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Epidemic graph diagrams as analytics for
epidemic control in the data-rich era

Eugenio Valdano 1, Davide Colombi2, Chiara Poletto 3 & Vittoria Colizza 1

COVID-19 highlightedmodeling as a cornerstone of pandemic response. But it
also revealed that current models may not fully exploit the high-resolution
data on disease progression, epidemic surveillance and host behavior, now
available. Take the epidemic threshold, which quantifies the spreading risk
throughout epidemic emergence, mitigation, and control. Its use requires
oversimplifying either disease or host contact dynamics. We introduce the
epidemic graph diagrams to overcome this by computing the epidemic
threshold directly from arbitrarily complex data on contacts, disease and
interventions. A grammar of diagram operations allows to decompose, com-
pare, simplify models with computational efficiency, extracting theoretical
understanding. We use the diagrams to explain the emergence of resistant
influenza variants in the 2007–2008 season, and demonstrate that neglecting
non-infectious prodromic stages of sexually transmitted infections biases the
predicted epidemic risk, compromising control. Thediagrams are general, and
improve our capacity to respond to present and future public health
challenges.

Public health response to infectious disease epidemics faces twomajor
challenges. First, to predict if an emerging pathogen will cause a large-
scale epidemic. Second, to control epidemics and prevent recurring
outbreaks of known pathogens. SARS-CoV-2 is evidence of both: a new
pathogen which caught the world by surprise, wreaked havoc, and
tested our control capabilities with recurrent waves1. Global crises like
the COVID-19 pandemic may become more frequent, as climate
change increases the threat of new viral species jumping to humans
from animal reservoirs2. Among them, avian strains of influenza A (e.g.
H5N1, H7N9) are closely monitored for their ability to develop into
major pandemic strains3. With a universal vaccine still unavailable,
preparing for the next influenza pandemic requires large-scale access
to antiviral treatment4 and optimal drugs administration5,6.

The fight against epidemics of known pathogens is equally hard,
and exceptionally relevant in the context of sexually transmitted
infections (STI). The progress towards elimination of HIV/AIDS is
faltering7. Chlamydia, gonorrhea and syphilis cause more than 200
million new cases worldwide among adults each year8, andwidespread
antimicrobial resistance is compromising our ability to fight them9. Yet

elimination remains a priority, to reduce not only their burden, but
also their effect on HIV acquisition and transmission8. Finally, mpox
virus has spread to non-endemic areas, overwhelmingly through sex-
ual transmission and in communities already burdened by other STIs10.

The two epidemic contexts—pandemics and STI—have little in
common. But the goals of preventing large-scale emerging epi-
demics and eliminating endemic diseases find a common theoretical
framework and application tool in the epidemic threshold11,12. The
epidemic threshold defines the critical value of disease transmissi-
bility above which the infection can establish itself in a host popu-
lation. Interventions that raise the epidemic threshold make the
population more resilient to the pathogen. Opposite changes
increase the epidemic risk.

The epidemic threshold has historically contributed to inform
core public health activities, for its potential to provide context
awareness and gauge the effort needed for prevention or
eradication13–15. In the current COVID-19 pandemic, scientists, public
health officials, authorities, and even the general public have con-
tinuously evaluated control policies by their ability to bring epidemic
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waves below the epidemic threshold, i.e., reproductive number
Rt < 116–19.

Current theories, however, cannot handle the complexity of
infectious disease dynamics in real populations, and resort to two
oversimplified schemes. One consists in allowing for detailed disease
progression but limited population structure, and stemmed from
mathematical epidemiology20–22. This clashes, however, with the evi-
dence of highly complex time-varying contact patterns measured or
estimated in different contexts15,23–25. To overcome this, the physics
andnetwork science community haspushed the development towards
increasing realism in population structure12,26–32. This has happened,
however, at the expense of disease description33–37, which has opened
newproblems: Simplifying assumptions on disease natural history bias
results38, and variations in intervention protocols cause radically dif-
ferent epidemic outcomes6. These simplifications limit our knowledge
of disease dynamics, and cripple the ability of models to serve public
health.

The theoretical formalism presented here will eschew both. It will
give estimates of the epidemic threshold that are both robust, to
provide rapid and generalizable understanding of complex dynamical
processes driving disease spread, and accurate, to turn high-precision
data39–42 into targeted and viable recommendations. Applied to
syphilis transmission, it shows that the resolution of sexual contact
data requires matching resolution in modeling disease progression.
Namely, its prodromic stage affects the epidemic threshold even if
non-infectious. Applied to influenza, our framework predicts whether
antiviral-resistant variants will become dominant, in agreement with
the observed emergence and fixation of the oseltamivir-resistant
A(H1N1) variant in 2007.

