Ra, Rh, Yield, Reco, Residue, and
ΔSOC) (Fig. S14). In our approach, each variable was temporally
aggregated to a 21-year scale and Z-normalized using Eq. (11). The
Residue variablewas computed asGPP - Ra - Yield, representing thenet
carbon return from plants to the soil. While GPP served as an input to
the KGML-ag-Carbon model, we included it as a target variable in the
correlation assessment due to its pivotal role in the carbon cycle. In
addition, we conducted a multiple linear regression to assess the total
influence of climate factors and soil factors on ΔSOC. For more com-
prehensive explanations, please refer to the Supplementary
discussion.

To demonstrate the advantages of high-resolution carbon bud-
get quantification, we produced a 0.5-degree-resolution ΔSOC esti-
mation (Fig. 5d) and conducted a comparative analysis with the
0.0025-degree-resolution estimation (Fig. 5e, f). Specifically, we
employed KGML-ag-Carbon at a 0.5-degree-resolution and applied
the mass balance approach to derive ΔSOC using 0.5-degree esti-
mates of NEE and crop yield (Fig. S15; Fig. 5d). To achieve this, we
employed a mean aggregation approach for each input variable,
converting from 250-meter resolution to 0.5-degree resolution.
However, the aggregation of crop types from high resolution to
coarse resolution was not straightforward. To better emulate realis-
tic crop rotations in the coarse-resolution simulation, we conducted
two simulations involving corn–soybean rotations (corn in even
years and soybean in odd years) and soybean-corn rotations (soy-
bean in even years and corn in odd years). Subsequently, we used the
corn/soybean fractions from CDL and CSDL data to compute
weighted averages of corn and soybean estimations for each year
using those two simulations. The differences between the 0.5-
degree-resolution and 0.0025-degree-resolution ΔSOC estimations
were then calculated (Fig. 5e, f) by subtracting the 0.0025-degree-
resolution estimation from the 0.5-degree-resolution estimation. To
enhance clarity, regions outside the corn/soybean agroecosystem
were excluded, and the estimated differences were converted to
percentage fractions using methods similar to those employed in
generating Fig. 5b–c. We have adopted the normalized root mean
square error (NRMSE) to describe the overall differences:

NRMSE=
RMSE

Q3�Q1
ð12Þ

Where RMSE is the root mean square error between 0.5-degree-
and 0.0025-degree-resolution estimations, and Q1 and Q3 represent
the three quantiles and one quantile of 0.0025-degree-resolution
estimation, respectively. This method was chosen to avoid the
denominator becoming too small. We also applied a similar approach
to calculate the differences in other variables, including GPP, Ra, Rh,
NEE, and Yield (Fig. S15). We note that the relative differences in Fig.
S15 were calculated as (0.5-degree-resolution estimation - 0.0025-
degree-resolution estimation)/0.0025-degree-resolution estimation,
representing the relative differences relative to each 0.0025-
degree pixel.

We conducted an extensive literature review to gather available
soil organic carbon (SOC) measurements in the U.S. Midwest. This
effort involved data from 18 sites, each with multiple SOC measure-
ments at the plot level (~10m) after 2000, facilitating ΔSOC validation
for the KGML-ag-Carbon model (Fig. S16, Table S1). Observed data
such as bulk density, initial SOC stock in the top 30 cm, and rotation
management were integrated into the input feature when applicable.
Other inputs were directly derived fromour 250-m-resolution regional
database, such as weather forcings and GPP based on the sites’ geo-
physical locations. We have used an empirical equation72 to simulate
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the percentage fraction of SOC at different depths to total stock
(assumed to be SOC in 0–100 cm), expressed as:

FSOC,Z = � 0:011Z2 + 2:029*Z ð13Þ

Where FSOC,Z is the estimated SOC percentage between 0 to Z cm
depth. This conversion factor aided in translating observed SOC values
to the entire profile or to the top 30 cm in cases where depth-specific
data was unavailable. It is worth noting that all of the collected ΔSOC
data pertain to plot-level (~10m) experimental measurements that
primarily focus on detecting the influences of management practices.
Data from those plots often lack the requisite localized forcing data
needed by our model. Consequently, we resort to utilizing field-level
(250m) forcings such as remotely sensedGPP and reanalysis of NLDAS
weather forcing, which poses a scale mismatch when compared to the
plot-level observations. To illustrate this scale mismatch, we selected
two sites from different studies36,38 to compare the sizes of the
experimental plots with the sizes of our predictions and neighboring
real fields, as depicted in Fig. S16a, b.

Development environment description
We used Pytorch 1.6.0 (https://pytorch.org/get-started/previous-
versions/, last access: 21 Oct 2023) and Python 3.7.11 (https://www.
python.org/downloads/release/python-3711/, last access: 21 Oct 2023)
as the programming environment for model development. Statistical
analysis, such as linear regression, was conducted using Statsmodels
0.14.0 (https://github.com/statsmodels/statsmodels/, last access: 21
Oct 2023) In order to use a GPU to speed-up the training process, we
installed the CUDA Toolkit 10.1.243 (https://developer.nvidia.com/
cuda-toolkit, last access: 21 Oct 2023). A desktop with an NVIDIA
2080 super GPU was used for code development and testing. The
training processes, which required extensive time and memory space,
were conducted on the Mangi and Agate clusters (https://www.msi.
umn.edu/mangi, last access: 21 Oct 2023) from the High-Performance
Computing facility of the Minnesota Supercomputing Institute (HPC-
MSI, https://www.msi.umn.edu/content/hpc, last access: 21 Oct 2023)
with two-way NVIDIA Tesla V100 GPUs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available as detailed in the
Methods. Briefly, the NLDAS-2 data used in study is available at https://
ldas.gsfc.nasa.gov/nldas/nldas-2-forcing-data; gSSURGO is available at
https://www.nrcs.usda.gov/resources/data-and-reports/description-
of-gridded-soil-survey-geographic-gssurgo-database; the corn and
soybean yield data is available at https://quickstats.nass.usda.gov/; the
CDL data is available at https://croplandcros.scinet.usda.gov/; the
CSDL data is available in Zenodo under accession code https://doi.org/
10.5281/zenodo.4571628; the SLOPE GPP data is available at
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1786; the benchmark
TRENDY-v9 data is available at https://www.wdc-climate.de/ui/entry?
acronym=DKRZ_LTA_891_ds00012; and the organic carbon density
data used in this study is available in SoilGrids under accession code
https://files.isric.org/soilgrids/latest/data/ocd/. The aggregatedKGML-
ag-Carbon predictions at 0.5° generated in this study are provided in
the SourceData file, which has been deposited in the Zenodo database
under accession code https://doi.org/10.5281/zenodo.10155516.

Code availability
The ecosys process-based model is available at https://github.com/
jinyun1tang/ECOSYS, and OneFLUX for EC flux tower data processing
is available at https://github.com/fluxnet/ONEFlux. The source codes

for data processing and an executable Python library of KGML-ag-
Carbonmodels for running demo data are accessible through Zenodo
under accession code https://doi.org/10.5281/zenodo.10155516.
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