Results and discussion
Epidemic graph diagrams
We introduce here Epidemic Graph Diagrams (EGDs) to represent the
coupled dynamics of arbitrarily complex disease spread, and arbi-
trarily complex contact patterns among hosts. Following a tradition in
physics43,44, our diagrams are more than a representation of the dif-
fusion equations on the network substrate: they replace them. We
define rules to build the diagrams, and operations tomanipulate them,
by exploiting their topological properties. Then, we show that dia-
grams lead to a general, analytical derivation of the epidemic thresh-
old. Also, diagram operations simplify its numerical computation,
making EGDs a practicable analytics for public health.

We consider the classic compartmental description of the natural
history of an infectious disease, through a progression of successive
disease states regulated by transition rates. We consider population
structure through an explicit time-varying contact network with adja-
cency matrix A(t), where nodes represent hosts and the entry Aij(t)
encodes transmission-relevant connectivity between host i and host j
at time t12,15,23,24,45. Contacts can thus change in time.

We use the Markov chain formulation in the quenchedmean-field
approximation, whereby the network appears in its explicit contact
structure represented by the adjacencymatrixA(t), and the dynamical
states of the nodes are independent of eachothers and follow a system
of deterministic differential equations26,28,30. For a generic compart-
mental model these equations can be written as:

_xib =
X
c

X
j

xjc γbc � μcδbc

� �
δij + λbcA

ijðtÞ
h i

+ f ðxÞ, ð1Þ

where xi
bðtÞ is the probability that node i is in compartment b at time t,

and b runs over all compartments, except the susceptible S. μc, γbc, λbc
are the rates of the transitions between compartments depicted in
Fig. 1a: μ correspond to spontaneous transitions to S (e.g. recovery
with no immunity); γ correspond to spontaneous transitions between
any two compartments except S (e.g. exposed hosts becoming

infectious); λ correspond to transmission events causing a susceptible
node to enter another compartment (e.g. a susceptible becoming
infectious). Transmissions are generated by infectious hosts of any
kind (e.g. asymptomatic or symptomatic infectious individuals) when
they are in contact with susceptible nodes. The component f(x) in Eq.
(1) contains all terms that are nonlinear in x (quadratic or higher). It
may be complex, but its derivatives vanish in the disease-free state
( ∂f =∂xi

b

��
x =0 =0), therefore f does not contribute to the epidemic

threshold and can be dropped. Eq. (1) can then be conveniently
rewritten in operator form:

_xðtÞ=xðtÞ γ � μ+ λAðtÞ½ �=xðtÞJðtÞ: ð2Þ

In this formalism, x is a vector onRN �RNC , whereN is the number of
hosts, and NC is the number of compartments (excluding S). μ, γ, λ are
operators on RNC , and A is an operator on RN . The term J(t) = γ −μ +
λA(t) is the Jacobianof the system, itself anoperator onRN �RNC . The
component λA(t) generates the interaction between the contact net-
work structure and the structure of the compartmental model, so that
nodes that are neighbors at a given time t affect each other’s prob-
abilities to find themselves in given compartments.

The dynamics of the epidemic close to the disease-free state is
captured by the infection propagator P (also an operator on
RN �RNC ), counting the possible transmission chains among
hosts29,30,33. Following30, we compute P as a function of J using the
theory of nonautonomous linear systems on Eq. (2):

PðtÞ= T exp
Z t

t0

dsJðsÞ
( )

= T exp
Z t

t0

ds γ � μ+ λAðsÞ½ �
( )

, ð3Þ

where t0 is the initial time of the time window of analysis and T is
Dyson’s time-ordering operator (see Methods). The largest eigenvalue
of P yields the epidemic threshold29,30,33.

EGDs emerge as a graph-theoretical representation of the analy-
tical treatment just presented. They are network representations that
fully encode the infectious disease dynamics in real populations close
to the critical spreading condition. They are composed by NC nodes,
each representing a disease compartment (except S), connected by
single directed links (spontaneous transitions) or double directed links
(transmission events) (Fig. 1b). Nodes can also have self-loops (single,
for transitions to S; double, for transmissions entering the samenode).
EGDs bypass Eq. (1), as they can be built directly from the classic
compartmental model and the network adjacency matrix with simple
rules (steps 1–2 of Fig. 1d). Most importantly, computing the weighted
adjacency matrix of the EGD (plus probability conservation) yields
exactly the operator J(t) (Fig. 1c,d) appearing in the expression of the
infection propagator of Eq. (3) (see “Methods”).

Under the simple representation of a weighted directed graph,
EGDs hide a higher-order complexity. Unlike common graphs, link
weights are not scalar but operators on RN . Considering the relation
between tensors and multilayer networks46, we can interpret EGDs as
graphs of layers: each node in the EGD (compartment) is a replica layer
of the contact network, and links in the EGD are coupling operators
among layers.

Operationally, EGDs make it possible to simplify different disease
models and interventions, compare them, build equivalence classes.
This is done through three diagram operations: CUT, ZIP, and SHRINK.
They decompose diagrams into simpler parts, and compress complex
disease progressions. Figure 2 describes in detail the diagram opera-
tions, which we present hereafter through specific epidemic applica-
tions. The corresponding proofs are reported inMethods. Finally—and
more pragmatically—EGDs are a powerful tool for computing the epi-
demic threshold.
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Syphilis
As a first application, we consider syphilis spreading on a network of
sexual contacts. Syphilis is a bacterial STI that is still widespread in
resource-constrained countries and resurgent in high-income coun-
tries in specific risk groups8. After infection, the disease progresses
through a latency period lasting on average 3–4 weeks but with large
fluctuations (10–90days)47. It is then followed by two infective stages—
primary and secondary syphilis. If untreated, syphilis enters latency,
potentially leading to severe complications in the tertiary stage. Most
models greatly simplify this disease progression and consider early
stages only, under the assumption of antibiotic treatment, through
susceptible-infectious-susceptible48 or susceptible-infectious-
recovered-susceptible approaches49. Latency period is neglected,
because complexity is shifted from disease progression towards cap-
turing the heterogeneity of human sexual behavior48.

Here we want to keep such complexity in Aij(t) while also pre-
serving the progression of the early stages of syphilis infection.
Introducing the latency period following infection is often the first
step into building a multi-stage disease history in realistic epidemic
contexts50. Following the grammar of Fig. 1, we build the epidemic
graph diagram of a susceptible-exposed-infectious-recovered-sus-
ceptible (SEIRS), where E corresponds to individuals exposed to the
disease but not yet infectious (Fig. 3). Diagram operation CUT allows
the isolation of two strongly connected components, one containing
only R, and one containing E and I (Fig. 3b). The first has no trans-
mission terms. It is thus always below threshold, and can be dumped.

The second leads to the simplified version of the Jacobian of the
original diagram (Fig. 3c).

The diagram can however be further simplified if the network of
contacts satisfies the weak-commutation condition30 (see “Methods”).
This applies to homogeneous mixing, static and annealed networks30,
and some temporally evolving network models such as the activity-
driven model51. Under this condition, diagram operation SHRINK
allows the removal of those nodes (compartments) having only one
outgoing link in the EGD, as long as the link is single (Fig. 2c, e). Applied
to syphilis, SHRINK eliminates E and reduces the original model to an
SIS (Fig. 3c), whose threshold can be easily solved with the scalar
version of the infection propagator approach29,30,33. Under weak-com-
mutation, the latency period therefore plays no role in the condition
for endemic circulation, extending to temporal networks the result
previously restricted to static and annealed networks52. For example,
approaches neglecting syphilis latency within the homogeneous mix-
ing approximation49 will not be biased if temporal correlations in
sexual activity are negligible. If instead such correlations exist, errors
are to be expected. To evaluate such errors, we consider syphilis cir-
culating on a sexual network between Brazilian sex workers and
clients23 and measure the relative variation of the epidemic threshold
computed on the CUT and on the CUT+SHRINK diagrams of Fig. 3c.
Within the variation of latency duration reported in syphilis infected
individuals47, we find errors in elimination predictions ranging from − 5
to 40% (Fig. 3d, e), if the model neglects latency. The presence of one
additional timescale in a non-infectious compartment induces an

Fig. 1 | Epidemic graph diagrams. a Network epidemiology ingredients: com-
partmental model (top), and time-evolving network (bottom). The generic com-
partmental model appears in its standard representation: squares represent the
different compartments, joined by transitions of three types. The susceptible
compartment S (healthy individuals who can contract the disease from the infec-
tious) is made explicit. We use generic letters for compartments to show the wide
applicability of the approachwithout constraining to specific disease progressions.
The transitions stem from the diagram visualization at the top of the panel. Type 1
transitions are shown as continuous lines and correspond to spontaneous pro-
cesses; type 2 are shown as dashed lines, for transmission events involving sus-
ceptibles; type 3 are shown as dotted lines, for transmission events not involving
susceptibles. b Epidemic Graph Diagram corresponding to the compartmental
model of (a). Spontaneous transitions (type 1) become single links. Transmission

events (type 2) become double links. Links are weighted by the corresponding
transition rates (see a) multiplied by an operator on RN . This operator is the
identity matrix on single links (omitted), and the adjacencymatrix on double links.
All other transitions, e.g. transmissions infecting other compartments than S (type
3) can be neglected and do not appear in the EGD (see “Methods”). c Jacobian
corresponding to the example in (a, b). d Rules of the EGD grammar. The EGD is
built directly from the compartmental model (a) following steps 1 and 2. The
Jacobian is then the weighted adjacency matrix of the EGD minus diagonal terms
that enforce the probability conservation (step 3), encoded in the diagonal entries
γbb. These are not free parameters but are fixed by probability conservation, since
transitions among compartments not involving S do not change the sum

P
cx

c
i (Eq.

(1)). From this, we derive γbb= −∑c≠bγbc.
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interplay with the timescales of the contacts and of the other disease
stages, either increasing or decreasing the conditions for syphilis
spread with respect to predictions based on the SIS model. In a wave
analogy, latency acts in tuning the phase shift between disease and
network, from in-phase (boosting) to counterphase (hampering)53.

In the absence of treatment, or if treatment fails (e.g. for resis-
tance emergence), later stages of syphilis infection need to be con-
sidered. The Supplementary Note reports the corresponding EGD and
shows that even in that scenario the diagram can be simplified to the
EGD of an SIS model (section S1).

The effect observed here for syphilis is relevant to other diseases,
especially those for which natural history is poorly known, typically in
an early phase of the outbreak. This is the case, for example, of the
mpox outbreak: estimates from endemic areas were not directly
applicable to the epidemic, which features different spreading routes,

symptomatology, and risk factors for acquisition10. Waiting for reliable
estimates of disease time scales (latency, generation time, detection)
and stages (asymptomatic transmission), the analysis of epidemic
scenarios requires a flexible and agile theoretical framework, as the
one developed here, to account for uncertainties.

Pandemic influenza
Progression from latent infection to active disease may be far more
complex than what illustrated for syphilis. Fully describing the natural
history of influenza in human hosts, for example, requires a progres-
sion from exposed (E) to pre-symptomatic (P, infectious without
showing symptoms yet), asymptomatic (A) or symptomatic (I) infec-
tious, and recovered (R) (Fig. S3)6. Next to the inclusion of the latency
period, the distinction among infectious individuals is critical for
public health interventions. Only symptomatic infectious (I) can be

Fig. 2 | Diagram operations. a EGD of Fig. 1. The two strongly connected com-
ponents are highlighted by blue rectangles. b Diagram operation CUT isolates the
strongly connected components, which become disjoint subdiagrams. The epi-
demic threshold is then the smallest among the thresholds of each subdiagram.
c Under the weak-commutation condition, each subdiagram can be further

reduced through (i) diagramoperation SHRINK (top) and (ii) diagram operation ZIP
(bottom), leading to two EGDs of SIS models. Their transition rates are renorma-
lized by the diagram operations. d, e General rules of the three operations. Num-
bers refer to the steps to be performed for each operator; some of these steps are
illustrated in (a–c) with the same numbers.
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detected in the population and administered antivirals. P, A cannot.
Antivirals treat severe forms of seasonal influenza, but most impor-
tantly represent the first line of defense against an emerging pan-
demic, as they mitigate morbidity and mortality at the population
level5,6. For this reason, neuraminidase inhibitors – the most common
influenza antivirals—are stockpiled for pandemic preparedness4.
However, large-scale antiviral administrationmay favor the emergence
and spread of antiviral resistant influenza strains, compromising indi-
vidual treatment and pandemic control54. Combined administration of
two antivirals (combination therapy) has been proposed to defuse this

threat, as opposed tomonotherapy6. To study its effects in altering the
pandemic potential of the circulating pandemic strain, we build the
EGD of the full pandemic influenza disease progressionmodel, adding
antiviral combination therapy and emergence of drug resistance.
Symptomatic infectious individuals (I) are treated with a certain
probability pT. Mutation can occur in treated individuals giving rise to
mono-resistant (to either drug, 1 or 2) andmulti-resistant variants, with
fitness cost ϕ. In the context of current pandemic preparedness4,
drugs 1 and 2 would correspond to oseltamivir Tamiflu and zanamivir
Relenza. The full model is described in the Supplementary Note

Fig. 3 | Epidemic threshold for syphilis. a Classic representation of the suscep-
tible-exposed-infectious-recovered-susceptible (SEIRS) compartmentalmodel here
used tomodel the spread of a general STI. Parameterization for syphilis is provided
in (d). E represents the class of individuals exposed to the infection who are
exposed to the disease, before becoming infectious (I). R corresponds to tem-
porary immunity. Rates are also shown. b Associated EGD. Strongly connected
components arehighlightedbyblue rectangles. c Simplificationof the EGD through
diagram operations. The reduced diagram after CUT is shown with its associated
Jacobian (top; the R component does not contribute to the threshold and is dis-
carded). Under the weak-commutation condition, SHRINK further reduces the
diagram to anEGDof an SISmodel (bottom).dRelative difference in the prediction
of the epidemic threshold in the fullmodel (that is equivalent to the top diagram of

panel c, after CUT) vs. the CUT+SHRINK diagram (bottom diagram of panel c)
obtained under the weak-commutation condition (i.e. removing the role of
latency). Results are obtained for an STI spreading on sexual network from real
data23, exploring different lengths of infectious period (i.e. time-to-treatment) and
latency period. Parameterization for syphilis infection is highlighted. A negative
relative threshold variation indicates the threshold is lower in the full model
compared to the weak-commutation one, i.e. the more realistic model predicts a
higher risk than the approximated one. Both negative and positive variations are
observed in the region of parameters corresponding to syphilis infection. The gray
region of the plot indicates that the system is always below threshold. e Relative
threshold variation as a function of the latency period for the three infection
durations (2 weeks, 1 month, 1 year) corresponding to the white dashed lines in (d).
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(section S2). It includes 25 compartments, 19 of which describe infec-
tious stages.

Despite the model complexity, four strongly connected compo-
nents can be identified in the corresponding EGD (Fig. 4a, neglecting
the trivial component composedonly ofR, as before). They summarise
the infection dynamics of the wild-type, the two mono-resistant, and
themulti-resistant strains.Moreover, the diagramsof thefirst three are
isomorphic, underlying the equivalence of the associated dynamics.

TheCUT operation provides then the epidemic threshold as the lowest
among the critical conditions of the different strains. Each condition
can be computed from data on population structure, A(t), and with
empirically-informed strain-specific parameter values (section S2).

But the influenza diagram can be further simplified in most con-
texts. The short time scale of face-to-face proximity interactions along
which influenza transmission can occur24 makes annealed approx-
imation, i.e. the weak-commutation assumption30, the commonly
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adopted approximation. The diagram can then be fully compressed
through the ZIP operation (Fig. 2c, e), because transmission events
involve exclusively susceptible individuals entering the same com-
partment (here, exposed E). The difference between ZIP and SHRINK is
that ZIP imposes global requirements on the diagram topology and
compresses a full diagram, whereas SHRINK has only local require-
ments and merges two compartments at the time. The multi-resistant
strain EGD and the three isomorphic EGDs (wild-type, and two mono-
resistant strains), made of 4 and 5 compartments, respectively, are all
ZIPped into an EGD of an SIS model with renormalized transmission
and recovery rates (Fig. 4a). The physical intuition is that multi-stage
disease progression may change the speed of diffusion, but not whe-
ther the epidemic will break out or not, provided there are no dyna-
mical interactions between the disease and the underlying contact
network. Theoretically, we are able to disentangle the dynamics of the
four different viral strains, analyze each of them separately, and show
that they are equivalent (after appropriate parameter renormaliza-
tion). Practically, we reduce a 25-compartment influenza model into a
simple SIS model with substantial numerical gain: computing the lar-
gest eigenvalue of four N-dimensional matrices, instead of a 23N -
dimensional matrix.

The factorization of the network component in the weak-
commutation condition (section S2) allows us to make predictions
on the dominant influenza variant by comparing the strain-specific
thresholds against the scenario with no treatment (pT = 0). Increasing
treatment coverage helps controlling pandemic influenza, especially
for high fitness costs of the resistant variants (Fig. 4b with ϕ1 =ϕ2).
Above a certain value of pT, however, the multi-resistant strain dom-
inates and the likelihood of its establishment is not affected anymore
by the treatment coverage. The saturation effect depends on the fit-
ness cost of the resistant strains (Fig. 4c).

Allowing fitness costs to depend on the specific drug (ϕ1 <ϕ2)
leads to the emergence of an additional phase where the mono-
resistant strain dominates, for small enough treatment probabilities
and fitness costs (Fig. 4d). Notably, there exists a range of ϕ1 where
increasing the intervention coverage leads to all possible phases—
namely, either the wild-type dominates (small pT), or the mono-
resistant strain (intermediate pT), or the multi-resistant variant (large
pT). The dominance of a single mono-resistant strain is favoured by an
increase in transmissibility following mutation (ϕ1 < 0), as expected.
Though rare, such conditionwasobserved in the 2007–2008 influenza
season when an oseltamivir-resistant H1N1 variant emerged and
rapidly spread, becoming the dominant H1N1 strain globally54. Dom-
inance can happen also under reduced transmissibility of both mono-
resistant strains (ϕ1 > 0), for a smaller region of parameter values.
Large clusters of oseltamivir-resistant H1N1 variants were isolated in
Japan in 2013–2014 influenza season that caused large community
outbreaks but did not lead to large-scale dominance54. Increasing the

difference between the two fitness costs magnifies the size of the
mono-resistant phase (Fig. 4e).

The models presented so far are not age-structured. In the Sup-
plementary Note (Section S3) we use COVID-19 to show that EGDs can
accommodate age-structured populations, a crucial feature for dis-
eases for which exposure, transmission, or morbidity are age-
dependent.

The use of EGDs for pandemic influenza and syphilis show the
versatility of the theoretical framework in solving the critical epidemic
conditions while handling the full complexity of contact data, disease
natural history, and interventions. Limited work so far has used a
network representation to describe the dependency between different
disease stages55. The EGDs formalism makes this dependency and the
role of the human contact network transparent. EGDs are agnostic of
the data they are fed. As such, they may provide inaccurate or
imprecise estimates if the input data are biased or feature high
uncertainty, which may be the case for data feeds coming in real time
or representing future estimates. EGDs, however, requiring minimal
computational power, can accommodate any sensitivity analysis by
varying the input data and observing the response in the EGD output.
EGDs share the same approximation of the infectious propagator
approach, i.e. the quenched mean-field assumption26,28. Its validity has
been numerically tested for the critical condition56, and specifically
within the infection propagator framework29. All other results leading
to the EGDs and their simplifications are obtained from the properties
of the Jacobian, under no additional approximation. EGDs thus provide
the analytics to predict public health risks at high granularity and to
customise interventions, responding to the challenges of today’s
public health.

Methods
Infection propagator and epidemic threshold
We expand here the expression of the infection propagator of Eq. (3),
which was derived using the theory of nonautonomous linear
systems57. Dyson’s time-ordering operator58 is defined as follows:
T Aðt1ÞAðt2Þ=θðt1 � t2ÞAðt1ÞAðt2Þ+ θðt2 � t1ÞAðt2ÞAðt1Þ. θ is Heaviside’s
step function. The time-ordered exponential of Eq. (3) is then a com-
mon representation of the following series:

PðtÞ=
X1
h=0

1
h!

Z t

t0

dy1 � � �dyhT γ � μ+ λAðy1Þ
� � � � � γ � μ+ λAðyhÞ

� �
: ð4Þ

Time-ordering can be made explicit:

PðtÞ=
X1
h =0

Z t

t0

dy1

Z y1

t0

dy2 � � �
Z yh�1

t0

dyh γ � μ+ λAðyhÞ
� � � � � γ � μ+ λAðy1Þ

� �
:

ð5Þ

Fig. 4 | Epidemic threshold for pandemic influenza with antiviral combination
therapy and emergence of resistance. a EGD (epidemic graph diagram) of the
pandemic influenzamodel and associated simplifications. Themodel includes four
strains—wild-type, two mono-resistant, and one multi-resistant. The recovered (R)
compartment has already been CUT out for the sake of visualization (see also
Fig. 3b). The four strongly connected components (blue rectangles) correspond to
the dynamics of each strain, independently. They can be isolated using CUT. EGD
indicates the representation of an epidemic graph diagram. Under the weak-
commutation condition, the ZIP operation reduces eachof the four subdiagrams to
an SIS-like EGDwith renormalized strain-specific parameters. Parameter definitions
and values appear in Supplementary Tables S1–S3 and S5. b Relative threshold
variation under treatment (pT >0) compared to no treatment (pT =0) as a function
of treatment probability pT and fitness cost, assumed to be the same for both
antivirals (ϕ1 =ϕ2). Positive relative threshold variation indicates the epidemic
threshold is higher when antiviral drugs are used for therapy, i.e. the risk for a

pandemic is reduced. The black line separates the two dominance regimes, for the
wild-type strain and for themulti-resistant variant. c Relative threshold variation as
a function of pT along the values of fitness cost ϕ1 indicated by the white dashed
lines in (b). Treatment increases the epidemic threshold. But after a critical pT the
multi-resistant strain becomes dominant and further increasing treatment has no
additional effect. d As (b) when fitness costs are specific to the drug, i.e.ϕ2 >ϕ1

6. A
phase in which a mono-resistant strain dominates appears, differently from the
situation depicted in (b). In addition, when ϕ1 < 0 (resistance increases transmis-
sibility), a region in parameter space emergeswhere threshold variation is negative
(red region), i.e. the pandemic risk is increased by the use of antiviral drugs, due to
the emergence of resistance. The red arrow indicates the parameter values esti-
mated for the oseltamivir-resistant H1N1 strain, globally dominant in 2007–200854.
e Boundaries of the three dominance phases of panel d when varyingϕ2. We report
their analytical derivation in S2.2.
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The infection propagator encodes the epidemic dynamics close to the
epidemic threshold: PðtÞijbc is the probability that j is in compartment c
at time t, given that i is in compartment b at time t = 0, under the
quenchedmean-field assumption. Equation (5) is also themost explicit
formulation of the interaction between the temporal evolution of the
epidemic and the temporal evolution of the contact network. We can
now generalize what found in ref. 29 for the SIS model, and compute
the epidemic threshold. The epidemic threshold is the critical
parameter surface separating the disease-free state to the endemic
phase. In the SIS model it is a one-dimensional curve relating the
transmission rate from the recovery rate. Here instead it is a (NC − 1)-
dimensional surface defined as follows:

ρ PðTÞ½ �= 1, ð6Þ

where T is the final observation time and ρ indicates the spectral
radius, i.e., the largest eigenvalue. In practice, it is still possible to
obtain an equation for one single parameter if all transmission rates λbc
are expressed as functions of the baseline transmission rate, whose
critical value gives the epidemic threshold. This is the case of the
pandemic influenzamodel, for example, where transmissibility of each
infectious compartment (e.g. P, A, treated symptomatic infectious
individuals,mono-resistant ormulti-resistant strains, etc.) is defined as
a rescaling of the transmissibility of the symptomatic infectious
individual (e.g. transmissibility of the mono-resistant strain is equal to
the transmissibility of the wild-type, rescaled for the fitness cost, see
Supplementary Note section S2).

To numerically compute the spectrum of P, an operator on
RN �RNC , we interpret the tensor products in J as Kronecker pro-
ducts. The resulting matrix has dimension NNC, and has a block
structure, with each block of dimension N, as shown in Fig. 1c. For-
mally, we are exploiting the isomorphismRN �RNC ’ RNNC , and this
is equivalent to the supra-adjacency representation of multilayer
networks46. When γ =0, and NC = 1 (scalar), we recover the infection
propagator of the susceptible-infectious-susceptible model30.

If the network obeys the weak-commutation condition30,59, both
the infection propagator (Eq. (3)) and the threshold (Eq. (6)) simplify.
The weak-commutation condition is defined in ref. 30 as

Z t

t0

dx½AðxÞ,AðtÞ�=0, 8t, ð7Þ

where [A(x),A(t)] =A(x)A(t) −A(t)A(x) is the standard matrix commu-
tator. As ref. 30 proves, this is true in two cases: (i) temporal correla-
tions in the evolution of A(t) are absent (network annealing); (ii) the
timescale of temporal correlations in the evolution of A(t) is much
shorter than the timescale of the spread of the disease (timescale
separation). In both cases all the integrals in Eq. (4) commute and the
time ordering can be dropped. As ref. 30 proves, this implies that it is
possible to replace A(t) with the average adjacency matrix
�A=

R t
t0
dtAðtÞ=ðT � t0Þ, and, in the same way, to replace the time-

evolving Jacobian J(t) with its average �J=
R t
t0
dtJðtÞ=ðT � t0Þ over the

timewindow of analysis. This makes it possible to sum the series in Eq.
(3). The infection propagator is then the exponential of the average
Jacobian:

PðtÞ= et�J = et γ�μ+ λ�Að Þ: ð8Þ

Its spectrum is the exponentiation of the spectrum of J. From this, the
equation of epidemic threshold becomes

ρ γ � μ+ λ�A
� �

=0: ð9Þ

In case of an SIS model (γ =0; μ, λ scalars), Eq. (9) becomes the well-
known formula λ=μ=ρ½�A�26,28.

Lastly, we comment on the term f(x) in Eq. (1). As stated in the
paper, this does not contribute to the epidemic threshold because its
contribution to the Jacobian in the disease-free state vanishes. In the
classical representation of a compartmental model showed in Fig. 1a,
type 3 transitions (i.e. transmissions infecting other compartments
than S) would be contained in f. They would correspond to quadratic
terms of the form xbxc. Since f can be ignored, this means that type 3
transitions can be ignored too, and never appear in EGDs.

From the infection propagator to the EGD
Westated that epidemic graphdiagram is a graphical representationof
J, which can be obtained from the EGD by computing its weighted
adjacency matrix (plus conservation condition), as shown in Fig. 1d:

JbcðtÞ=WbcðtÞ � δbc

X
d

γbd : ð10Þ

To proof the equivalence between the EGD and the infection propa-
gator approach to analytically compute the epidemic threshold, we
need to demonstrate that the Jacobian of the above equation is exactly
J(t) = γ −μ + λA(t), i.e. the expression of the Jacobian obtained from the
dynamical equations in the main paper. We note that the parameters
γbc appearing in the general compartmental model (see Fig. 1a) are
never diagonal: b ≠ c. Therefore, the weighted adjacency matrix of the
EGD that appears in Eq. (10) is

WbcðtÞ= γbcð1� δbcÞ � μbδbc + λbcAðtÞ, ð11Þ

where we made explicit the off-diagonal nature of γbc. The diagonal
elements of operator γ in Eq. (3) are not parameters of themodel, they
are fixed by probability conservation, i.e. γbb = −∑d≠bγbd. We therefore
need to add this last term to the weighted adjacencymatrix of the EGD
to account for the diagonal entries of operator γ of Eq. (3), and this
explains the nature of the second term in Eq. (10). This proves that the
Jacobian built from the EGD is exactly the operator J(t) of the infection
propagator.

Diagram operations
We prove here the diagram operations described in the paper, and in
Fig. 2. They are CUT, ZIP, and SHRINK. CUT decomposes EGDs in
smaller subdiagrams using network approaches and allows the com-
putation of the threshold on each subdiagram separately. ZIP com-
presses complex diseases progressions into SIS-like diagrams. SHRINK
merges pair of nodes. ZIP exploits and transforms the global topology
of the diagram, while SHRINK acts locally on pairs of compartments.

Proof ofCUT. An EGD is a directed graph, and it is possible to order its
nodes so that its adjacency matrix is block-upper-triangular, with the
blocks representing the strongly connected components. J inherits the
same property, if intended as the supra-adjacency matrix46,60 of the
multilayer structure represented by the EGD, i.e., the adjacencymatrix
of the flattened graph exploiting RN �RNc ’ RNNC . And so does P,
because it is a convolution of J(t) at different times. It follows that it is
possible to compute the spectrum of P as the union of the spectra of
the blocks in the main diagonal, which are the subdiagrams obtained
via CUT.

Proof of ZIP. We use the notation EGD for the mathematical repre-
sentation of the diagram. Let us assume that weak-commutation
condition holds (AðtÞ � �A), and the epidemic graph diagram EGD is
made of a node D and a subdiagram EGDX . Moreover, let us assume
that EGDX contains only single links (its Jacobian is γX −μX). Single links
may exist from D, to any node in EGDX : We call γð+ Þr the weight of the
single link from D to the r-th node of EGDX . Single links may also exist
from any node in EGDX to D: We call γð�Þ

r the weight of the single link
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from the r-th node of EGDX toD. The index r runs on theNc − 1 nodes of
EGDX .Dmayhave both single and double self loops, whoseweights we
call − μ0 and λ0

�A, respectively. Double linksmay exist fromany node in
EGDX to D (λr). The resulting J of the full EGD is

ð12Þ

with d= diag ðγð�Þ
1 , � � � ,γð�Þ

Nc�1Þ. The threshold condition in timescale
separation is det J=0. Using block matrix determinant rules, this
simplifies to a determinant in RN :

det �μef f + λef f �A
h i

=0, ð13Þ

with

μef f =μ0 +
X
r

γð+ Þr +
X
rs

γð+ Þr γð�Þ
s γX � μX � d

� ��1
h i

rs
; ð14Þ

λef f = λ0 �
X
rs

γð+ Þr λs γX � μX � d
� ��1
h i

rs
: ð15Þ

γX −μX −d is always invertible if we assume that themodel is below the
epidemic threshold in the absence of transmission. If it were not the
case, the epidemic would be a trivial spontaneous generation of
infected individuals. Or, in epidemiological terms, there would be only
primary disease introductions. This means that J(λ0 = 0, λr =0) is
negative definite. By virtue of Sylvester’s criterion, this in turn implies
that γX −μX −d is also negative definite, because all the leading prin-
cipal minors of the latter are also leading principal minors of J. And
since γX −μX does not depend on transmission, γX −μX −d is always
negative definite, and so invertible. We complete the proof of ZIP by
noting that Eq. (13) is equivalent to an SIS model with renormalized
recovery and transmission rates μeff, λeff.

Proof of SHRINK. The proof is conceptually similar to ZIP’s and, as for
ZIP, requires that the weak-commutation condition holds so that the
time-evolving Jacobian is replaced by its average �J. Let us assume that
the epidemic graph diagram is composed of compartment B and a
subgraph EGDX , with Jacobian γX � μX + λX �A. Moreover, let us assume
that a single link γ0 goes fromB to a node in EGDX , whichwe label as the
first (r = 1). B may have no other outgoing link, and no self loops. Any
node in EGDX may have single and double links going to B. The Jaco-
bian is

ð16Þ

with d= diag ðγ1, � � � ,γNc�1Þ. Using block matrix determinant rules, the
condition det J=0 is equivalent to the following Nc − 1 dimensional
determinant

det γX � μX + λX �A� d+

γ1 + λ1 �A 0 � � � 0

..

. ..
. � � � ..

.

γNc�1 + λNc�1
�A 0 � � � 0

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

=0: ð17Þ

This is equivalent to a diagram in which B disappears, its outgoing link
γ0 disappears, and all incoming links ofB get rerouted onto the ancient
target of link γ0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sexual contact network is publicly available as Supplementary
Information of ref. 23.

Code availability
The code used in this study is public61 and available at https://github.
com/eugenio-valdano/egd.
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